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Abstract
Researchers studying longitudinal relationships among multiple problem behaviors sometimes
characterize autoregressive relationships across constructs as indicating “protective” or “launch”
factors or as “developmental snares.” These terms are used to indicate that initial or intermediary
states of one problem behavior subsequently inhibit or promote some other problem behavior.
Such models are contrasted with models of “general deviance” over time in which all problem
behaviors are viewed as indicators of a common linear trajectory. When fit of the “general
deviance” model is poor and fit of one or more autoregressive models is good, this is taken as
support for the inhibitory or enhancing effect of one construct on another. In this paper, we argue
that researchers consider competing models of growth before comparing deviance and time-bound
models. Specifically, we propose use of the free curve slope intercept (FCSI) growth model
(Meredith & Tisak, 1990) as a general model to typify change in a construct over time. The FCSI
model includes, as nested special cases, several statistical models often used for prospective data,
such as linear slope intercept models, repeated measures multivariate analysis of variance, various
one-factor models, and hierarchical linear models. When considering models involving multiple
constructs, we argue the construct of “general deviance” can be expressed as a single-trait
multimethod model, permitting a characterization of the deviance construct over time without
requiring restrictive assumptions about the form of growth over time. As an example, prospective
assessments of problem behaviors from the Dunedin Multidisciplinary Health and Development
Study (Silva & Stanton, 1996) are considered and contrasted with earlier analyses of Hussong,
Curran, Moffitt, and Caspi (2008), which supported launch and snare hypotheses. For antisocial
behavior, the FCSI model fit better than other models, including the linear chronometric growth
curve model used by Hussong et al. For models including multiple constructs, a general deviance
model involving a single trait and multimethod factors (or a corresponding hierarchical factor
model) fit the data better than either the “snares” alternatives or the general deviance model
previously considered by Hussong et al. Taken together, the analyses support the view that
linkages and turning points cannot be contrasted with general deviance models absent additional
experimental intervention or control.

Longitudinal research projects involving problem behaviors frequently attempt to detect
time-bound linkages or “turning points” between level or onset of one behavior and
subsequent level or onset of another behavior. Turning points are frequently viewed as
external events or behaviors that provoke or inhibit change (Rutter, 1996). To cite a few
typical examples, Hussong, Curran, Moffitt, Caspi, and Carrig (2005), proposed that early
onset of substance abuse hindered decline in subsequent antisocial behavior during middle
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adulthood. Vazsonyi and Huang (2010) analyzed data from a 3-year longitudinal sample of
third to fifth graders via a parallel linear growth curve models and found that self-control
and deviance were both negatively associated overall and that the patterns of growth
between the two constructs were negatively associated. Similarly, Welte, Barnes, Hoffman,
Wieczorek, and Zhang (2005) found that alcohol use and dependence were associated with a
greater increase in delinquency in adolescence, whereas drug use was negatively associated
with a declining trajectory of delinquency. In two large-scale Monte Carlo studies designed
to simulate the magnitude of turning points in developmental research, Kwok, Lou, and
West (2010) argued that modification indices could be successfully used to identify turning
points in longitudinal data. In a general discussion of criteria for identification of time-
bound linkages and turning points, Rutter (1996) stressed that research into turning points
must necessarily involve the measurement of intraindividual change over time and that
studies must rule out heterotypic continuity (which posits that the manifestation of a given
behavior has changed but its presence had not) as an alternative explanation.

The existence of turning points and linkages in longitudinal data has been established by
comparing models with and without such turning point components. Sterba and Bauer
(2010) survey several person-oriented developmental statistical models that could serve as
base models for such investigations. They note, however, that the variety of statistical
models is impressive and that such models often invoke implicit, untestable assumptions
about the nature of interindividual differences in intraindividual change over time. This
sheer variety of statistical models often means that a given data set can be used to identify
linkages under one statistical model but not another. As a result, it is difficult to definitely
conclude that particular turning points exist, whether alternate explanations involving
heterotypic continuity hold or whether the model comparison is simply invalid because the
data fail to meet implicit assumptions about change over time. Such limitations of
substantive inference due to the selected statistical model have been noted in other areas of
longitudinal developmental research: Partridge and Lerner (2007), for example, note in their
review of infant temperament that researchers using repeated measures multivariate analysis
of variance (MANOVA) often conclude that temperament is stable and traitlike, whereas
those using growth curve models found that it changed systematically over time. Similarly,
although some researchers may argue for the presence of turning points or linkages (e.g., by
comparing linear growth curve models with and without turning points), a reasonable
skeptic may counter that the analysis is unconvincing because an inappropriate model of
growth over time was used.

The multiplicity of statistical models for testing turning point hypotheses leaves researchers
with four general alternatives: a clearly superior choice is to use a statistical model based on
substantive considerations that all reasonable qualified experts would agree upon.
Unfortunately, this happy state of affairs does not often attain. A less appetizing alternative
is to abandon claims to conclusiveness based on any given model and note that “other
techniques may yield other conclusions.” Such an admission raises questions about the
probative value of the analysis or, worse, raises the suspicion that the model used has been
“cherry-picked” to serve the desired conclusion. Still other researchers entertain a variety of
statistical models and tally those that do and do not favor the turning point hypothesis of
interest in an effort to test the “robustness” of proposed findings. Unfortunately, such
“elections” are suspect on two grounds: first, “voters” in the election are determined based
on their publication in statistical or related journals with no evaluation of whether the model
is appropriate to the data at hand; and second, such comparisons do not take into account
that some models may make restrictive or unreasonable assumptions of the data or,
alternatively, may lack parsimony to such a degree that the statistical power for testing
hypotheses is greatly reduced. A final approach, which is the one outlined in this paper, is to
consider and evaluate the suitability of models in terms of the dual criteria of their
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parsimony and fit to the data. Given that general deviance may constitute an alternative
explanation for observed time-bound associations, it is necessary to explore and evaluate the
models of general deviance that a reasonable skeptic might propose as counterarguments to
models that posit time-bound associations between constructs.

The simultaneous inductive and deductive processes implicit in model building were first
discussed by Cattell (1988) and more recently by Rodgers (2010) as a “quiet methodological
revolution” in which researchers shift away from using a statistical procedure within a
particular rule-based framework to building and comparing models informed by both
substantive questions and the data at hand. Although it may be initially tempting to choose
models that make the fewest assumptions of the data or that involve estimation of the
smallest number of parameters, Rodgers argues that choosing the “best” mathematical
model involves sometimes conflicting trade-offs based on parsimony, theoretical
reasonableness, and fit with the observed data. We now turn to a discussion of these trade-
offs and explore alternative substantive explanations involving heterotypic continuity and
third-variable explanations.

Problems With Linear/Polynomial Growth Models
The examples of turning point research cited in the introductory paragraph of this article are
similar in that linear or polynomial growth curve models (or their hierarchical linear model
equivalents) were assumed as base models for identification of turning points. This is not
atypical of most longitudinal analysis, given the popularity and ease of specification of such
models. Analytic and substantive reservations have been expressed, however, as to whether
such models are appropriate on substantive and empirical grounds. Liu, Rovine, and
Molenaar (2012) argue against use of the linear growth curve model as a primary model and
point out that autoregressive, moving average, or Toeplitz structures may be more
appropriate. They point out that the tail probabilities associated with the linear model may
be very inaccurate, even when the predicted means of the model fall on a straight line. Some
substantive reasons for caution also seem appropriate. In developmental psychology, for
example, no psychologist has proposed a theory in which changes in personality traits or
problem behaviors are necessarily linear (or quadratic) as a function of elapsed time. Periods
of developmentally limited growth, stasis, and decline are often hypothesized instead, the
precise form of which is unknown to the researcher beforehand. Others have criticized
whether linear or polynomial form of growth is appropriate. Browne (1993) and Ram and
Grimm (2007), for example, note that such models may not recover abrupt nonlinear
changes and do not recover plateaus or short-term periods of elevation such as those
observed in problem behaviors, which are normatively developmentally limited to a specific
period of the lifespan. Free curve models of growth (McArdle & Anderson, 1990; Meredith
& Tisak, 1990; Ram & Grimm, 2007; Wood, 2011) entail no constraints on the form of
growth over time and may readily recover such nonlinear change. Other, more parsimonious
models may also be appropriate, including confirmatory factor models, which model both
mean level and patterns of covariation (e.g., McArdle & Epstein, 1987; McDonald, 1967), as
well as more familiar longitudinal models such as repeated measures analysis of variance
(Liu et al., 2012). To our knowledge, no studies of developmental psychopathology have
compared the suitability of such alternative models against the more traditional linear and
polynomial curve growth curve or HLM model.

Heterotypic Continuity as Third-Variable Explanation
If heterotypic continuity is to be taken as a possible alternative explanation for time-bound
associations between constructs, it is first necessary to show how a model of heterotypic
continuity might be operationalized. The term is often taken to mean that an individual
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possesses a constant level of (underlying) impairment over time. If the manifest level of
impairment over time due to heterotypic continuity is also constant, heterotypic continuity
may then be modeled as a general intercept factor with unit loadings. In addition, if equal
measurement error variance over time is assumed, conditions of compound symmetry are
met and hypotheses regarding change over time can be used using traditional repeated
measures analysis of variance (Liu et al., 2012; Wood, 2011).

It is possible, however, that the manifest level of impairment may vary from occasion to
occasion, even though individuals’ underlying levels of impairment are constant over time.
For example, although a given level of alcohol use may be considered moderate
consumption during adulthood, the same level of use may, in younger individuals, indicate a
high level of problematic consumption. Such differences may typify normative shifts in
consumption across ages. In addition, stable interindividual differences in the construct of
interest may manifest themselves differently across a developmental period due to changes
in general environment (e.g., living at home versus on a college campus) or in response to
developmentally graded tasks and roles. These factors may also cause assessments of
behaviors to be differentially reliable across measurement occasions. If heterotypic
continuity takes this more subtle form, it is better modeled as a latent variable with factor
loadings that vary over measurement occasions. Although such a factor model with mean
level effects was proposed by McArdle and Epstein (1987) to model intellectual
development, it has not, to our knowledge, been used to typify heterotypic continuity.

Other Third-Variable Explanations
Heterotypic continuity is not the only common process or trait that may underlie behaviors
over time. For example, a common factor of substance use vulnerability or a common
genetic mechanism has been proposed to account for abuse across different substances as
well as comorbidity with antisocial behavior (Jessor & Jessor, 1977; Krueger, Markon,
Patrick, & Iacono, 2005; McGue, Iacono, & Krueger, 2006). State-trait factor models that
account for substance use via general traits spanning time as well as time-specific
associations have also been proposed (e.g., Jackson, Sher, & Wood, 2000). Hussong et al.
(2008) tested a “general deviance” or “common propensity” factor across constructs using a
hierarchical linear slope growth model and used the poor relative fit of this model to argue
for the existence of “developmental snares” and “launches” involving antisocial behavior
and substance use. Although it is not possible to disambiguate these constructs from the
general notion of heterotypic continuity, it bears noting that these related constructs also
involve invocation of some common causal construct modeled using one or more latent
variables that span time. When the longitudinal studies under consideration involve multiple
constructs (of different problem behaviors), models involving a general deviance factor may
be structurally analyzed as single-trait multimethod designs in which the single trait
constitutes general deviance or propensity and the distinct “methods” are the specific
problem behaviors under investigation.

Nested Model Comparisons of Growth and Change
In order to make systematic comparisons of structural models of heterotypic continuity and
time-bound associations, we propose that researchers make nested comparisons of structural
models of general deviance or common propensity that vary in terms of their assumptions
about the nature and form of growth/change in individual problem behaviors over time.
When sufficient measurement occasions exist, the free curve slope intercept growth model is
proposed as the most general model because it makes no assumptions about the form of
growth over time and need not necessarily require assumptions of equality of measurement
error over time. By imposing constraints or redacting elements of this model entirely, it is
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possible to generate structural models for the data that may more parsimoniously
characterize the general nature of heterotypic continuity and related systematic
interindividual differences in intraindividual change. These special cases include the linear
slope intercept growth model (used by Hussong et al., 2008), hierarchical linear models, and
multivariate repeated measures analysis of variance as well as other models, such as
McDonald’s (1967) linear factor model. Because many of these models are nested
comparisons, it is then possible to evaluate the degree to which model components (such as
the existence of both random intercept and factor mean [FM] models described above) or
model assumptions (such as the assumption that growth is typified by a straight line or that
measurement error variability is constant over time) appear warranted by the data.

As an example of this model comparison approach, we reconsider two analyses originally
presented in Hussong et al.’s (2008) original analysis of data from the Dunedin
Multidisciplinary Health and Development Study (Silva & Stanton, 1996). In the first
analysis, the single construct of antisocial personality is considered. Although Hussong et
al.’s original analysis concluded that the data were poorly fit by a linear growth model and
therefore that general deviance did not explain the construct of antisocial personality over
time, we find that the data are well fit by a free curve slope intercept model and, based on
incremental fit indices, better fitting than both repeated measures analysis of variance and
the linear growth curve model originally proposed by Hussong et al.

In order to examine whether a single construct (such as general deviance or propensity) can
explain comorbidity patterns across problem behaviors as well as interindividual variability
over time within constructs, we then reconsider an analysis of antisocial personality, alcohol,
and marijuana use in the Dunedin data. Specifically, we propose fitting a single-trait model
of general deviance or propensity along with multimethod factors corresponding to the
individual problem behaviors of antisocial personality: alcohol and marijuana use. These
models, expressed in both bifactor and hierarchical factor form, fit the data well and better
than the hierarchical linear growth model proposed in Hussong et al.’s (2008) original
analysis. Although Hussong et al. argued that additional developmental linkages exist in
these data because their linear slope model of general deviance fit the data poorly relative to
substance-specific linkage models, our reanalysis suggests that general deviance adequately
accounts for patterns of comorbidity and that no time-bound associations exist across these
constructs. It is not the goal of this paper to contrast the deviance model with alternate
launch and snare models tested by Hussong et al. A direct comparison of the launch and
snare alternatives is difficult, given that the launch and snare modes considered by Hussong
et al. are either not nested or based on a different subset of variables than the general
deviance models. Our goal here is to show that decisions based on the poor fit of the
deviance model should be revisited in light of our reanalysis of the Dunedin data, which
operationalizes deviance via factor models as opposed to linear growth models.

Notation for Factor Model With Means
In order to specify the candidate statistical models and to highlight nested relationships
between them, it is necessary to briefly introduce the relevant notation. Because the interest
conceptually is in growth or change over time and degree of impairment, the structural
models under consideration are simultaneously statements of both mean level of functioning
and covariation between variables. Accordingly, the score matrix to be modeled consists of
the raw scores to which a unit column has been adjoined (or, in summary form as for the
data reported in Hussong et al., 2008, and reanalyzed here, the average adjoined sum of
squares and cross-products matrices). Using Sörbom’s (1974) notation (with a minor
modification so that rows represent individuals and columns represent variables), the factor
model including mean effects is given by
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(1)

and

(2)

where X is a matrix of n individual scores on k manifest variables. Assuming f factors, μ is
an n×k column scalar matrix (i.e., a matrix composed of column identical elements)
composed of k intercepts corresponding to each manifest variable that scales each variable to
its zero point, Λ is a f×k matrix of factor loadings,ε is an n×k matrix of errors of
measurement, θ is an n×f column scalar matrix of factor means, and η is an n×f matrix of
latent variable scores expressed as deviations from their respective factor means. The
variance/covariance matrix Σ based on this model is given as (Sörbom, 1974, p. 230)

(3)

where Φ represents the variance/covariance matrix of the latent variables and Ψ2 is a
(generally diagonal) matrix of variances of the uniquenesses. The expected values of the
observed manifest variables are given by

(4)

As noted by Sörbom (1974), the factor model outlined in Equations 1 and 2 is not identified
unless boundary conditions are imposed on the variance components and intercepts.
Although discussed in more detail in Sörbom (1974) and Jöreskog (1971), at a minimum, f 2

restrictions across Λ and Φ must be imposed to secure an identified solution. For a given
factor, this may be accomplished by fixing a factor variance or factor loading associated
with each factor to 1. In the case of multiple factors, however, additional care must be taken
that each factor is identified distinctly. This may be accomplished in a variety of ways and
may involve setting some or all factor covariances to zero, setting selected loadings to
equality, or setting some factor loadings to zero, depending on the substantive and design
characteristics of the study. In addition, the mean matrices μ and θ can accommodate at most
k freely estimated parameters.

Factor Models for Means for Prospective Data
Using this notation, we can now formally present a variety of structural models for growth
and change over time. These models include the free curve slope intercept model (FCSI;
Meredith & Tisak, 1990), as well as several popular alternatives as special cases including
the chronometric slope intercept (CSI) growth model considered by Hussong et al. (2008),
hierarchical linear models (HLMs), repeated measures MANOVA, FM models (e.g.,
McArdle & Epstein, 1987), and FM models with shift (FM shift; Wood, Jackson, &
Steinley, 2013). When viewed as structural models, the relative fits of these alternatives may
be compared and, in some situations, tested as nested alternatives. Figure 1 shows, in path
diagram form, the general growth curve model, which includes these models as special
cases. In this model, both intercept and slope factors for the case of three measurement
occasions are assumed. The slope factor is specified with either free or fixed loadings (λ),
and loadings for the intercept factor are fixed at 1. The FMs for the intercept and slope
factors are defined as θI and θS, respectively, and Φ, the variance covariance matrix of
factors mentioned in Equation 3, is composed of the intercept factor variance φI, the slope
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factor variance, φS, and covariance between the intercept and slope factors, φI,S. Finally,
diagonal elements of the Ψ matrix discussed in Equation 3 are estimated via εi, where i
indexes the measurement occasion.

For didactic purposes, we test and evaluate models with the data used by Hussong et al.
(2008), which were drawn from the Dunedin Multidisciplinary Health and Development
Study, a longitudinal study of health and behavior in a complete birth cohort in New
Zealand (Silva & Stanton, 1996). The study included 1,037 children (52% male) who
participated in an age 3 assessment; participants were followed roughly every 2 years
through late adolescence. The sample used in Hussong et al. included 461 men who were
assessed at ages 18, 21, and 26 and had complete data across at least two waves.

Symptoms of alcohol abuse and marijuana abuse were assessed using the Diagnostic
Interview Schedule (Robins, Helzer, Cottler, &, Goldring, 1989). A count was taken across
the 19 alcohol abuse/dependence symptoms and 10 marijuana abuse/dependence symptoms.
Antisocial behavior was assessed using the total number of items endorsed from a list of
eight different antisocial acts (e.g., arson and robbery).

CSI models
For purposes of comparison with proposed alternatives, it is helpful to begin with the CSI
model, as considered in Hussong et al.’s (2008) original analysis and frequently used in
research in developmental psychopathology. In this model, slope loading values are fixed
numerical values corresponding to elapsed time relative to a measurement occasion (usually
the initial occasion; for a more detailed presentation of the model, see Bollen & Curran,
2006). As shown in the CSI column in Table 1, for the summary Dunedin data reported in
Hussong et al., these factor loadings are fixed to 0, 3, and 8 for the three measurement
occasions. Consonant with Hussong et al.’s original analysis (p. 92) based on full
information maximum likelihood estimates taking into account missing data patterns, χ2 (1)
= 9.31, p = .002, comparative fit index (CFI) = 0.98, fit of the CSI model to the summary
data reported in Hussong et al. is poor as shown in the bottom of Table 1, χ2 (2) = 11.44, p
< .001, Tucker–Lewis index (TLI) = 0.96, CFI = 0.97, root mean square error of
approximation (RMSEA) = 0.10, 95% confidence interval (CI) = 0.05–0.16.1

HLMs
Given the multiple random effects often present in prospective data, HLMs have often been
proposed as an attractive model for such data. As noted by Rovine and Molenaar (2000),
from a structural equation modeling perspective, such HLMs are equivalent to
corresponding CSI models. When error variances are assumed to be unequal (equivalent to
the type UN in Proc Mixed), the fit of this model is identical to that obtained with the CSI
model, although, as noted by Rovine and Molenaar, estimated factor variances and
covariances as well as FMs are different, due to the change in scale imposed by the different
sets of linear loadings (i.e., the intercept latent variable in HLM is scaled to represent
variability at birth rather than variability at age 18).

1Because some researchers (e.g., Ram & Grimm, 2007) have argued estimated measurement errors over time should be assumed to be
the same absent evidence of differential measurement error, we elected to constrain the measurement errors of ages 18 and 26 to
identity, given that these estimates seemed similar across models that freely estimated these values. Accordingly, the CSI model
reported here has one more degree of freedom than that reported by Hussong et al. Fit of Hussong et al.’s original model to these data
was relatively unaffected, χ2 (1) = 10.37, p < .001, TLI = 0.92, CFI = 0.97, RMSEA = 0.16, 95% CI = 0.09–0.24, and we again note
that the difference between this value and that reported by Hussong et al. is because their model was full information maximum
likelihood estimates and included missing data while those reported here are based on the summary data statistics reported in Hussong
et al. We also note that if all measurement occasions are freely estimated, the resulting solution is improper, because one of the error
variances is negative, due presumably to either the relatively small sample size in the study or the use of the variance/covariance
matrix based on pairwise missing data patterns.
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Conceptually, it seems odd to adopt either the CSI or the HLM model as a default growth
curve model for problem behaviors across many years of development because, as
mentioned above, periods of developmentally limited growth as well as periods of stasis and
precipitous decline are often hypothesized to occur. Unfortunately, although these life-stage
specific phenomena are theoretically expected, their presence in the data is not a certainty.
Even when the presence of such phenomena are agreed upon, the precise timing of these
phenomena is often not known. In the case of three measurement occasions such as these
data, the failure of the CSI and HLM models appears largely due to the models’ failure to
replicate means across the three measurement occasions, given that the number of factor
loadings and error variances is equal to the number of variances and covariances in the data.
However, in a more general sense, the CSI and HLM models may in many occasions be
simultaneously too “complex” in that they assume the existence of separate intercept and
slope functions over time that may not exist and too “simple” in that they assume that
prospective patterns of change must assume a linear or quadratic form. These difficulties
would appear compounded when the CSI model is used as a component of a larger general
deviance model because patterns of stasis may occur in some behaviors but not others,
resulting in poor model fit, even though interindividual differences could still be well
explained by a single general deviance factor.

FCSI models
As noted by Meredith and Tisak (1990), a “free curve” growth models results when all slope
loadings (λ) are freely estimated, assuming a Slope factor variance (φS) of 1 and no
covariance between the Intercept and Slope factors. In this model, the FCSI model includes
estimates of means for the Intercept (θI) and Slope (θS) factors, as well as a variance
component for the Intercept factor (φI ). Errors of measurement for the mth manifest
variable (εm) are estimated as well. In terms of assumptions about the continuously
measured manifest variables, the FCSI is similar to the CSI in that it assumes a common
interval level measurement of manifest variables and the intercept variable but a ratio level
of measurement of the slope latent variable. Differences in the rate of change in growth in
the free curve model can be estimated by the difference between adjacent slope factor
loadings (e.g., McArdle & Epstein, 1987). For the Dunedin data, fit of FCSI model is very
good, χ2 (1) =3.71, p =.054, TLI = 0.98, CFI = 0.99, RMSEA = 0.08, 90% CI = 0–0.17.

Relationship of FCSI to CSI
If the freely estimated loadings of the FCSI model were constrained to be linear over time,
the model that results has an identical fit to the original CSI model. In terms of nested model
comparisons, researchers can compare the FCSI with a constrained model to assess if the
assumption of linearity is warranted. Although it is easier for researchers to specify these
linear constraints by fixing slope loadings to chronological age or elapsed time relative to a
measurement occasion, an orthogonal linear growth model can also be fit by fitting the FCSI
model with constraints on the loadings intermediary between the first and last measurement
occasion to secure the desired linear form. For these data, the loading corresponding to age
21 is fixed to be equal to (5/8)×λ18 + (3/8)×λ26 and results in the estimates reported in the
Orthogonal CSI column in Table 1. A χ2 difference test between the orthogonal CSI and
FCSI models finds the FCSI model is preferable, χ2 (1) = 7.73, p < .01.

Examining the FCSI column in Table 1, the Slope factor loading of only the age 18
measurement occasion loading is significant (λ = 0.69) corresponding to a standardized
loading value of .43. Means for the Intercept (θI = 1.59) and Slope (θS = 0.51) factors are
both statistically significant, as is the Intercept factor variance (φI = 1.35). The pattern of
statistical significance in the orthogonal solution indicates that the FCSI model describes a
decline from age 18 measurement occasion to other ages, but that no significant normative
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decrease in antisocial personality was found from ages 21 to 26. Further, the proportion of
variability in the construct of antisocial personality accounted for by the tau-equivalent
model can be calculated by the proportion of variability accounted for by the intercept factor
divided by the variability accounted for by both the intercept and slope factors. When this is
done, for example, it can be seen that 99% and 98% of the variability in ages 21 and 26 can
be accounted for by the tau equivalent factor model, compared to only 74% of the variability
at age 18, suggesting that the change observed in the data appears limited to a
developmentally graded increase in antisocial personality assessed at age 18.

Rather than asking whether evidence exists for growth or change above and beyond a tau-
equivalent trait model, researchers may be interested in knowing whether a relationship
exists between interindividual variability associated with a particular measurement occasion
and a trajectory of (subsequent or antecedent) change relative to that time of measurement.
For example, similar to the CSI model, researchers may be interested in determining if
interindividual variability at age 18 is related to subsequent course of change and whether
general level of response at age 18 is related to the subsequent trajectory of change. This
rotation of the original FCSI model is accomplished by setting the loading associated with
age 18 to zero and freeing the covariance between the intercept and slope factors. The
resulting parameters are shown in Table 1 in the FCSI Rotated to Age 18 colulmn. Seen
from this perspective, the same normative decline in antisocial personality is estimated
(calculated by multiplying the negative slope mean by each loading and adding the result to
the mean of the intercept factor), but via a process that posits that age 18 is unrelated to the
growth curve of interest (accomplished by setting the slope loading to zero). Factor loadings
for the slope factor are statistically significant, consonant with the orthogonal FCSI model,
which found that the age 18 loading was dramatically different than the remaining two
measurement occasions. Variability in growth, (operationalized as the implied decreases in
scores as indicated by loadings of the slope factor), is negatively (r = −.51) related to
variability at age 18, as was also found in the linear CSI.

Other researchers (e.g., Demetriou & Raftopoulos, 2004), following Wohlwill (1973), have
argued for teleological models of development in which a retrospective focus is employed.
Under these models, the desire is to understand the route by which the individual arrived at
the last assessed occasion rather than prospectively linking the first measurement occasion
to subsequent growth. These models seek to ascertain, for example, the process by which
individuals with a given level of antisocial personality at age 26 came to it based on earlier
assessments, consistent with the idea of equifinality (Cicchetti & Rogosch, 1996), which
posits that the same level of psychopathology may result in different individuals via
different earlier developmental processes and risk factors. This model is the same FCSI
model but this time rotated relative to the last measurement occasion, age 26. Estimates
from this model are shown in the FCSI Rotated to Age 26 column in Table 1. As can be
seen, this equally well-fitting model produces a non-significant negative estimated
correlation between prior growth (slope) and level of antisocial personality at age 26.

In summary, these analyses suggest that a FCSI growth model fit the data well and that the
assumption of linear change over time adopted by the CSI and HLM models is unwarranted,
given the data. Although the FCSI is one growth model for these data, it may be that other
more parsimonious models of growth may account for the data as well. As mentioned
earlier, these models are variants of the FCSI model and involve selective redaction of
components associated with the intercept and slope factors of the FCSI model. As such,
though some submodels are not nested with other submodels, all are nested within the FCSI
model.
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FM and FM-shift models
It may be that the FCSI model is unparsimonious because it stipulates the existence of two
factors rather than one; specifically, it positsthat an Intercept factorexists as well as a Slope
factor. Two such redactions of the FCSI growth model have been proposed as more
parsimonious alternatives: the FM model (McArdle & Epstein, 1987) and the FM-shift
model (Wood et al., 2013). These two models are similar in that they estimate variance
components of only the slope factor. Although chronometric FM models for data have also
been proposed (see McArdle & Epstein, 1987), the more generally used FM model estimates
free factor loadings at all measurement occasions.

In the FM model, only Slope factor loadings (λ), slope FM (θs), and error variances (εi) are
estimated. The slope variance (φs ) is fixed to 1 for identification purposes, and the
remaining parameters associated with the Intercept factor are fixed to zero or redacted from
the model specification entirely. Table 2 shows the estimated parameters of the FM model
and associated fit measures, which are generally poor relative to the FCSI model, χ2 (3) =
11.83, p < .01, CFI = 0.97, TLI = 0.97, RMSEA = 0.08, 95% CI = 0.04–0.13.2 The χ2

difference test between the FM and the FCSI model reveals that the FCSI model has
demonstrably better fit, χ2 (2) = 8.15, p = .02.

As noted in Wood et al. (2013), the FM model has a rather serious practical limitation in that
it requires the assumption that all variables (manifest and latent) are measured at the ratio
level. More recently, the FM-shift model has been proposed as a more general extension of
the FM model, requiring only the assumption that manifest variables are measured at a
common interval (as opposed to ratio) level of measurement. This is accomplished by the
addition to the FM model of a mean parameter for the intercept factor (θI), but absent
variance or covariance components (φI = φIS = 0). The estimated θI acts as a “shift” operator
to bring the (commonly measured) interval assessments to the ratio level values assumed by
the FM model. Although adding or subtracting a uniform constant to all manifest variables
in the FM model would affect model fit, in the FM-shift model, such a change would affect
only the estimated shift. Given that the psychological nature of many variables used in
growth curve modeling, the assumption of a common interval scale for such variables seems
more reasonable than requiring ratio level measurement (i.e., measurement with a
meaningful zero point) as assumed in the FM model.

Parameter estimates and model fit shown in the FM Shift column in Table 2 appears close to
that for the CSI model originally proposed, χ2 (2) = 8.08, p = .003, TLI = 0.97, CFI = 0.98,
and indicates a slightly better general level of model fit than the CSI and HLM models.
Although just failing statistical significance when compared to the base FM model

, p = .05, it may be preferred in model construction to the FM model for these
data because of its less restrictive measurement assumptions. When the FM-shift model is
compared to the FCSI model (shown in the FCSI column in Table 2), the fit of the FCSI

model is significantly better, , p = .04. It is also worth noting, however, that
the FM-shift model, which assumes only a single slope factor, generally accounts for the
data better than the CSI and HLM models although this comparison is not nested.

Tau-equivalent FM models
Rather than redacting the intercept factor from the model, researchers may also begin by
redacting the slope factor from the model. For example, it is possible to specify a strictly

2Note that although the FM model above also had an RMSEA of 0.08, the confidence interval for the FCSI model is much wider. As
David Kenny notes (http://davidakenny.net.cm.fit.htm), RMSEA values can be misleading for models with small degrees of freedom
and sample size.
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tau-equivalent factor model for the data by specifying an intercept factor with estimated
mean and variance as well as equal measurement errors over time. Although the tau-
equivalent model is usually expressed by factor variances fixed at unity with estimated and
equal factor loadings, the fit of this model is equivalent to the usual specification because
the models are equivalent via the tracing rules. As can be seen from the model fit of the τ
Equiv. column in Table 2, the overall fit of this model is poor; however, this model may be
used as a null model against which repeated measures analysis of variance may be
compared. Specifically, this model estimates a common mean (of the intercept factor) across
all measurement occasions and, if measurement errors are assumed equal, the assumption of
compound symmetry is made of the data.3

MANOVA models
Some researchers choose to describe growth and change using repeated measures analysis of
variance, attractive because of its wide use by researchers and the ease with which means
across measurement occasions may be compared. Partridge and Lerner (2007) note, for
example, that researchers who argue for the stability of temperament in longitudinal data
frequently do so on the basis of repeated measures analyses of variance. As noted previously
(Meredith & Horn, 2001; Meredith & Tisak, 1990), MANOVA models can also be
expressed within the general framework for growth curves as well, enabling researchers to
evaluate the merits of a MANOVA model to other structural models such as the FCSI.
Estimated parameters for a repeated measures MANOVA for these data are shown in the
MANOVA column in Table 2 in which the error variances are fixed to equality, the slope
factor variance and covariance between slope and intercept factors are fixed to 0, the slope
FM is fixed to 1, a reference loading for the slope factor (in this case the loading associated
with age 18) is fixed to 0, with the remaining intercept FM and variance, as well as the
remaining slope factor loadings freely estimated. The mean of the intercept variance in this
model corresponds to the mean the initial measurement occasion. Slope factor loadings for
the remaining measurement occasions are equal to the mean contrasts of each measurement
occasion relative to the reference measurement occasion. As shown in the MANOVA
column in Table 1, slope factor loadings associated with ages 21 and 26 are statistically
significant, and a χ2 difference test of the FCSI model relative to the MANOVA model
favors the FCSI model, χ2 (3) = 12.01, p < .001, suggesting that evidence exists for
variability in the slope factor and for inequality of measurement error over time.4

To summarize the models presented in Tables 1 and 2, when viewed as structural equation
models, the FCSI model appears to fit better than linear slope intercept models, hierarchical
linear models, and traditional repeated measures analysis of variance. Three chains of nested
comparisons with the FCSI were described, involving the linear growth, FM, and null model
MANOVA. Heuristically, fit of the FM-shift model was better than the CSI model (Akaike
information criterion and Bayesian information criterion values not reported here also
favored the FM-shift model slightly), suggesting that model comparisons beginning with a

3It should be noted that adjustments to the estimated F statistics for the failure of the data to meet compound symmetry are
recommended practice, including the Geisser–Greenhouse and Hyun–Feldt corrections. While these models are corrections for a
failure of the model to meet the requirement of compound symmetry, they do not test whether data failing to meet this assumption
could be successfully modeled as a growth process over time. Alternative models in which no assumption is made regarding the
structure of the variance/covariance matrix are also possible. This goal of this paper is to compare the standard MANOVA model
against growth curve models as plausible conceptual alternatives and not as a replacement for the standard statistical adjustments to
repeated measures MANOVA (for a discussion of the trade-offs between MANOVA and repeated measures approaches, see Maxwell
& Delaney, 2004, pp. 668–675).
4Alternatively (and equivalently), a MANOVA model can also be specified via multiple, opposed to a single, mean level contrasts.
For example, rather than specifying the slope factor as described above, it is also possible to specify linear and quadratic contrasts by
effect coding the slope factor to represent linear and quadratic effects, while still requiring that these factors have zero variances and
no covariances with remaining estimated components. For this example, however, fitting such a model that tests for linear and
quadratic mean level effects results in the same fit as the contrasts shown above.
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general factor model may be a more reasonable strategy for fitting general models of
deviance than an hierarchical CSI model of problem behaviors such as that considered by
Hussong et al. (2008). We turn now to such general factor models as models involving a
single construct of general deviance that spans multiple problem behaviors.

Estimation of general deviance factor
Earlier hierarchical CSI models—In Hussong et al.’s (2008) study, the original model
for general deviance was a multiconstruct version of the CSI model, except that the three
problem behaviors at each measurement occasion were modeled as “proneness” factors as
shown in Figure 2. As can be seen in Figure 2, “proneness factors” at each measurement
occasion were then modeled as a CSI using higher order intercept and slope factors. Means
of each “proneness” factor were assumed to be a function of the higher order intercept and
slope factors. When this model is fit to the data by us in the present study using the summary
data reported in Hussong et al., fit of the model is poor, χ2 (20) = 69.18, p < .001; TLI =
0.94, CFI =0.97, RMSEA =0.07, 90% CI =0.06–0.09, and, consonant with Hussong et al.’s
(2008, p. 99) analysis, we found the variance of the slope factor was near zero (φs = .02).
Following their analysis, we refit the model fixing both the φS and φIS to zero. As with
Hussong’s analysis, the fit of the resulting model remained poor, χ2 (22) = 88.44, p < .001;
TLI = 0.93, CFI = 0.96, RMSEA = 0.08, 90% CI = 0.07–0.10).

Monotrait multimethod factor models—As an alternative, the construct of general
deviance can be viewed as a monotrait multimethod factor model with estimated FMs. As
such, a single trait factor of Deviance (as indicated by latent variable D in the model) is
estimated with both FM θs and factor variance φs set to 1. This factor has, as indicators, all
manifest variables in the study. Orthogonal method factors corresponding to antisocial
behavior, marijuana, and alcohol are estimated, which include FMs as well with factor
variances fixed to unity for identification purposes. Because data were assessed at three
measurement occasions, factors corresponding to age assessments at 18, 21, and 26 factors
were also specified with freely estimated FMs and variances fixed to 1. Following
Hussong’s et al.’s (2008) approach, error variances associated with each problem behavior
were constrained equal across their respective measurement occasions. Manifest variable
intercepts μ are fixed to zero. As for the single construct analysis of antisocial personality,
confidence intervals of estimated manifest variable error variances were examined to
determine whether it was reasonable to assume equality of measurement error over time.
Based on this, error variances for ages 18 and 21 were constrained to equality for both the
antisocial personality and marijuana variables. Error variances for alcohol use at ages 21 and
26 were constrained to equality, perhaps reflecting differential alcohol consumption effects
due to achieving the age of majority. The resulting fit of the model is quite good, χ2 (14)
=14.62, p =.40; TLI = CFI = 1, RMSEA = 0, 90% CI = 0–0.05. Because this model had
fewer degrees of freedom than that proposed by Hussong et al. (2008), we examined pattern
of statistical significance in the estimated parameters and found that the FMs associated with
the age factors, as well as the antisocial and alcohol factors, were nonsignificant. We
reestimated the model fixing these to zero, and parameter estimates for the standardized and
unstandardized solution are shown in Table 3 and shown in diagram form in Figure 3. The
fit of this model, χ2 (19) = 26.72, p = .11; TLI = 0.99, CFI = 1, RMSEA = 0.03, 90% CI =
0–0.06, is within commonly accepted standards for acceptable fit.

When interpreted as a factor model with means, the estimated parameters from this solution
are conceptually interpretable. Most problem behaviors over the developmental period of
interest in this study appear to reflect a general deviance factor; and based on examination of
the standardized loadings in Table 3, it appears that this deviance factor explains most of the
variability, as evidenced by the standardized loadings of the deviance factor. Of these
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loadings, the standardized loading for alcohol use was generally lower than for the variables
corresponding to marijuana and antisocial personality.

General deviance as hierarchical factor model—The monotrait multimethod
approach described here has mathematical affinities with the hierarchical factor model in
much the same way that the Schmid–Leiman decomposition of factor structure has
relationships with a corresponding hierarchical factor model. As noted by the Cattell–White
theorem (Cattell, 1978, chap. 9) factor solutions can be equivalently expressed between
Schmid–Leiman and hierarchical factor representations of the data. The models considered
in the Cattell–White theorem apply to structured exploratory factor models, and the fit of the
corresponding hierarchical factor model as shown in Figure 4 is worth mentioning. In this
figure, the three problem behaviors, antisocial personality, marijuana, and alcohol, are
indicators of a general trait associated with their respective constructs. As with the previous
model, individual age-specific method factors can be specified as well and the same equality
constraints imposed across error variances as for the earlier deviance model. Fit of the model
is acceptable, χ2 (21) = 22.48, p = .37; TLI = CFI = 1.00, RMSEA = 0.01, 90% CI = 0.00–
0.04. As can be seen, the three problem behaviors are substantial indicators of a general
deviance factor (standardized loadings = 0.80–0.93), with only modest to moderate loadings
associated with measurement occasion factors at ages 18 and 21 (standardized loadings =
0.09–0.52). The fit of the model appears a substantial improvement on the originally
proposed linear hierarchical model, χ2 (22) = 88.44, p < .001; TLI = 0.93, CFI = 0.96,
RMSEA = 0.08, 90% CI = 0.07–0.10.

Discussion
Developmental psychopathology takes a life course perspective to the study of
psychological disorders such as antisocial behavior and substance use and misuse.
Researchers in this field have frequently drawn on models of growth to examine their
research questions. In the past few decades, researchers have moved beyond statistical
techniques such as repeated measures analyses of variance to a variety of models of change,
which include additional interindividual differences in change over time via latent variables
with patterned factor loadings, such as the growth curve models considered here.

However, we may be at the point where researchers are not sufficiently critical of these
models of growth. Although advances in statistical software make a variety of analytic
techniques more accessible to the applied researcher, often some of these statistical models
may involve assumptions about the data that are not warranted. Specifically, researchers
should not necessarily blindly select chronometric models, because many of the phenomena
of interest are not expected to increase or decrease linearly as a function of elapsed time. For
example, nationally representative data sets have shown consistently that alcohol
consumption (particularly heavy drinking) rapidly increases up to age 20 or 21 and gradually
declines thereafter, leveling off in the 30s (e.g., Johnston, O’Malley, Bachman, &
Schulenberg, 2011; Johnstone, Leino, Ager, Ferrer, & Fillmore, 1996). Unfortunately, many
studies characterizing alcohol involvement over time use latent growth models to model
growth in drinking as a linear trend. Even those that incorporate quadratic or “piecewise”
growth factors may be making assumptions about growth that do not reflect reality.

Although in our example we specifically argue that researchers should consider competing
models of growth when comparing a common underlying factor (deviance) model with
time-bound models, our take-home message is more universal. We encourage researchers to
use caution when applying models of growth. Our paper provides guidance on selection of
appropriate models by comparing several structural models for growth and change over
time, and we specifically offer the FCSI model as a general model that can be compared to
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more parsimonious alternatives. Future research should examine the extent to which
different fixed and time-bound associations vary across these different models of growth and
evaluate to what extent making erroneous assumptions about the data can alter substantive
conclusions.

Specifically, we have stressed the need for researchers to formally compare candidate
statistical models in terms of their characterization of interindividual differences over time
before testing longitudinal hypotheses of interest. To the extent that these candidate models,
when expressed in terms of structural questions, are nested, researchers can defend their
rationale for selection of one or another longitudinal statistical model. For example, if a
MANOVA model of the data fits poorly relative to other alternatives, a researcher may
justify the more elaborate model on grounds of better fit. The examples considered in this
paper raise questions about use of the MANOVA and the CSI model (and, by extension
HLM and the hierarchical CSI model) as default frameworks for studying growth and
change. These structural model comparisons of MANOVA, HLM, CSI, and FCSI growth
models echo earlier sentiments expressed in more technical fora (e.g., Meredith & Horn,
2001). Although not all prospective models can be compared as nested comparisons when
nested model comparisons are possible, they permit the researcher to more accurately
specify the form of heterotypic continuity (or other traitlike constructs) for the constructs of
interest. If a particular statistical model does not appear to meet its statistical assumptions,
this does not mean that it must necessarily “lose” to more complex models. It may be, for
example, that poor fit may be indicative of psychometric deficiencies in measurement or the
presence of influential observations or outliers. Researchers making these adjustments,
however, must be willing to defend their choices in this regard and to explore whether
proposed effects are robust when, alternatively, models that make fewer assumptions of the
data are considered. Even if, however, the mean levels of change over time appear to
conform to polynomial or linear growth, researchers should examine whether individual-
level change patterns actually conform to the model (as described by Liu et al., 2012, pp. 7–
8). In sum, although a researcher cannot “carve nature at its joints” with selection of one
model, such model comparisons seem far preferable to simply assuming heterotypic
continuity be described using a particular model such as the linear growth model considered
by Hussong et al. (2008) or repeated measures MANOVA.

On a more general methodological note, it was found here that the general factor model fit
as well as or better than autoregressive alternatives in which earlier levels of one problem
behavior were associated with later levels of some other problem behavior. This finding is
not an accident or idiosyncratic characteristic of this particular data set. Rovine and
Molenaar (2005) used Granger and Morris’s (1976) addition rules to show that covariance
pattern can be constructed as a sum of autoregressive and moving average components. This
is also a methodological parallel to Molenaar’s (2003) observation that longitudinal factor
models of growth (such as a general deviance model) are “moving average models” that can
be equivalently rewritten as equally well-fitting autoregressive models (e.g., a model
involving “developmental snares”). Kuljanen, Brown, and DeShon (2011) make a similar
point that HLM models assuming linear trend over time can be expressed as stochastic trend
models. Our point in showing these issues in reverse (i.e., that autoregressive models may
also be fit as moving average models) is that researchers may mistakenly believe that
multiwave data can be used to detect time-bound causal relationships in data when, from a
statistical perspective, the fit of autoregressive “launch” models or moving average “general
deviance” models such as longitudinal factor growth models is equivalent and adjudication
between such models is not possible using prospective observational data. As an example of
Molenaar’s point, in the example data considered here, fit of the multitrait multimethod and
hierarchical factor models was superior to even the time-bound launch and snare models
considered by Hussong et al. (2008). As such, it appears premature to elevate the constructs
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of alcohol and marijuana use to a particularly critical status in description of the
development of problem behavior and psychopathology over the developmental period
considered here when any proposed link (autoregressive) model can be equivalently
expressed as a general (moving average) model.

However, some argument can be made for the primacy of the antisocial personality measure
assessed at age 18 within a general factor model: the standardized deviance factor loading
associated with antisocial personality at age 18 appears slightly larger than standardized
coefficients associated with antisocial personality assessed at other measurement occasions
or for other constructs at any measurement occasion. Similarly, the standardized loading
associated with antisocial personality in the hierarchical model shown in Table 4 is also the
largest of the three problem behaviors, suggesting that it is more closely associated with
general deviance. There is, however, no reason to conclude from this that problematic
alcohol and marijuana use at age 18 are necessarily developmental “snares” for antisocial
personality. It may be that antisocial personality assessed at age 18 is simply the most
reliable indicator of general deviance and that other measurement occasions and behaviors
are less accurate indicators of the general deviance factor.

Implications for future research
Mixture models—Other approaches to the identification of linkages have involved use of
factor mixture models to identify different subgroups of at-risk, or differentially linked
subpopulations because these models are based on factor models (frequently CSI models).
Care must be taken, however, to correctly parameterize the factor structure underlying the
data and to correctly identify the factor model parameters that differentiate subgroup
membership, and even then such identified subgroups are at best suggestive of the existence
of an at-risk or “hardy” subpopulation or are perhaps only an artifact of distributional
properties of the data (see, e.g., Bauer & Curran, 2003; as well as a commentary in response,
Muthén, 2003).

State-space models—However, it may be that identification of linkages and turning
points may be entirely an idiosyncratic function of the trajectory of change at the individual
level. This has been highlighted in earlier conceptual articles dealing with the “loss” of the
individual in developmental data, particularly as it applies to the study of psychopathology
(Bergman & Magnusson, 1997; von Eye & Bergman, 2003). There is some reason to believe
that individual change patterns may not be generalizable across individuals, thus
invalidating the use of a common growth curve (or any factor model, for that matter). There
is some reason to believe that this may be the case, and state-space models have been
proposed to test such propositions and to introduce alternatives to common factor structural
equation models for such data (Molenaar, 2004; Molenaar, Huizenga, & Nesselroade, 2003;
Schmitz, 2000). Although the technical aspects of conducting such analyses can be daunting,
such analyses may provide new insights into the dynamics of at-risk individuals (Kuljanen et
al., 2011). Such analytic models hold promise for the identification of bifurcations in
performance at the individual level, permitting researchers to identify developmental turning
points that may be idiosyncratic to each individual (e.g., for a discussion of how individual-
level bifurcations can be thought of as a third source of variability in behavior genetic
models, see Kan, Boomsma, Dolan, & van der Maas, 2012).

Causal inference based on instrumental variables and controlled experiment
Given that the equivalence of general factor and autoregressive models proves again the old
adage that “correlation does not imply causality,” it seems appropriate to suggest some
directions for better assessing whether turning points and linkages exist in the data. One
clear possibility is to conduct controlled experiments in which the researcher employs an
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intervention designed to affect one problem behavior at a given measurement occasion and
then observes subsequent changes in the trajectory and level of other constructs. Such
models could include general factors of general deviance and could include specific
components designed to assess change and elevation effects subsequent to the intervention.
It may be, in some situations, that researchers may all reasonably agree on “instrumental
variables” (Bollen, 1989) in which one manifest variable is viewed as indisputably causing a
latent variable in the model. For example, controlled experiments constitute one such
instrumental variable within a prospective structural model given that participants have been
randomly assigned to condition.
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Figure 1.
The slope intercept growth curve model for a single construct.
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Figure 2.
The Hussong et al. (2008) chronometric slope intercept model.
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Figure 3.
The monomethod multitrait factor model with means (unstandardized solution).
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Figure 4.
The hierarchical factor model with means for the Dunedin data. The intercept is shown twice
in the diagram for convenience of presentation.
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