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Abstract. 	Accumulating evidence suggests that the arcuate nucleus (ARC) kisspeptin/neurokinin B (NKB)/dynorphin 
(KNDy) neurons play a role in estrogen negative feedback action on pulsatile gonadotropin-releasing hormone (GnRH)/
luteinizing hormone (LH) release. The present study aimed to determine if dynorphin (Dyn) is involved in estrogen negative 
feedback on pulsatile GnRH/LH release. The effect of the injection of nor-binaltorphimine (nor-BNI), a kappa-opioid receptor 
(KOR) antagonist, into the third cerebroventricle (3V) on LH pulses was determined in ovariectomized (OVX) adult female rats 
with/without replacement of negative feedback levels of estradiol (low E2). The mean LH concentrations and baseline levels 
of LH secretion in nor-BNI-injected, low E2-treated rats were significantly higher compared with vehicle-treated controls. 
On the other hand, the nor-BNI treatment failed to affect any LH pulse parameters in OVX rats without low E2 treatment. 
These results suggest that Dyn is involved in the estrogen negative feedback regulation of pulsatile GnRH/LH release. The 
low E2 treatment had no significant effect on the numbers of ARC Pdyn (Dyn gene)-, Kiss1- and Tac2 (NKB gene)-expressing 
cells. The treatment also did not affect mRNA levels of Pdyn and Oprk1 (KOR gene) in the ARC-median eminence region, 
but significantly increased the ARC kisspeptin immunoreactivity. These findings suggest that the negative feedback level 
of estrogen suppresses kisspeptin release from the ARC KNDy neurons through an unknown mechanism without affecting 
the Dyn and KOR expressions in the ARC. Taken together, the present result suggests that Dyn-KOR signaling is a part of 
estrogen negative feedback action on GnRH/LH pulses by reducing the kisspeptin release in female rats.
Key words:	 Arcuate nucleus, GnRH, Kisspeptin, Neurokinin B

 (J. Reprod. Dev. 59: 266–272, 2013) 

Animal reproduction is regulated by the hypothalamo-pituitary-
gonadal axis. Two modes of gonadotropin-releasing hormone 

(GnRH) release, pulse and surge, are considered to regulate follicular 
maturation/steroidogenesis and ovulation, respectively, in female 
mammals [1–4]. The pulsatile GnRH/luteinizing hormone (LH) 
release is negatively regulated by circulating estrogen from the ovary 
[5] to fine-tune gonadotropin secretion for follicular maturation [6, 
7]. The mechanism generating GnRH/LH pulses, called the GnRH 
pulse generator, has been suggested to be localized in the mediobasal 
hypothalamus (MBH) in rats and monkeys [8–10].

It has been well accepted that kisspeptin-GPR54 signaling plays 
a key role in controlling reproduction via stimulating GnRH release 
[2, 3, 11]. More specifically, a population of kisspeptin neurons 
located in the arcuate nucleus (ARC) has been considered to play an 
important role in GnRH/LH pulse generation in many mammalian 
species, including rats [12–14], mice [15], goats [16, 17], sheep [18, 
19] and monkeys [20]. The ARC kisspeptin neurons are recently 
referred to as KNDy neurons [19] because they co-express neurokinin 

B (NKB) and dynorphin (Dyn) [15, 17, 21]. Wakabayashi et al. [17] 
showed that central infusion of a Dyn antagonist or NKB increases 
the GnRH/LH pulse generator activity in ovariectomized (OVX) 
goats. Their results suggest that Dyn and NKB play an inhibitory 
and stimulatory role, respectively, in controlling GnRH pulses. It is 
speculated that kisspeptin is released in a pulsatile manner from the 
ARC KNDy neurons to stimulate GnRH pulses by acting on GnRH 
neuronal terminals at the median eminence (ME). This notion could 
be adapted in many mammalian species, such as mice [15], rats [13, 
22] and sheep [18, 19].

Dynorphin exerts its effects mainly through the kappa-opioid 
receptor (KOR), a G-protein-coupled receptor. Dynorphin-KOR 
signaling is considered to be involved in the suppression of GnRH/
LH pulses, because central administration of nor-binaltorphimine 
(nor-BNI), a selective KOR antagonist, increases the amplitude and 
frequency of LH pulses during early pregnancy [23] and the mean 
LH level and LH pulse frequency during midpregnancy [24] in rats. 
Further, Goodman et al. [25] suggested that the central Dyn-KOR 
system mediates progesterone negative feedback on GnRH/LH 
pulses in ewes. LH pulses are strongly suppressed in prepubertal 
rats, in which both Kiss1 (kisspeptin gene) expression and kisspeptin 
immunoreactivity in the ARC are suppressed in the presence of a 
negative feedback level of estrogen [26]. Since estrogen receptor 
(ER) α is located in ARC KNDy neurons [27–29], it is possible that 
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Dyn-KOR signaling mediates the estrogen negative feedback effect 
on GnRH/LH pulses in adult female rats.

The present study, therefore, aimed to determine if Dyn-KOR 
signaling mediates estrogen negative feedback on GnRH/LH release. 
We first examined the effects of central administration of a KOR 
antagonist on pulsatile LH release in OVX rats in the presence or 
absence of a negative feedback level of estradiol (E2) [30]. We also 
determined the effects of this negative feedback level of E2 on the 
gene expressions of Pdyn (Dyn gene), Oprk1 (KOR gene), Kiss1, 
and Tac2 (NKB gene) in the ARC-ME region to investigate if 
estrogen exerts its negative regulation of GnRH/LH pulses through 
the changes in these gene expressions. In addition, we examined 
kisspeptin immunoreactivity in the ARC in the presence or absence 
of a negative feedback level of E2 to investigate if the current E2 
treatment affects the kisspeptin expression in this nucleus.

Materials and Methods

Animals
Adult female Wistar-Imamichi rats at 10–12 weeks of age (230–280 

g BW) were used. They were maintained under a controlled environ-
ment (14 h light and 10 h darkness, lights on at 0500 h; 23 ± 3 
C) with free access to food (CE2, Clea, Tokyo, Japan) and water. 
Vaginal smears were checked daily to determine estrous cyclicity, 
and females having at least two consecutive estrous cycles were 
used. Rats were bilaterally ovariectomized 2 weeks before the blood 
or brain sampling to serve as the OVX group. Some OVX rats 
immediately received subcutaneous Silastic implants (i.d., 1.57 mm; 
o.d., 3.18 mm; 25 mm in length; Dow Corning, Midland, MI, USA) 
filled with E2 (20 µg/ml peanut oil) for 1 week to serve as the OVX 
+ low E2 group. The low E2 treatment was previously confirmed to 
produce a plasma E2 level of 35.8 pg/ml and to produce a negative 
feedback effect on LH pulses but not to induce LH surges [30]. All 
surgeries were performed under ketamine/xylazine anesthesia and 
aseptic conditions. All rats were injected with antibiotics (Mycillin 
Sl; Meiji Seika, Tokyo, Japan) after any surgery. All experiments 
were conducted in accordance with the guidelines of the Committee 
of Animal Experiments of the Graduate School of Bioagricultural 
Sciences, Nagoya University, Japan.

Brain surgery
Some OVX and OVX + low E2 rats were stereotaxically implanted 

with a stainless-steel guide cannula (22 G, Plastics One, Roanoke, 
VA, USA) for drug administration into the third cerebroventricle (3V) 
with its tip 0.8 mm posterior and 7.5 mm ventral to the bregma at the 
midline according to the rat brain atlas [31]. The rats were allowed 
a one-week recovery period prior to blood sampling.

Drug administration and blood sampling
To examine the effect of blockade of central KOR on pulsatile 

LH release, nor-BNI (Sigma-Aldrich, St. Louis, MO, USA), a 
selective KOR antagonist [23, 32, 33], was infused into the 3V at a 
dose of 20 µg/head. The dose of nor-BNI was chosen according to 
a previous study, in which central nor-BNI treatment increased LH 
pulse frequency and mean LH levels during midpregnancy in rats 
[24]. Nor-BNI (10 μg/µl) was dissolved in ultrapure water (UPW) 

and administered into the 3 V of OVX rats with/without low E2 
treatment at a flow rate of 1 µl/min for 2 min using a microsyringe 
pump (Eicom, Kyoto, Japan) through an inner cannula (28 G, 
Plastics One), which was inserted into the guide cannula. The 
drug was administered just after the first blood sampling at 1300 
h. Control rats were infused with an equivalent volume of UPW in 
the same manner. Blood samples (100 µl) were collected every 6 
min for 3 h from free-moving conscious rats via a silicone cannula 
(i.d., 0.5 mm; o.d., 1.0 mm; Shin-Etsu Polymer, Tokyo, Japan) that 
was inserted into the right atrium through the jugular vein on the 
day before blood sampling. An equivalent volume of rat red blood 
cells taken from donor rats and prepared in heparinized saline was 
replaced through the same atrial cannula after each blood collection. 
Plasma was separated by centrifugation and stored at –20 C until LH 
assay. At the end of the experiment, the animals were anesthetized 
and infused with 3% brilliant blue dye solution at the same flow 
rate as drug administration to check if the drug was infused into the 
3 V. The brain was removed, and cannula placement and blue dye 
staining in the brain were visually verified. All animals used in the 
present study were confirmed to have correct 3V cannula placement 
and drug administration.

Radioimmunoassay (RIA) for LH
Plasma LH concentrations were measured using a rat LH RIA 

kit provided by the National Hormone and Peptide Program. The 
concentrations were expressed in terms of NIDDK rat LH RP-3. 
The least detectable LH concentration was 0.16 ng/ml for 50 µl of 
plasma, and the intra- and interassay co-efficient of variations were 
8.81% at 2.60 ng/ml and 7.68% at 2.76 ng/ml, respectively.

In situ hybridization (ISH) for Pdyn, Kiss1 and Tac2
To detect Pdyn, Kiss1 and Tac2 mRNA expressions in the brain, 

we performed non-radioactive free-floating single ISH with rat 
Pdyn-, Kiss1- or Tac2-specific digoxigenin (DIG)-labeled probes in 
coronal sections (50-µm thickness) of the hypothalamus taken from 
OVX rats with/without low E2 treatment as previously described 
[27]. DIG-labeled antisense cRNA probes for rat Pdyn (position 
315-731; GenBank accession no. NM_019374), Kiss1 (postion 
33-348; GenBank accession no. AY196983) and Tac2 (position 
180-483; GenBank accession no. NM_019162) were synthesized by 
in vitro transcription from the cDNA clones. Overnight hybridization 
with DIG-labeled cRNA probes was executed at 60 C. Hybridized 
probes were detected using an alkaline phosphatase-conjugated 
anti-DIG Fab fragment (Roche Diagnostics, Mannheim, Germany) and 
5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium chloride 
(Roche Diagnostics). Numbers of Pdyn-, Kiss1- and Tac2-expressing 
cells were counted under a light microscope, and the sum of the cell 
number in the ARC (11 sections) was obtained. The ARC area was 
identified according to the rat brain atlas [31].

Semiquantitative analysis of mRNA expressions of Pdyn and 
Oprk1 in the ARC-ME region by RT-PCR

The ARC-ME tissue of OVX rats with/without low E2 was dissected 
out from the brain according to rat brain atlas as previously described 
[31, 34]. Total RNA was extracted from the ARC-ME tissue using 
ISOGEN reagents (Nippon Gene, Tokyo, Japan) according to the 
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manufacturer’s instructions. A total of 500 ng of RNA was used 
for reverse transcription using MultiScribe Reverse Transcriptase 
enzyme (Applied Biosystems, Foster City, CA, USA) to synthesize 
the cDNA. All primer sequences are described in Table 1. Pdyn 
and Oprk1 were analyzed by RT-PCR. β-Actin (Actb) was used as 
the internal control. The RT-PCR for the mRNAs for Pdyn, Oprk1 
and Actb was performed using AmpliTaq Gold DNA Polymerase 
(Applied Biosystems) under the following conditions: 95 C for 5 
min and 35 cycles of 94 C for 30 sec, 62 C for 1 min and 72 C for 
1 min for Pdyn; 95 C for 5 min and 35 cycles of 94 C for 30 sec, 64 
C for 1 min and 72 C for 1 min for Oprk1; and 95 C for 5 min and 
30 cycles of 94 C for 30 sec, 60 C for 1 min and 72 C for 1 min for 
Actb. The final cycle was followed by a 10 min extension step at 72 
C before reducing the temperature to 4 C for storage. The mRNA 
levels of Pdyn and Oprk1 were semiquantified using the ImageJ 
software (version 1.45s; http://rsb.info.nih.gov/ij/). The intensity 
was then expressed as a value relative to that of the Actb amplicon.

Immunohistochemistry
Ovariectomized or low E2-treated OVX rats were perfused with 

4% paraformaldehyde at 1400 h, and their brains were quickly 
removed. Frozen coronal sections (50 µm) were obtained using a 
cryostat. Every sixth section through the ARC (6 sections, from 2.3 
to 4.1 mm posterior to the bregma) from each rat was stained with 
mouse monoclonal anti-rat kisspeptin antibody (no. 254 outstretched 
in Takeda Pharmaceutical, Osaka, Japan), the cross-reactivity of which 
was described previously [26]. Brain tissue sections from each rat 
were incubated with the anti-rat kisspeptin antibody (1:50,000) for 
24 h at room temperature, followed by incubation with Alexa Fluor 
488-conjugated donkey antimouse IgG (1:800; Molecular Probes, 
Eugene, OR, USA). Then the sections were mounted with an antifade 
reagent (FluoroGuard; Bio-Rad, Hercules, CA, USA). Fluorescence 
images were obtained on an ApoTome microscope (ApoTome; 
Carl Zeiss, Jena, Germany). Six digital photomicrographs of each 
ARC per rat were processed by the ImageJ analysis software. The 
ARC area was outlined on the gray-scale image and processed for 
density measurement. Nonspecific background density points were 
eliminated using the same threshold for each rat.

Statistical analysis
LH pulses were identified using the PULSAR computer program 

[35] as previously described [36]. The statistical differences in LH 
pulse parameters were determined by the Student’s t-test between 
nor-BNI-treated rats and vehicle-treated controls within OVX + 
low E2 and OVX groups. The statistical differences in the mRNA 
expressions of Pdyn and Oprk1 relative to Actb and kisspeptin 
immunoreactive areas between the OVX + low E2 and OVX groups 

were also determined by the Student’s t-test.

Results

Effect of nor-BNI injection into 3V on pulsatile LH release in 
OVX rats with/without low E2

Figure 1A shows LH profiles of representative OVX rats with 
a negative feedback level of E2 that received a 3V injection of a 
KOR antagonist, nor-BNI, or vehicle. The mean LH level was 
significantly (P < 0.05, Student’s t-test) higher in nor-BNI-injected 
animals compared with that in vehicle-treated controls. The mean 
baseline level of LH pulses was significantly (P < 0.05) higher in 
the animals treated with nor-BNI compared with that in controls 
(Fig. 1B), but the frequency and amplitude of LH pulses did not 
significantly differ between these two groups.

Figure 2A shows the representative profiles of LH release in OVX 
individuals treated with nor-BNI or vehicle. There were no significant 
differences in any LH pulse parameters between nor-BNI- and vehicle 
treated-OVX rats (Fig. 2B).

Effects of low E2 treatment on numbers of Pdyn, Kiss1 and 
Tac2 mRNA-expressing cells in the ARC

Figure 3A shows the Pdyn, Kiss1 and Tac2 mRNA expressions 
in the ARC of representative OVX rats with or without a negative 
feedback level of E2 treatment. We found that Pdyn, Kiss1 and Tac2 
mRNA-expressing cells were abundantly located in the ARC in both 
OVX + low E2 and OVX rats. There were no significant differences 
in the number of Pdyn mRNA-expressing cells in the ARC between 
the OVX + low E2 and OVX groups (Fig. 3B). Similarly, there were 
no significant differences between OVX + low E2 and OVX rats in 
the number of Kiss1- and Tac2-expressing cells.

Effects of low E2 treatment on mRNA expressions of Pdyn and 
Oprk1 in the ARC-ME region

Representative images of mRNA expressions of Pdyn and Oprk1 
in the ARC-ME region of OVX + low E2 and OVX rats are shown 
in Fig. 4A. Semiquantitative measurements revealed no significant 
differences in Pdyn and Oprk1 mRNA expression levels between 
these two experimental groups (Fig. 4B).

Effects of low E2 treatment on kisspeptin-immunoreactivity in 
the ARC

Kisspeptin-immunoreactive cell bodies and fibers were dense 
in the ARC of low E2 -treated OVX rats (Fig. 5A), whereas few 
kisspeptin immunoreactivities were observed in OVX rats (Fig. 
5A). ImageJ analysis showed that the kisspeptin-immunoreactive 
area in the ARC was significantly (P < 0.05, Student’s t-test) higher 

Table 1.	 Primer set sequences for RT-PCR used in this study

Gene Forward primer (5´ to 3´) Reverse primer (5´ to 3´) Product size 
(bp)

GeneBank 
accession ID

Pdyn GTTCCCTGTGTGCAGTGAGGAC TAGCGTTTGGCCTGTTTTCTCA 418 NM_019374.3
Oprk1 GATGTCATTGAATGCTCCTTGC CAGGATCATCAGGGTGTAGCAG 138 NM_017167.2
Actb TGTCACCAACTGGGACGATA GGGGTGTTGAAGGTCTTCAAA 165 NM_031144.3
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in the OVX + low E2 rats compared with the OVX rats (Fig. 5B).

Discussion

The present study demonstrates that Dyn-KOR signaling is involved 
in the estrogen negative feedback action on GnRH/LH release in 
adult female rats, because central nor-BNI administration significantly 
increased LH release only in the presence of a negative feedback level 
of E2 in OVX rats. The Dyn-KOR signaling may be involved in the 
suppression of basal LH release but not in suppression of the GnRH/
LH pulse generation system, because baseline levels of LH pulses 
were significantly increased but LH pulse frequency and amplitude 
were not affected by nor-BNI administration. Interestingly, the current 
low E2 treatment did not affect the number of Pdyn-expressing cells 
and gene expression levels of Pdyn and Oprk1 gene in the ARC. 
These results suggest that the negative feedback level of E2 alters 
Dyn-KOR tone in brain areas other than the ARC. The present E2 
treatment increased kisspeptin immunoreactivity in the ARC KNDy 
neurons without affecting Kiss1 mRNA expressions, suggesting that 
the current E2 treatment inhibited the release of kisspeptin from the 
ARC kisspeptin neurons. ARC KNDy neurons are considered to play 
a role in GnRH pulse generation, and kisspeptin is a direct stimulator 
for GnRH release in several mammals [15, 17, 19, 22]. Thus, the 
present study suggests that Dyn-KOR signaling in other brain areas 

than the ARC KNDy neurons is partly involved in estrogen negative 
feedback actions on GnRH/LH pulses via inhibition of kisspeptin 
release from KNDy neurons.

Involvement of KOR in suppression of LH release is consistent 
with previous studies that demonstrated a stimulatory effect of KOR 
antagonists on GnRH/LH secretion [17, 23–25]. In E2-treated ewes, 
WIN 44,441-3, a KOR antagonist [37], increased LH pulse amplitude 
[38]. In addition, nor-BNI also reversed the inhibitory effect of 
progesterone on pulsatile LH secretion in the ewe by increasing the 
mean LH level and pulse frequency, suggesting that the Dyn-KOR 
signaling plays a major role in mediating progesterone negative 
feedback [25]. Central administration of nor-BNI increased LH pulse 
frequency and mean LH levels in pregnant rats, in which LH pulses 
are strongly suppressed [23, 24]. The LH pulse suppression during 
pregnancy could be more dependent on Dyn-KOR signaling than 
the suppression by estrogen negative feedback, because our results 
showed that nor-BNI increased the mean and baseline levels of LH 
pulses in low E2-treated rats without affecting LH pulse frequency 
and amplitude.

The present study showed that the nor-BNI treatment failed to 
alter LH pulses in OVX rats, suggesting that Dyn-KOR signaling 
is not activated in the absence of E2. On the other hand, central 
administration of nor-BNI increased the frequency of MUA volleys 
in OVX goats [17], suggesting that Dyn-KOR signaling plays a role 
in suppressing KNDy neuronal activity and then GnRH/LH pulses 
even in the absence of estrogen. The inconsistency between their 
results and ours may be due to the species difference in the role of 
Dyn-KOR in controlling GnRH release.

Fig. 1.	 Effect of central administration of KOR antagonist on pulsatile 
LH release in OVX rats treated with a negative feedback level 
of E2 (low E2). Profiles of LH release in representative OVX + 
E2 rats treated with nor-BNI, a KOR antagonist, or vehicle (A). 
Nor-BNI or vehicle (UPW) was injected into the 3V immediately 
after the start of blood sampling (arrows). Blood samples were 
collected for 3 h at 6-min intervals. Arrowheads indicate the peaks 
of LH pulses identified by the PULSAR computer program. Mean 
plasma LH concentrations and frequency, amplitude and baseline 
levels of LH pulses in low E2-treated OVX rats (B). Values are 
means ± SEM. The numbers in each column represent the numbers 
of animals used in each group. * P < 0.05 vs. the vehicle-treated 
controls (Student’s t-test).

Fig. 2.	 Effect of central administration of KOR antagonist on pulsatile 
LH release in OVX rats without E2 treatment. Profiles of LH 
release in representative OVX rats treated with nor-BNI or vehicle 
(arrows) (A). Arrowheads indicate the peaks of LH pulses. Mean 
plasma LH concentrations and frequency, amplitude and baseline 
levels of LH pulses in OVX rats (B). The numbers in each column 
represent the numbers of animals used in each group. See Fig. 1 
for details.
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The present study demonstrated that the current E2 treatment did 
not affect the numbers of Pdyn-, Kiss1- and Tac2-expressing cells 
as well as Pdyn and Oprk1 expressions in the ARC-ME region in 
OVX rats. These results suggest that the ARC KNDy neurons may 
not be an estrogen action site that exerts a negative feedback effect 
on LH pulses via Dyn-KOR signaling. Dyn neurons are abundantly 
distributed in several regions in the rat brain, such as the hypothalamus, 
medulla-pons, midbrain and spinal cord [39]. In the rat hypothalamus, 
Dyn expressions are obvious in the paraventricular nucleus (PVN) 

Fig. 3.	 Pdyn, Kiss1 and Tac2 mRNA expressions in the ARC in OVX + 
low E2 and OVX rats determined by in situ hybridization. The 
upper and lower panels show the Pdyn, kiss1 and Tac2 mRNA 
expressions in representative rats in the OVX + low E2 and 
OVX groups, respectively (A). Insets show the sections at higher 
magnification. ARC, arcuate nucleus; ME, median eminence; 
3V, third ventricle. The numbers of Pdyn, Kiss1 or Tac2 mRNA-
positive cells in the ARC of OVX + low E2 and OVX groups (B). 
Values are means ± SEM. The numbers in each column represent 
the numbers of animals used in each group.

Fig. 4.	 Pdyn and Oprk1 mRNA expressions in the ARC-ME region 
of OVX + low E2 and OVX rats. Representative images of 
mRNA expressions of Pdyn, Oprk1 and Actb in the ARC-ME 
region of the OVX + low E2 and OVX groups (A). mRNA 
levels of Pdyn and Oprk1 were determined semiquantitatively 
by RT-PCR with the primers shown in Table 1 (B). The 
analysis was carried out using the ImageJ software of the 
National Institutes of Health. Values are indicated as the 
expression relative to Actb, as an internal control. Values are 
means ± SEM. The numbers in each column represent the 
numbers of animals used in each group.

Fig. 5.	 Kisspeptin immunoreactivities in the ARC of OVX + low E2 
and OVX rats. Schematic illustration and photomicrographs of 
coronal sections of rat brains including the ARC (A). Schematic 
drawing of the ARC according to Paxinos and Watson [31] 
(left). The value in the drawing indicates the distance (mm) 
to the bregma. Photomicrographs (right) show kisspeptin 
immunoreactivity (green) in representative animals in the ARC 
of OVX + low E2 and OVX groups. ARC, arcuate nucleus; DMV, 
ventral dorsomedial hypothalamic nucleus; InfS, infundibular 
stem; 3V, third ventricle. Scale bars: 200 µm. Semiquantitative 
analysis of kisspeptin immunoreactivity in the ARC of OVX + 
low E2 and OVX rats was determined using the ImageJ software 
(B). Values are means ± SEM. The numbers in each column 
represent the numbers of animals used in each group.
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[40, 41], MBH and preoptic area (POA) [42]. Therefore, it is possible 
that some brain areas other than the ARC could be estrogen action 
sites that mediate the negative feedback effect on LH pulses via 
Dyn-KOR signaling in rats. Further studies are required to address 
this issue in more detail. The current low E2 treatment increased 
ARC kisspeptin immunoreactivity without affecting Kiss1 gene 
expressions in the nucleus. In terms of Kiss1 gene expression, the 
present result is consistent with our previous reports, which showed 
that the negative feedback level of E2 had no suppressive effect 
on ARC Kiss1 gene expression. On the other hand, a number of 
studies showed that a positive feedback level of E2 suppresses both 
Kiss1 and kisspeptin expressions in the ARC of female rodents [15, 
27–29]. The increased ARC kisspeptin immunoreactivity caused 
by the current low E2 treatment without an accompanying effect 
on Kiss1 expression implies that kisspeptin release from the ARC 
KNDy neurons was diminished by the low E2 treatment and that 
ARC kisspeptin was consequently increased.

Previous studies revealed that estrogen mainly exerts its feedback 
action to control GnRH/LH secretion through ERα, a receptor subtype 
in the brain [43–45]. This estrogen negative feedback action on LH 
secretion is considered to be mediated by nonclassical ERα action 
instead of classical ERα action [43, 45]. These studies suggest that 
estrogen response element (ERE)-independent ERα is sufficient to 
convey a major portion of estrogen negative feedback action on LH 
release. This nonclassical estrogen action involves interactions of ERα 
with DNA-bound transcription factors, such as specificity protein and 
activating protein 1 [46], whereas, in the classical genomic pathway, 
ERα binds to EREs in DNA to alter the transcription of genes [47]. 
Thus, it is conceivable that our negative feedback level of E2 acts 
through the nonclassical ERα pathway without affecting the gene 
expressions of Pdyn, Kiss1, Tac2 and Oprk1 in the ARC-ME and 
may suppress the kisspeptin release from KNDy neurons. It is also 
possible that a membrane receptor, such as GPR30 [48], is involved 
in the estrogen negative feedback regulation of LH secretion. This 
mechanism should be investigated in greater detail in future studies.

Interestingly, recent studies showed that central NKB receptors 
rather than KOR would be involved in the suppression of GnRH/LH 
pulses in rats [49, 50]. These studies showed that central administration 
of NK3 receptor agonist increases LH pulse intervals, while both 
Dyn agonist and antagonist had no effect on LH pulses in diestrous 
rats and OVX rats treated with a negative feedback level of E2. More 
recently, O’Byrne and colleagues showed that KOR in the ARC 
mediates LH pulse suppression induced by the activation of NKB 
receptors within the ARC in rats [50]. These findings suggest that 
roles of Dyn and NKB signaling in controlling GnRH/LH pulses 
are still controversial.

In conclusion, the present study suggests that Dyn-KOR signaling 
at least partly mediates estrogen negative feedback on GnRH/
LH release by reducing kisspeptin release from the ARC KNDy 
neurons in female rats. The estrogen action sites that enhance the 
Dyn-KOR signaling would be in other brain regions than the ARC 
KNDy neurons. Further studies are warranted to address the precise 
mechanism involved in the estrogen negative feedback on GnRH/
LH release via alteration of Dyn-KOR signaling.
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