
Invasive Procedures in Preterm Children: Brain and
Cognitive Development at School Age

WHAT’S KNOWN ON THIS SUBJECT: Greater numbers of invasive
procedures from birth to term-equivalent age, adjusted for
clinical confounders, are associated with altered brain
microstructure during neonatal care and poorer cognitive
outcome at 18 months’ corrected age in children born very
preterm.

WHAT THIS STUDY ADDS: Altered myelination at school age is
associated with greater numbers of invasive procedures during
hospitalization in very preterm children without severe brain
injury or neurosensory impairment. Greater numbers of invasive
procedures and altered brain microstructure interact to predict
lower IQ.

abstract
BACKGROUND: Very preterm infants (born 24–32 weeks’ gestation) un-
dergo numerous invasive procedures during neonatal care. Repeated
skin-breaking procedures in rodents cause neuronal cell death, and in
human preterm neonates higher numbers of invasive procedures from
birth to term-equivalent age are associated with abnormal brain
development, even after controlling for other clinical risk factors. It is
unknown whether higher numbers of invasive procedures are associated
with long-term alterations in brain microstructure and cognitive outcome
at school age in children born very preterm.

METHODS: Fifty children born very preterm underwent MRI and cognitive
testing at median age 7.6 years (interquartile range, 7.5–7.7). T1- and T2-
weighted images were assessed for the severity of brain injury. Magnetic
resonance diffusion tensor sequences were used to measure fractional
anisotropy (FA), an index of white matter (WM) maturation, from 7 ana-
tomically defined WM regions. Child cognition was assessed using the
Wechsler Intelligence Scale for Children–IV. Multivariate modeling was
used to examine relationships between invasive procedures, brain mi-
crostructure, and cognition, adjusting for clinical confounders (eg, in-
fection, ventilation, brain injury).

RESULTS: Greater numbers of invasive procedures were associated with
lower FA values of the WM at age 7 years (P = .01). The interaction between
the number of procedures and FA was associated with IQ (P = .02), such
that greater numbers of invasive procedures and lower FA of the supe-
rior WM were related to lower IQ.

CONCLUSIONS: Invasive procedures during neonatal care contribute to
long-term abnormalities in WM microstructure and lower IQ. Pediatrics
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Advances in neonatal care have greatly
improved survival of infants born very
preterm (#32 weeks’ gestational age
[GA]); however, cognitive impairment
may have increased among children
with birth weight#800 g.1–3 Even in the
absence of severe disability (eg, blind-
ness, nonambulatory cerebral palsy, IQ
,70), cognitive problems and school
difficulties are common among children
born very preterm.4–6

Infants born very preterm undergo fre-
quent invasiveproceduresduringneonatal
care. Greater numbers of invasive proce-
dures, adjusted for clinical confounders,
are associated with abnormal brain de-
velopment up until term-equivalent age7,8

and altered functional cortical activity at
school age.9 Moreover, higher numbers of
invasive procedureshavebeen found tobe
associated with poorer cognitive outcome
at 18 months’ corrected age in children
born very preterm.10 However, the re-
lationship between the number of invasive
procedures and long-term alterations of
brain microstructure and cognitive out-
comes in children born very preterm
remains unknown.

The current study examined whether
the number of invasive procedures
during neonatal care was associated
withwhitematter (WM)microstructure
at age 7 years and whether the number
of invasiveproceduresandmeasuresof
brain microstructure interact to pre-
dict cognitive outcome at school age in
children born very preterm.

METHODS

This study was approved by the Uni-
versity of British Columbia/Children’s
and Women’s Health Centre of British
Columbia Research Ethics Board. Pa-
rental written informed consent and
child assent were obtained.

Participants

Fifty children born very preterm (#32
weeks’ GA) recruited from the NICU of
the BC Children’s & Women’s Hospitals

between February 2001 and July 2004
underwent MRI at median age 7.6 years
(interquartile range [IQR], 7.5–7.7) as
part of an ongoing study on the effects
of neonatal pain on neurodevelop-
ment of children born very preterm.10,11

Children were excluded if they had
a major congenital anomaly, major neu-
rosensory impairment (legally blind,
nonambulatory cerebral palsy, sensori-
neural hearing impairment), or severe
brain injury evident on neonatal ultra-
sound (periventricular leukomalacia or
grade 3 or 4 intraventricular hemor-
rhage; Fig 1).

Neonatal Medical Chart Review

Neonatal data were acquired from
medical chart review performed from
birth to term-equivalentageordischarge
(whichever came first) by a neonatal
research nurse. We defined the number
of invasive procedures as every attempt
at a procedure as listed in Table 1, from
birth to term-equivalent age, adjusted
for clinical confounders (eg, illness se-
verity on day 1 [Score for Neonatal Acute
Physiology (SNAP-II)])12; days of me-
chanical ventilation, confirmed infection,
morphine exposure).

MRI

Children were scanned at amedian age
of 7.6 years (IQR, 7.5–7.7). A Siemens 1.5
Tesla Avanto magnet, standard 12-
channel head coil, and VB 16 software
were used to obtain the following
sequences: 3-dimensional T1-weighted
spoiled gradient recalled acquisition
(repetition time [ms] 18/echo time
[ms] 9.2/field of view [mm] 256/slice
thickness [mm] 1/gap [mm] 0/matrix
256 3 256) and T2-weighted images
axial fast spin echo (4030/90/220/3/1/
512 3 354) and axial fluid attenuation
inversion recovery (8900/87/220/5/1/
256 3 154). Neuroradiologist K.J.P.,
blinded to the child’s medical history,
assessed these images for brain injury
(ie, evidence of cerebellar hemorrhage,

ventriculomegaly, or moderate to severe
WM injury, as described previously).13

Diffusion Tensor Imaging

Diffusion tensor imaging (DTI) is a MRI
technique that can be used to charac-
terize the spatial distribution of water
diffusion in each voxel (3-dimensional
pixel) of the image as an ellipsoid, pro-
viding a measure of regional brain mi-
crostructural development.14 The size,
shape, and orientation of the ellipsoid
are given by eigenvalues (l1, l2, and
l3). l1 corresponds to axial diffusion
and is considered to reflect axonal in-
tegrity.15 l2 and l3 correspond to radial
diffusion and reflect myelin integrity.15

Fractional anisotropy (FA), a measure of
overall directionality, reflects the vari-
ance of l1, l2, and l3. DTI was acquired
with a multirepetition, single-shot echo
planar sequence with 12 gradient di-
rections (7800/82/256/2/0/128 3 128),
3 averages of diffusion weighting 700
(b value). DTI parameters of FA, l1, l2,
and l3 were obtained from 7 bilateral
regions of interest in the WM (Fig 2),
consistent with our neonatal studies.8,16

Intrarater reliability, based on the re-
peated analysis of a random 20% of
regions of interest, was comparable
with previously published findings (FA
mean difference of 20.002 [Bland–
Altman limits of agreement, 20.011 to
0.007]).8,16

Cognitive Testing

At age 7 years, IQ was measured by
using the standardized Wechsler In-
telligence Scale for Children–4th Edi-
tion (WISC-IV),17 which includes 4 index
scores that make up the Full Scale IQ
(FSIQ): Verbal Comprehension, Percep-
tual Reasoning, Working Memory, and
Processing Speed.

Statistical Analyses

Statistical analyses were performed by
using Stata 9.2 (Stata Corp, College Sta-
tion, TX). Normality plots were examined,

ARTICLE

PEDIATRICS Volume 133, Number 3, March 2014 413



and skewed variables (number of in-
vasive procedures, days on mechanical
ventilation, morphine exposure, FA val-
ues, and age at scan) were log trans-
formed. IQ, GA, birth weight, and illness
severity on day 1 of the included and
excluded preterm infants were com-
pared by using t tests. Demographic
characteristics of the preterm infants
exposed to lower and higher numbers of
invasive procedures were compared by

using t tests or x2, when appropriate.
Multivariate analyses were adjusted for
confounders: GA, size at birth (small
for gestational age versus appropriate
for gestational age), illness severity on
day 1, days of mechanical ventilation,
morphine exposure, infection, gender,
age at scan, and concurrent brain injury.
A generalized estimating equation was
used to examine whether the number
of invasive procedures was associated

with FA at age 7 years in an initial pain
model. This model was repeated for the
axial and radial axes. The pain model
was extended to include variables for
surgery and fentanyl exposure (surgery
model), and corticosteroids and mid-
azolam (steroid model). The regression
coefficients for thesemodels are reported
as effect sizes. FA values were then
grouped a priori into superior WM (an-
terior, middle, and posterior subcortical
WM) and WM tracts (genu and splenium
of the corpus callosum, posterior limb of
the internal capsule, optic radiations),
and group means were used for analy-
sis. Generalized linear modeling was
used to examine whether the number of
invasive procedures interacted with FA
values from either the superior WM or
WM tracts to predict FSIQ.

RESULTS

Participant Characteristics

Of the 131 eligible children contacted for
the 7-year follow-up (Fig 1), 22 refused to
participate and 7 withdrew, so that 102/
131 (78%) were seen at school age. One
child diagnosed with autism was ex-
cluded, leaving 101 children in this
study. Of the 101 who returned for
follow-up (psychometric assessment) at
median age 7.6 years (IQR, 7.5–7.8), 58
(57%) parents and children consented/
assented to an MRI. Research scans
were available only on weekdays after 4
PM, and booking limitations affected
study consents for MRI. Scans were not
completed for 3 of the participants, and
3 were of poor quality because of mo-
tion artifact. Moreover, 2 children were
missing either neonatal or follow-up
data. Therefore, data from 50 children
born very preterm were included in the
current study. Importantly, the FSIQ of
the children included (n = 50) did not
differ from that of the other 51 children
who returned for 7-year follow-up (95%
confidence interval [CI], 27.18 to 3.86,
P = .55). Moreover, children included in
the current study did not differ in GA

FIGURE 1
Participant flow chart. aRecruitment stopped after the goal of 100 very preterm children seen at 7 years
follow-up was reached. bResearch scans were available only on weekdays after 4 PM, and booking
limitations affected study consents for MRI.
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(95% CI, 21.40 to 0.44, P = .30), birth
weight (95% CI, 2187.33 to 147.52, P =
.81), or early illness severity (95% CI,
22.81 to 5.73, P = .50) from the children
who returned for follow-up or from the
81 infants in the original sample (95%
CI,21.10 to 0.63, P = .59; CI,2134.99 to
194.17, P= .72; and 95%CI,22.50 to 5.73,
P = .44; respectively).

Among the 50 children with imaging
data at age 7 years, exposure to higher
numbers of invasive procedures (me-
dian 122; IQR, 81–210) was associated
with lower GA, higher illness severity
on day 1, more days on mechanical

ventilation, and a greater exposure to
surgery, infection, dexamethasone, and
morphine compared with children ex-
posed to lower numbers of procedures
(median 46; IQR, 30–55) (Table 2). Among
the 101 children born very preterm
who returned for follow-up at 7 years,
exposure to higher numbers of in-
vasive procedures (median 127; IQR,
87–200) were also associated with in-
creased exposure to midazolam and
fentanyl and a significantly lower FSIQ
compared with children exposed to
lower numbers of procedures (median
43; IQR, 32–52) (Table 3).

Number of Invasive Procedures in
Relation to WM Microstructure at
Age 7 Years

Children born very preterm exposed to
agreaternumbersof invasiveprocedures
in the NICU had lower FA values at age
7 years (effect size = 20.02, P = .01; CI,
20.04 to 20.005) after adjusting for
confounders (GA, birth weight, illness
severity on day 1, days of mechanical
ventilation, morphine exposure, infection,
gender, age at scan, and concurrent brain
injury) (pain model, Table 4). Infants who
received the lowest number of invasive
procedures (ie, 10 invasive procedures)
had 7% higher FA values than infants who
underwent the highest number of in-
vasive procedures (ie, 267 invasive pro-
cedures). The relationship between the
number of invasive procedures and FA of
the WMwas driven by the radial diffusion
axes (l2 and l3: effect size = 0.05; CI, 0.01
to 0.09; P = .01), such that greater num-
bers of invasive procedures from birth to
term-equivalent agewere associatedwith
higher radial diffusion values. In contrast,
the number of invasive procedures was
not associatedwith the axial diffusion axis
(l1: effect size =20.05; CI,20.15 to 0.06;
P = .38). Neither adjustment for surgery
and fentanyl nor corticosteroids and

TABLE 1 Invasive Procedures in the NICU

Injectiona Umbilical artery catheter insertion
Chest tube insertiona Umbilical venous catheter insertion
Pleural tapa Lumbar puncture reservoir tapa

Peripheral artery line insertiona Brainz needle insertiona

Peripherally inserted central line insertion or removala Heel poke (including glucometer pokes)a

Penrose insertion or removala Suprapubic bladder tapa

Abscess draineda Catheter insertion for urine collection
Peripheral intravenous catheter sited or resiteda Venous blood collectiona

Endotracheal tube prong change or retaping Glycerin suppository
Nasogastric tube insertion Orogastric tube insertion
Healon or Wydase for intravenous burns Insuflon device site changea

Pericentesisa Endotracheal or nasopharyngeal intubationa

Eye examination

Each attempt was counted.
a Skin-breaking procedures: The Pearson correlation between all procedures listed in this table and the skin-breaking
procedures denoted by an asterisk was r = 0.99 for the 50 children born very preterm. The results of this study were the same
whether the number of invasive procedures or the number of skin-breaking procedures was entered into the model.

FIGURE 2
Regions of interest obtained within the WM. A, Superior WM: (a) anterior, (b) middle, and (c) posterior subcortical WM. B, WM tracts: (d) genu of the corpus
callosum, (e) posterior limb of the internal capsule, (f) splenium of the corpus callosum, and (g) optic radiations.
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midazolam significantly changed the
results of the pain model (surgery and
steroid models, Table 4).

Number of Invasive Procedures
Interacts With the Superior WM to
Predict FSIQ at Age 7 Years

The interaction between number of in-
vasive procedures and FA values of the
superior WM was significantly associ-
ated with FSIQ (B = 412.18; P = .02; CI,
55.59 to 768.77; adjusted R2 = 0.22; Ta-
ble 5), such that greater numbers of
invasive procedures (adjusted for con-
founders) and lower FA of the superior
WM were associated with lower FSIQ at
age 7.5 years in children born very pre-
term (Fig 3). To assist with the in-
terpretation of this interaction, post hoc
analyses were conducted. We used
a cutoff of FSIQ,100 versus FSIQ.100,
because children with major impair-
ments had been excluded. Among chil-
dren exposed to either higher or lower
numbers of invasive procedures (median

split), we examined whether a change in
FA from the 75th percentile to the 25th
percentile corresponded with a de-
crease in FSIQ .2.60 (ie, beyond the SE
of measurement). Specifically, among
the children with lower FSIQ (,100),
exposed to higher numbers of invasive
procedures (.74 invasive procedures),
a change in FA in the posterior sub-
cortical WM from the 75th percentile
(0.67) to the 25th percentile (0.58) cor-
responded to a 13.1 point decrease in
FSIQ. In contrast, a change in FA from the
75th percentile to the 25th percentile for
children exposed to lower numbers of
invasive procedures (,74 invasive pro-
cedures) corresponded to a nonsigni-
ficant 0.86 point change in FSIQ, less than
the SE of measurement for FSIQ.

Interaction Between Number of
Invasive Procedures and WM Tracts
in Relation to FSIQ

The interaction between the number of
invasive procedures and FA values of

the WM tracts was not associated with
FSIQ (B =2304.22; P = .46; CI,21106.38
to 497.94).

DISCUSSION

This is the first study, to our knowledge,
to show that greater numbers of in-
vasiveproceduresduringneonatalcare
are associated with altered WM mi-
crostructure at school age in children
born very preterm, after accounting for
degree of prematurity, systemic illness,
drug exposures, and concurrent brain
injury. Specifically, in 7-year-olds with-
out severe brain injuries or major neu-
rosensory impairment, ahighernumber
of invasive procedures during NICU care
was associated with an increase in ra-
dial diffusion values at age 7 years,
suggestive of abnormal myelination.
Morphine did not appear to ameliorate
or exacerbate the effects of the number
of invasive procedures on the micro-
structural integrity of the WM. Greater
numbers of invasive procedures and

TABLE 2 Characteristics of Children With MRI at Age 7 Years

Neonatal Characteristics n = 50 Lower Number of
Invasive Procedures,
Median 46, IQR 30–55

Higher Number of
Invasive Procedures,

Median 122, IQR 81–210

P
Value

n = 25 n = 25

Gestational age (wk), median (IQR) 29.8 (28.1–31.9) 31.4 (29.7–32.3) 28.4 (26.9–30.4) ,0.001
Small for gestational age, n (%) 6 (12) 2 (8) 4 (16) 0.13
Illness severity on day 1 (SNAP-II), median (IQR) 8 (0–18) 0 (0–9) 14 (5–23) 0.01
Invasive procedures (n), median (IQR) 74 (46–124) — —

Surgery, n (%) 8 (16) 0 (0) 8 (32) ,0.001
Infection, n (%) 11 (22) 1 (4) 10 (40) ,0.001
Mechanical ventilation (days), median (IQR) 2 (0–8) 0 (0–1) 7 (3–20) ,0.001
Dexamethasone or hydrocortisone, number exposed (%) 5 (10) 0 (0) 5 (20) ,0.001
Total morphine exposure (g/kg), median (IQR),
number exposed (%)

0.0 (0.0–0.6) 0.0 (0.0–0.0) 0.5 (0.1–1.8) 0.03
24 (48) 4 (16) 20 (80)

Total midazolam exposure (g/kg), median (IQR),
number exposed (%)

0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.12
3 (6) 0 (0) 3 (12)

Total fentanyl exposure (mg/kg), median (IQR),
number exposed (%)

0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–3.0) 0.12
6 (12) 0 (0) 6 (24)

Child Characteristics n = 50 n = 25 n = 25 P Value

Gender (male), n (%) 21 (42) 6 (24) 15 (60) ,0.001
Age at scan (y), median (IQR) 7.6 (7.5–7.7) 7.6 (7.5–7.6) 7.6 (7.5–7.7) 0.82
Moderate to severe brain injury, n (%) 6 (12) 4 (16) 2 (8) 0.13
WISC-IV FSIQ, median (IQR) 102 (91–110) 103 (92–110) 95 (85–112) 0.30
WISC-IV VCI, median (IQR) 98 (93–109) 99 (94–109) 98 (89–109) 0.56
WISC-IV PRI, median (IQR) 104 (94–113) 104 (98–112) 100 (91–119) 0.68
WISC-IV WMI, median (IQR) 98 (91–110) 97 (91–109) 99 (88–115) 0.80
WISC-IV PSI, median (IQR) 94 (86–108)a 100 (88–115) 91 (83–105) 0.09
a 2 children did not complete the PSI.
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reducedmyelination of the superior WM
wereassociatedwith lowerIQinchildren
born very preterm at school age. The
relationship between the number of pro-
cedures, brainmicrostructure, and IQwas
drivenby2frontoparietal functions, verbal
comprehension and working memory,

which share common neural substrates
(see Supplemental Information).18

Both the peripheral and central noci-
ceptive systems are functionally active in
infants born very preterm,19,20 although
both the ascending and descending no-
ciceptive pathways are still immature.

Subsequently, infants born very preterm
have lower tactile thresholds and be-
come sensitized to repeated tactile and
skin-breaking stimulation.21,22 Repeated
stimulation of physiologically immature
neurons can lead to excitotoxic damage
and increased neuronal cell death.23,24

TABLE 3 Characteristics of Children Who Returned for Follow-Up at Age 7 Years

Neonatal Characteristics n = 101 Lower Number of
Invasive Procedures,
Median 43, IQR 32–52

Higher Number of
Invasive Procedures,
Median 127, 87–200

P Value

n = 49 n = 51

Gestational age (wk), median (IQR) 29.9 (27.5–31.7) 31.6 (29.9–32.4) 27.7 (26.3–29.3) ,0.001
Small for gestational age, n (%) 10 (10)a 4 (8) 6 (12) 0.48
Illness severity on day 1 (SNAP-II), median (IQR) 9 (0–19)a 5 (0–9) 16 (8–25) ,0.001
Invasive procedures (n), median (IQR) 73 (43–129)a — —

Surgery, n (%) 17 (17)a 1 (2) 16 (31) ,0.001
Infection, n (%) 24 (24)a 1 (2) 23 (45) ,0.001
Mechanical ventilation (days), median (IQR) 2 (0–10)a 0 (0–0) 9 (3–31) ,0.001
Dexamethasone or hydrocortisone, number exposed (%) 8 (8) 0 (0) 8 (16) ,0.001
Total morphine exposure (g/kg), median (IQR),

number exposed (%)
0.0 (0.0–0.6)a 0.0 (0.0–0.0) 0.6 (0.1–1.8) 0.001
49 (49) 6 (12) 43 (84)

Total midazolam exposure (g/kg), median (IQR),
number exposed (%)

0.0 (0.0–0.0)a 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.02
8 (8) 0 (0) 8 (16)

Total fentanyl exposure (mg/kg), median (IQR),
number exposed (%)

0.0 (0.0–0.0)a 0.0 (0.0–0.0) 0.0 (0.0–3.0) 0.04
12 (12) 0 (0) 12 (24)

Child Characteristics n = 101 n = 49 n = 51 P Value

Gender (male), n (%) 50 (50) 19 (39) 31 (61) 0.003
Age at follow-up (y), median (IQR) 7.6 (7.5–7.8) 7.6 (7.5–7.7) 7.6 (7.5–7.8) 0.80
WISC-IV FSIQ, median (IQR) 100 (91–110)b 104 (94–114) 95 (87–108) 0.009
WISC-IV VCI, median (IQR) 98 (93–108)b 99 (95–114) 98 (89–104) 0.09
WISC-IV PRI, median (IQR) 100 (92–116)b 104 (98–117) 100 (88–110) 0.07
WISC-IV WMI, median (IQR) 97 (88–110)b 99 (91–110) 94 (88–108) 0.10
WISC-IV PSI, median (IQR) 94 (85–106)b 100 (90–113) 88 (83–99) 0.003
a 1 child was missing neonatal data, and 2 children did not have neonatal infection data.
b 4 children did not complete the FSIQ, 2 children did not complete the VCI, 1 child did not complete the PRI, 3 children did not complete the WMI, and 6 children did not complete the PRI.

TABLE 4 Higher Number of Invasive Procedures Was Associated With Lower FA at Age 7 Years

Fractional Anisotropy

Predictors Pain Model, n = 50 Surgery Model, n = 50 Steroid Model, n = 50

Effect
Size

CI P Effect
Size

CI P Effect
Size

CI P

Number of invasive procedures 20.02 20.04 to 20.005 .01 20.02 20.04 to 20.006 .007 20.02 20.04 to -0.006 .01
GA 20.001 20.004 to 0.003 .71 20.001 20.004 to 0.003 .73 20.001 20.005 to 0.004 .76
Small for GA 20.003 20.02 to 0.01 .68 20.003 20.02 to 0.01 .67 20.005 20.02 to 0.01 .52
Illness severity ,0.001 20.0004 to 0.001 .57 ,0.001 20.0004 to 0.001 .65 ,0.001 20.001 to 0.001 .84
Mechanical ventilation 20.003 20.02 to 0.01 .70 20.002 20.02 to 0.01 .78 ,0.001 20.01 to 0.02 1.00
Postnatal infection 0.009 20.004 to 0.02 .16 0.008 20.005 to 0.02 .21 0.008 20.006 to 0.02 .26
Gender 20.002 20.01 to 0.007 .71 20.002 20.01 to 0.008 .72 20.004 20.01 to 0.007 .49
Age at scan 20.19 20.47 to 0.08 .17 20.20 20.48 to 0.09 .17 20.18 20.46 to 0.10 .21
Brain injury 20.009 20.02 to 0.002 .10 20.009 20.02 to 0.002 .10 20.007 20.02 to 0.003 .16
Surgery — — — 0.002 20.02 to 0.02 .84 — — —

Morphine exposure 0.008 20.007 to 0.02 .28 0.008 20.009 to 0.03 .37 0.003 20.02 to 0.02 .77
Fentanyl exposure — — — ,20.001 20.0001 to 0.00002 .24 — — —

Corticosteroids — — — — — — 20.007 20.02 to 0.01 .43
Midazolam — — — — — — 0.001 20.0003 to 0.001 .22
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Previously, it has been demonstrated
that a higher number of invasive and
stressful procedures was associated
with delayed WM maturation in infants
born very preterm both during NICU
care and at term-equivalent age.7,8,25

Higher numbers of invasive procedures
are associated with lower stress hor-
mone cortisol responses at 32 weeks’
postmenstrual age and higher levels at 8
and 18 months’ corrected age.26,27 Brain
regions rich in glucocorticoid receptors
(eg, prefrontal cortex) are particularly
vulnerable to the effects of ongoing
stress.28,29 This may explain why the
number of invasive procedures and the
subcortical WM, rather than the WM
tracts, predicted IQ at 7 years.

Preoligodendrocytes actively develop be-
tween 24 and 40 weeks’ gestation to form

mature, myelinating oligodendrocytes.30

However, during this peak developmental
period, preoligodendrocytes are sen-
sitive to reactive oxygen, nitrogen
species, and cytokines secreted by
microglia.31–35 Neonatal hypoxia–ischemia
and neuroinflammation lead to the
activation of astrocytes and microglia,
which induces myelin deficiency, asso-
ciated with long-term cognitive prob-
lems.30,36 Similarly, pain also induces
both oxidative stress and inflammatory
reactions.37,38 Therefore, greater expo-
sure to invasive procedures in the NICU
may arrest the development of pre-
myelinating cells.

In this study, we could not discern why
the strongest association with invasive
procedures was observed with the
subcortical WM, rather than with WM

tracts. Myelination first appears in the
central WM tracts, therefore the sub-
cortical WM may have been more
enriched in progenitor stages of the
oligodendrocyte lineage in contrastwith
the WM tracts. Alternatively, the sub-
cortical and central WM tractsmay have
beensimilarlyaffected,but the latterhad
greater potential for recovery.

Another important consideration in-
volves the distribution of opioid recep-
tors. Electrical stimulation of the
periaqueductal gray and rostroventral
medulla, regions responsible for the
release of opioids within the spinal cord,
does not result in the inhibition of the
pain signal in rat pupsuntil postnatal day
21.39,40 Repeated invasive procedures
during this maturational period of the
descending inhibitory system may lead
to hyperinnervation of the periaque-
ductal gray and rostroventral medulla,
thereby altering their functional inte-
grity.41 Inflammatory pain in neonatal
rats has been found to increase the adult
endogenous opioid tone.42 Therefore,
repeated exposure to invasive proce-
dures in the NICUmay lead to chronically
elevated opiate peptides, affecting the
integrity of the subcortical WM, which
connects to the periaquaductal gray,
a region rich in opioid receptors.

Invasive procedures may also have in-
directly affected the neonatal brain.
Greater numbers of invasive procedures
were associated with slower growth,43

and slower growth during neonatal care
was associated with delayed cerebral
cortical maturation in infants born very
preterm.44 FA values reach the noise
floor in the cortical gray matter by ap-
proximately 36 weeks’ postmenstrual
age,44,45 due to neuronal maturation,
synaptogenesis, and the disappearance
of radial glial cells.46–50 Therefore, we
could not examine the long-term effects
of the number of invasive procedures on
the DTI measures of cortical graymatter.
Future studies using alternative meth-
ods for quantifying neuronal integrity

TABLE 5 Higher Number of Invasive Procedures and Lower FA of the Superior WM Predicts Lower
IQ

Predictors Full Scale IQ, n = 50

B CI P

Number of invasive procedures 3 FA 412.18 55.59 to 768.77 .02
FA 2735.63 21411.08 to 260.18 .03
Number of invasive procedures 83.35 25.16 to 141.53 .005
Gestational age 0.88 22.16 to 3.93 .57
Small for GA 21.64 214.36 to 11.07 .80
Illness severity 20.50 20.95 to 20.05 .03
Mechanical ventilation 25.22 221.72 to 11.29 .54
Morphine exposure 1.75 215.55 to 19.04 .84
Postnatal infection 6.17 24.09 to 16.43 .24
Gender 0.37 27.54 to 8.27 .93
Age at scan 2168.10 2382.31 to 46.12 .12
Brain injury 22.41 213.41 to 8.59 .67

FIGURE 3
Number of invasive procedures and brain microstructure predicts FSIQ. Higher numbers of invasive
procedures (abovemedian: red) and lowerFAvaluesof the superiorWMwereassociatedwith lower FSIQ
after adjustment for neonatal and clinical confounders, age at scan, and concurrent brain injury.

418 VINALL et al



(eg, cortical thickness, volumetrics) are
needed.

In contrast with findings in other
cohorts, midazolamand corticosteroids
did not have an effect on brain de-
velopment in this cohort of infants
without severe brain injury.51–53 The
quantity, timing, or duration of the ex-
posure may not have been sufficient to
negatively affect myelination. We pre-
viously reported that postnatal infec-
tions were significantly associated with
8% lower overall FA in infants born very
preterm.54 After accounting for clinical
confounders, the magnitude of change
observed in this study relative to the
number of invasive procedures was
comparable (ie, 7% lower FA in infants
exposed to higher numbers of invasive
procedures).

The study samplewas limited; therefore,
the results of this article are a first step
in understanding the relationship be-
tween the number of invasive proce-
dures in the NICU, brain microstructure,
and neurodevelopmental outcomes at
school age. Similarly, the post hoc
analyses should be interpreted with
caution. The sample size also limited the
number of variables we could include,
such that residual confounding for
clinical condition associated with in-
vasive procedures may remain. Future
research with larger samples is needed
to address whether recurrent life-
threatening complications such as
necrotizing enterocolitis may also have

predisposed infants to ischemia and
related myelination disturbances. Pre-
term infant responses to invasive
proceduresvarydependingonGA,sleep–
wake state, illness severity, and pre-
vious exposures to pain,55–62 therefore it
is difficult to determine the extent of
pain perceived for a specific procedure.
Furthermore, although we adjusted for
cumulative morphine exposure in our
models, we could not account for pain
management that may have been pro-
vided during a given procedure. There-
fore, in the present study we related the
number of procedures that are nor-
mally considered painful with brain
development but without being able to
quantify the amount of pain each infant
experienced.

Associations between brain volume,
microstructure, and cognitive function
have been demonstrated in children
and adults born preterm.63–68 In this
cohort of preterm children without
severe brain injury or major neuro-
sensory/motor/cognitive impairment,
we demonstrated that after account-
ing for degree of prematurity, sys-
temic illness, medication exposures,
and concurrent brain injury, greater
numbers of invasive procedures
interacted with alterations in WM to
predict lower IQ.

CONCLUSIONS

This article provides the first evidence
for theassociationbetween thenumber

of invasive procedures in the NICU and
altered WM and IQ at school age, in very
preterm children who escaped major
brain injury and neurosensory im-
pairment, after adjusting for other risk
factors associated with prematurity.
Given the apparently limited efficacy of
morphine in preventing adverse effects
of repeated invasive procedures, it is
important to continue to examine
methods for pain management. Re-
ducing pain during neonatal care may
help optimize brain development and
improve cognitive outcomes in this
vulnerable population.
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