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Abstract
Pancreatic cancer remains a lethal malignancy with poor prognosis owing to therapeutic
resistance, frequent recurrence and the absence of treatment strategies that specifically target the
tumour and its supporting stroma. Deregulated cell-surface proteins drive neoplastic
transformations and are envisioned to mediate crosstalk between the tumour and its
microenvironment. Emerging studies have elaborated on the role of mucins in diverse biological
functions, including enhanced tumorigenicity, invasiveness, metastasis and drug resistance
through their characteristic O-linked and N-linked oligosaccharides (glycans), extended structures
and unique domains. Multiple mucin domains differentially interact and regulate different
components of the tumour microenvironment. This Review discusses: the expression pattern of
various mucins in the pancreas under healthy, inflammatory, and cancerous conditions; the
context-dependent attributes of mucins that differ under healthy and pathological conditions; the
contribution of the tumour microenvironment in pancreatic cancer development and/or
progression; diagnostic and/or prognostic efficacy of mucins; and mucin-based therapeutic
strategies. Overall, this information should help to delineate the intricacies of pancreatic cancer by
exploring the family of mucins, which, through various mechanisms in both tumour cells and the
microenvironment, worsen disease outcome.
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Introduction
Cellular transformation to malignancy involves the accumulation of various mutations and
epigenetic modifications. Malignant cells recruit additional cellular components to the
neighbouring stroma to develop and establish clinical disease. Histologically, pancreatic
ductal adenocarcinoma, which accounts for >90% of all pancreatic cancer cases,1 is
characterized by a remarkably dense stroma. In stark contrast to a healthy pancreas, which is
devoid of or weakly expresses mucins, pancreatic cancer is characterized by aberrant
expression of multiple mucins, as well as their secreted and spliced forms. With the
emerging role of mucins in tumour development, progression and metastasis, it is becoming
apparent that pancreatic cancer exploits the unique properties of mucins (namely, aberrant
expression, altered glycosylation, differential localization and adhesive and anti-adhesive
traits) to interact with its microenvironment, survive and proliferate in an otherwise
inhospitable local environment, and invade and metastasize to distant locations. This Review
summarizes emerging data on the role of mucins in the development and progression of
pancreatic cancer and its microenvironment. Furthermore, it elaborates on the diagnostic and
therapeutic contributions of mucins for patients with pancreatic cancer.

Mucins
With 21 members in the family, mucins are high-molecular-weight glycoproteins
characterized by the presence of a heavily O-glycosylated tandem repeat region (TRR) that
is rich in proline, threonine and serine residues (called PTS sequences) (Figure 1).2,3 Mucin
genes display high levels of polymorphism owing to variable number of tandem repeats.2,3

The serine/threonine residues in the TRR are extensively glycosylated with O-linked (O-
glycans; common) and N-linked (N-glycans; less common) oligosaccharides. The presence
of large numbers of glycans on the polypeptide core of mucins results in large, flexible, rod-
like molecules that can extend up to 200 nm from the apical cell surface into the lumens of
ducts and glands.4 On the basis of their physiological and structural characteristics, mucins
are further divided into two subfamilies— the membrane-bound (also called transmembrane
mucins, which are characterized by the presence of a hydrophobic plasma membrane-
spanning domain) and secreted mucins (Figure 1).3,5 Transmembrane family members
include MUC1, MUC3A/B, MUC4, MUC11–13, MUC15–17, MUC20 and MUC21.
Secreted mucins are further subdivided into gel-forming (MUC2, MUC5AC, MUC5B,
MUC6 and MUC19) and non-gel-forming (MUC7) groups (Table 1). Secreted mucins form
the mucus layer on the apical surfaces of healthy epithelial cells that are exposed to the
external environment, including the lining of the respiratory and gastrointestinal tracts, and
lumen of ducts in specialized organs such as liver, pancreas, gall bladder, kidney, salivary
glands, lacrimal glands and eye.6 The gel-forming attribute is a result of the presence of an
oligomerizable D domain (Figure 1).7,8 The N-glycans and O-glycans, extended structure
and multiple functional domains present in the mucins [namely, epidermal growth factor
(EGF), nidogen-like domain (NIDO), sea urchin sperm protein–enterokinase– agrin (SEA),
von Willebrand factor D domain (vWD), cysteine knots and cytoplasmic tail], are known to
interact with cell surface receptors, signalling mediators and the extracellular matrix (ECM).
A comprehensive view of mucin domains and their associated roles is detailed in Box 1.

Box 1

Important domains and glycan modifications of mucins

• Tandem repeat region (TRR) comprises a proline, threonine and serine rich
domain, heavily decorated with O-glycans, which is poorly conserved and
repeated multiple times; the sequence and number of repeats varies in each
family member148
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• D/von Willebrand D (vWD) domains are implicated in oligomerization and
participate in cell adhesion, migration, homing and oligomerization149,150

• Sea urchin sperm protein-enterokinase-agrin (SEA) domains are highly
conserved; the extracellular domain undergoes a molecular strain-dependent
autocatalytic cleavage during folding in the endoplasmic reticulum or upon
application of a mechanical force151,152

• Epidermal-growth-factor (EGF) domains act as intramembrane ligands of
ERBB2 and are involved in inhibition of apoptosis and stimulating cell
migration in colonic epithelial cells153

• Adhesion-associated domain in MUC4 and other proteins (AMOP) is exclusive
to MUC4; AMOP with eight invariant cysteine residues is predicted to mediate
adhesion154

• Nidogen-like domain (NIDO) is similar to the nidogen-EGF domain of ancestral
nidogen proteins; this unique domain of MUC4 facilitates metastasis of
pancreatic cancer cells79

• Cytoplasmic tail has multiple phosphorylation sites and protein–protein
interaction motifs, which mediate oncogenic signalling5,6,24,62

Mucins in pancreatic cancer
Pancreatic cancer is characterized by altered expression, glycosylation and localization of
mucins during the transition from healthy to dysplastic and neoplastic states.

Aberrant expression
In contrast to a healthy pancreas, the expression profiles of both transmembrane (MUC1,
MUC3, MUC4, MUC7, MUC13, MUC16, and MUC17) and secretory mucins (MUC5AC,
MUC5B and MUC6) differ widely in pancreatic cancer (Table 1). For example, a healthy
pancreas expresses low levels of MUC1 on the luminal surface of centroacinar cells as well
as in the intralobular and interlobular ducts.9–11 By contrast, histological studies revealed a
multifold increase in its expression as early as the pancreatic intraepithelial neoplasia
(PanIN) lesion stage, which further increases during pancreatic cancer progression.9–11

Pancreatic cancer is also accompanied by de novo expression of MUC4, MUC5AC,
MUC5B, MUC13, MUC15, MUC16 and MUC17 in PanIN lesions and their expression
increases further with disease progression (Table 1).12–18

Aberrant changes in mucin expression are also the characteristic event in early lesions of
pancreatic mucinous cystic neoplasms (MCN, mucin-producing epithelial cells associated
with an ovarian type of stroma) and intraductal papillary mucinous neoplasms (IPMN, a
mucin-producing epithelial neoplasm with a papillary architecture that is mainly present
within the main pancreatic duct or one of its branches; Table 1). A meta-analysis of
histological studies examining the correlation between mucin expression and progressive
malignant lesions of IPMN indicated expression of MUC1, MUC2 and MUC5AC in benign
lesions, which increased with malignant development.19 Interestingly, MUC1 was found to
have the strongest association with malignant progression of IPMN, whereas the expression
of MUC5AC had the weakest association.19,20 Elevated levels of MUC4 have been
observed in cystic fluid from high-risk IPMN cases.21

Emerging data from genome-wide sequence studies and RT-PCR analysis of mucin
transcripts have indicated the presence of multiple alternatively spliced forms in pancreatic
cancer (for example, 24 for MUC4).22,23 To determine the biological role of these
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alternatively spliced forms in pancreatic cancer (in comparison to their roles in healthy
pancreatic tissue or pancreatitis specimens), analyses of their expression, oncogenic
signalling and efficacy as diagnostic and prognostic markers need to be explored.

Loss of epithelial cell polarity
The loss of epithelial cell polarity is one of the hallmarks of tumour development. Loss of
asymmetric distribution during tumour initiation brings apical mucins into close proximity
with basolateral receptor tyrosine– protein kinases (RTKs), including epidermal growth
factor receptor (EGFR), ERBB2, ERBB3 and fibroblast growth factor receptor (FGFR).
These RTKs are central regulators of signalling cascades involved in cell survival, growth,
proliferation and metastasis (Figure 2).24,25

The interaction of mucins with various receptors is associated with altered trafficking,
signalling and poor therapeutic response of anti-RTK antibodies. Indeed, the interaction of
MUC1 with EGFR results in increased receptor internalization, recycling and nuclear
localization, along with its reduced degradation in breast cancer cells.26 Interestingly, loss or
knockdown of MUC1 drastically reduces EGFR expression and mammary tumour
progression in transgenic mouse models.27,28 Furthermore, anti-MUC1 antibody (GP1.4)
blocks EGFR-mediated signalling, leading to reduced proliferation and migration of
pancreatic cancer cells.29 In depolarized breast cancer cells, MUC1 also constitutively
associates with ERBB2, which, in turn, targets the MUC1–γ catenin complex to the
nucleolus, leading to activation of the Wnt signalling pathway.30

MUC4 is proposed to be a transmembrane ligand for ERBB2, leading to its stabilization at
the plasma membrane and enhanced activation.31 Enhanced surface accumulation of both
ErbB2 and ErbB3 is mediated by the Muc4–sialomucin complex (a rat homologue of
MUC4) by preventing their internalization.32 Additionally, the Muc4–sialomucin complex
sterically hinders binding of anti-ErbB2 antibodies to the cell surface leading to a poor
therapeutic response.33 Interestingly, transmembrane mucins are characterized by the
presence of multiple structural motifs with sequence homology to EGF (referred to as EGF-
like), which are thought to mediate heterodimerization of mucins with ERBB receptors (Box
1).5,34,35 The affinities and functional relevance of these interactions for altered oncogenic
signalling are being explored.

Altered localization
Nuclear localization of mucins has been associated with large and poorly differentiated
tumours, highly metastatic phenotypes and poor prognosis.5,34,36–38 Translocation of the
MUC1 cytoplasmic tail to the nucleus in conjunction with β-catenin and EGFR is implicated
in the generation of a metastatic gene signature and the epithelial-to-mesenchymal transition
(EMT) of tumour cells.39,40 Aberrantly expressed MUC5AC has also been observed to
disturb intercellular junctions by interfering with membrane localization of E-cadherin and
disturbing E-cadherin-dependent cell–cell interactions.39,41 Furthermore, MUC5AC, being
secretory, is speculated to form a protective gel around tumours that might impart a growth
advantage to all kinds of neoplasms—benign or malignant—whereas MUC1, by altering the
activity of RTKs, facilitates oncogenic signalling, and is suggested to be responsible for the
progression of IPMN from benign to malignant lesions. All of these studies emphasize the
point that mucins have a substantial role in imparting survival benefits to tumour cells
during the changing microenvironment of neoplasia. As pancreatic cancer is characterized
by altered expression and localization of multiple mucins, many of which are still
unexplored, a systematic analysis of these mucins and their interacting partners will help to
delineate the critical junctures responsible for pancreatic cancer aggressiveness.
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Altered glycosylation
The extent of mucin glycosylation, mucin type as well as its expression pattern, fluctuate
during neoplastic developments in various malignancies (Figure 2).42,43 Mucins in healthy
tissues are decorated with core 3 structure, whereas glycosylation on ectodomains of
tumour-associated mucins are largely Tn antigen, sialyl Tn and fucosylated core 1 structures
(T/TF), which form important tumour-associated antigens (TAAs) (Figure 3).44 The core
structure is shortened in tumour-associated mucins resulting in the exposure of internal
sugar units and cryptic peptide sequences.50,51 Frequent elevation of TF, fucose and Lewis
antigen on MUC1 and MUC5AC were observed in serum from patients with pancreatic
cancer when compared with healthy individuals.45 In addition to core structures, more
complex Lewis antigens and their sialylated (sialyl Lewisx/a) and sulphated forms are also
expressed by tumour cells and shed into circulation. Furthermore, high levels of modified
mannose-rich N-glycans were observed on MUC1, MUC16 and MUC5AC from patients
with pancreatic cancer; these modified glycans are speculated to be involved in the
suppression of cytolytic responses mediated by natural killer cells.45,46 Altered expression
and localization of glycosyltransferases are the major contributors to the aberrant
glycosylation of these mucins.47,48

The modified forms of glycosylation on mucins (that is, sialylated and fucosylated
structures) are recognized by the lectin domain of selectins. The selectins are a family of
vascular adhesion receptors (comprised of L-selectin, E-selectin and P-selectin) on the
surface of leukocytes, endothelial cells and platelets.49 As the initial part of cell adhesion
consists of leukocyte tethering and rolling on activated platelets or endothelial cells, the
selectins need to support rapid and reversible interaction with their carbohydrate ligands
under hydrodynamic flow. The sialyl Lewisx and sialyl Lewisa antigens are the terminal
tetrasaccharides that comprise the core carbohydrate structure recognized by selectins. The
presence of sialyl Lewisx structures on carcinoma mucins is frequently associated with
advanced cancer and metastatic potential.50,51 Although the precise role of unique glycans
on individual mucins is unknown, blot rolling and cell-free, flow-based adhesion assays
clearly revealed that sialofucosylated MUC16 expressed by pancreatic cancer cells acts as a
functional ligand for selectin having high binding activity for E-selectin and L-selectin, but
low P-selectin binding activity under in vitro conditions.52 Overall, these studies suggest
that mucin O-glycans and N-glycans are exploited by tumour cells for invasion and
migration, as well as intravasation and extravasation. Henceforth, identification of tumour-
specific glycan epitopes and associated glycosyltransferases will help to improve targeting
and diagnosis of pancreatic cancer.

Adhesion and anti-adhesion
Mucins regulate the detachment of cells from the primary tumour mass,53–55 facilitate
lymphatic and venous cellular invasion,13,56 enhance cellular survival in blood57 and are
major mediators of adhesion at metastatic sites.51,58,59 The anti-adhesion function is
generally mediated by the extended structures of mucins that mask the smaller surface
adhesion molecules and sterically hinder the cell–cell and/or cell–substratum interactions
and negatively charged sialylated residues, which create a repulsive barrier around the cell
(Figure 2). The adhesive property of mucins is attributed to receptor–ligand interactions.
The carbohydrate structure on mucins acts as a ligand for receptors of opposing cells that
supplants their repulsive barrier. Furthermore, cells can regulate their adhesive properties
using multiple mechanisms such as varying mucin expression under different
microenvironmental conditions, expressing a specific splice variant or glycosyltransferase as
well as shedding a mucin extracellular domain.60 MUC1 has been proposed to act both as an
anti-adhesive and adhesive molecule.61 Thus, interactions initiated by mucins seem to
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establish a bridge between tumour cells and the surrounding stroma to produce conditions
favourable for cancer cell growth.

Oncogenic signalling
Oncogenic signalling by the cytoplasmic tails of mucins is gaining attention as an important
signal transducer between a tumour and the surrounding environment owing to the presence
of multiple phosphorylation sites and other protein–protein interaction motifs.5,62 These
roles of mucins have been comprehensively reviewed elsewhere.6,24

Interaction with the TME
Approximately 80% of the pancreatic tumour mass is formed by dense stroma comprising a
cellular component (fibroblasts, myofibroblasts, pancreatic stellate cells, vascular and
lymphatic endothelial cells, immune cells and endocrine cells), an associated acellular
extracellular matrix (ECM, formed by collagen, fibronectin, laminin, proteoglycans, and
glycosaminoglycans), and a liquid milieu of cytokines, growth factors and proteases.63 All
of these components are interconnected and communicate with tumour cells to develop a
highly complex and aggressive disease. The cancer cell secretes proinflammatory soluble
factors and increases expression of proteins that support and interact with the growing
desmoplasia. The interface between mucins and the tumour microenvironment (TME) is
chiefly involved in mediating immune evasion, oncogenic signalling, angiogenesis and
metastasis (Figure 4).

Stromal cells—The protective barrier formed by mucins at the epithelial surfaces acts as a
front line of defence against pathogens; however, increasing evidence illustrates their
participation in altering the immune response to infection and other pathological conditions.
Transmembrane mucins extending beyond the glycocalyx (~50 nm) mask TAAs, protecting
tumours cells from cytotoxic components of cell-mediated immunity (Figure 4).53 In
addition to this avoidance of immune recognition, activation, and destruction by steric
hindrance, modified core 2 glycans on carcinoma-associated MUC1 have been implicated in
attenuating the interactions of the NK cell receptor (NKG2D) with the tumour-associated
ligand MICA (major histocompatibility complex class I-related chain A) through galectin-3
(Figure 4).64 Galectin-3, a member of the β-galactoside-binding protein family, is
differentially expressed in tumours and serum in various malignancies including pancreatic
cancer.65 Its overexpression is implicated in neo-angiogenesis, tumour cell adhesion and
immune escape.66 Circulating galectin-3 binds to the NKG2D-binding site of MICA through
modified core 2 O-glycans of MUC1 and, in turn, inhibits NKG2D–MICA interactions,
resulting in the inactivation of natural killer cells and blocking of TNF-mediated apoptosis
of tumour cells.64,67,68 As a result, cancer cells remain in circulation for a much longer
period of time, promoting metastasis. Furthermore, tandem repeats of sialylated T antigens
present on MUC1 act as counter receptors for myelin-associated glycoprotein (a membrane-
bound protein expressed on oligodendrocytes and Schwann cells that binds myelin to
neurons) and contribute to the adhesion between pancreatic tumour cells and Schwann cells,
which facilitates perineural invasion.69

Mucins expressed on immune effector T cells influence their activation and proliferation in
response to an antigen. Activated CD4+ T cells induce MUC1 expression that, in turn,
enhances their proliferation and cytokine production in association with CD3 through the
calcium-dependent NF-AT pathway.70 Overexpression of the Tn and sialyl Tn antigen on
tumour-associated mucins correlates with COX-2 overexpression and low infiltration of
CD8+ cytotoxic T cells.71
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Tumour-associated macrophages are among the major players in directing the response of
the immune system against a tumour. Studies have now suggested that tumour-associated
macrophages are of the M2 type owing to their development in the T-helper 2 cellular
environment that is rich in anti-inflammatory cytokines, including IL-10, IL-4, and IL-13.72

MUC1 expressed by tumour cells interacts with tumour-associated macrophages through
sialoadhesin.73 The engagement of M2 macrophages with tumoral mucins, including
TAG72 (tumour associated glycoprotein 72 overexpressed in pancreatic cancer) and CA125
(carbohydrate epitope located on the protein core of MUC16), resulted in their
differentiation to an immunosuppressive phenotype with an increased production of IL-10, a
decrease of the T-helper-1-attracting chemokine CCL3 and absence of the proinflammatory
cytokine IL-12 (Figure 4).74 Mucins also promote endothelial cell proliferation and tube
formation in response to hypoxia, another characteristic feature of pancreatic cancer.75

HIF1-α upregulates MUC1 expression and arbitrates MUC1 cytoplasmic tail migration to
the nucleus in association with β-catenin and p53, resulting in the upregulation of
proangiogenic factors such as vascular endothelial growth factor-A and platelet-derived
growth factor A and B.76

Extracellular matrix—The mucin ectodomain can potentially sense and interact with the
ECM. Various domains of mucins (Box 1) have independently been shown to interact with
the ECM and considering these studies, it has been suggested that the vWD domain of
mucins might act as a major site for tumour cell interaction with the ECM. Furthermore,
MUC1 overexpression in pancreatic cancer cell lines has been shown to enhance
invasiveness by decreasing the binding of cancer cells to type I and IV collagen and
laminin.77 Glycosylation, especially by sialic acid, increases the adhesiveness of pancreatic
cancer cells to the ECM.78 Studies from our group also indicate the presence of an
interaction between the NIDO domain of MUC4 with nidogen-interacting protein fibulin 2
(a component of the basement membrane). 79 Deletion of the NIDO domain from MUC4
drastically hampered the interaction of tumour cells with fibulin 2, thus establishing the
direct effect of mucin domains on breaching the integrity of the basement membrane and the
strong involvement of mucins in metastatic events (Figure 4). The interaction between the
MUC4–NIDO domain and galectin-3 from endothelial cells is responsible for the adhesion
of the cancer cell to endothelial cell surfaces during the intravasation process.51,79

Integrin clustering, which is affected by MUC1, detects the physical properties of the ECM
and is involved in regulating the migration and metastatic potential of cancer cells. Integrin
clustering is also influenced by the thickness of the glycocalyx (determined by mucins) and
a relatively thinner glycocalyx leads to poor integrin clustering, even in the presence of a
high affinity ligand.80 In 2009, when examining the physiomechanical characteristics of a
tumour, Levental et al.81 observed that tumours with a stiffer ECM progress faster and
possess higher invasive potential than those with a more flexible ECM.51,79,81 The tripartite
relationship between mucin (glycocalyx), integrin and collagen might be responsible for
stiffness and facilitates metastasis. Mucin expression in pancreatic cancer is directly
implicated in RTK oligomerization, as well as sequestration of the ligands secreted in
extracellular matrices to potentiate the proliferative signalling pathways. Overall, mucins are
key mediators for the alliance between tumour cells and their microenvironment. Future
studies to delineate these molecular interactions are urgently required to promote the
effective targeting of stroma along with the tumour cell.

Diagnostic markers
Scarcity of a promising diagnostic marker is a major cause for pancreatic cancer lethality.
Extensive efforts are currently being exerted to identify a potential marker that can help to
detect the disease early for improved therapeutic efficacy and overall survival. The presence
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and/or secretion of a biomarker early during cancer development, along with absolute
sensitivity and specificity of the identified markers, are crucial barriers for definitive
diagnosis and curative therapy.

EUS–FNA
Endoscopic ultrasonography-guided, fine-needle aspiration (EUS–FNA) is emerging as a
safe and valuable modality for preoperative diagnosis of malignant cases and staging of
pancreatic cancer. Marked overexpression of MUC1 (77.5%), MUC2 (10.0%) and
MUC5AC (80.0%) has been documented in pancreatic cancer by EUS–FNA. On the other
hand, benign pancreatic diseases have only 25.0%, 31.3% and 43.8% positive cases for
MUC1, MUC2 and MUC5AC, respectively.82 Similarly, Carrara et al.83 observed MUC7
expression in 73% of malignant cases. With 91% positive reactivity on FNA from
carcinoma cases, MUC4 was found to be 100% specific in differentiating pancreatic cancer
cases from carcinoma-negative cases.84 Furthermore, MUC4 and MUC16 were found to be
100% specific in distinguishing malignant cases from benign with sensitivities of 63% and
67%, respectively, in atypical FNAs.85 Future studies are ongoing to assess the diagnostic
efficacy of mucins in EUS–FNA for clinical applications.

In addition to EUS-based imaging, circulating tumour cells emerged as potential markers for
prognosis, prediction of response to therapy, or monitoring a clinical course in patients in
various malignancies. Tewes et al.86 observed that 86% of circulating tumour cells in cases
of breast cancer are positive for MUC1 expression. Analysis of mucin expression in
circulating tumour cells, along with other biomarkers, has great potential in providing
superior prognostic information with regard to risk assessment for recurrence and predictive
judgement of therapeutic regimens.

Post-translational modifications
As carbohydrate alterations are post-translational modifications on the protein backbone,
gauging the expression of a specific mucin gene and/or protein provides only a limited
window for estimating their diagnostic and/or prognostic relevance. The mucin backbone
also has multiple post-translational modifications and among these modifications, CA19-9
was identified as an antigen for the N19-9 antibody. Although the antibody was generated
against colon tumour antigens, N19-9 detected carbohydrate antigen (CA19-9), which was
also frequently present in the serum of patients with pancreatic and biliary tract cancer.87

After its FDA approval, CA19-9 remains the most commonly used tumour antigen for
follow-up of the therapeutic outcome in patients with pancreatic cancer. Unfortunately,
various concerns, including its expression in benign conditions (such as pancreatitis,
cirrhosis and acute cholangitis), its absence in 5% of the white population (who have the
sialyl Lewis a−/b− genotype), very low positive predictive value (0.5–0.9%) in
asymptomatic individuals88 and highly variable sensitivity (68–91%) and specificity (70–
90%) limits its potential as a marker for diagnostic screening.89,90 Additional attempts to
improve the sensitivity and specificity of the CA19-9 assay by detecting the epitope
individually on a specific carrier protein (that is, MUC1, MUC4 and MUC5AC) failed to
improve diagnostic screening for pancreatic cancer.51,91 These failures have increased the
quest for identifying a novel diagnostic marker as well as ways to improve the sensitivity
and specificity of CA19-9-based diagnostic screening. A plethora of carbohydrate-based
epitopes have been explored to improve the diagnosis and prognosis (Table 2); however, the
majority had a diagnostic and/or prognostic efficacy equivalent to or poorer than CA19-9.

Autoantibodies
Detection of autoantibodies in high-risk groups for various malignancies, including smokers
and patients with chronic obstructive pulmonary disease, has indicated that these markers of
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immune response are detectable before radiographic detection in 26.5% of patients with lung
cancer.92–95 Mucins (as major TAAs) are prime candidates for exploiting the diagnostic
potential of autoantibodies. However, in the past, the absence of specific antibodies against
modified carbohydrate-based tumour antigens, along with the absence of arrays displaying a
library of glycopeptides and glycoproteins derived from human mucins, hampered the
progress to develop carbohydrate-based diagnostic markers. In 2011, Paederson et al.96 used
a glycopeptide array displaying a comprehensive library of glycopeptides and glycoproteins
derived from a panel of human mucins (MUC1, MUC2, MUC4, MUC5AC, MUC6 and
MUC7) for screening autoantibodies in patients with colorectal cancer. This array analysed
the patient set with a sensitivity of 79% and a specificity of 92%. Future use of these arrays
will both improve the specific antibody screening against carbohydrate-based antigens and
illustrate the potential role of autoantibodies as a diagnostic marker for pancreatic cancer.

Therapeutic target(s)
Mucins participate in immune evasion, invasion and metastatic spread by sensing their
microenvironment, and affect oncogenic signalling, including cell survival, growth,
proliferation and resistance to chemotherapeutics. 2,6,97 Moreover, MUC1, MUC4,
MUC5AC and MUC16 have been linked with the progression, poor prognosis and
chemoresistance of human pancreatic cancer. Owing to these attributes, mucins have been
explored as candidates for pancreatic cancer vaccines and therapeutics (Figure 5; Table 3).

Peptide vaccine
MUC1 has gathered great interest owing to its aberrant expression in various epithelial
malignancies, early discovery, cloning and, most importantly, its presence in the cell-
mediated and humoral immune response. Moreover, the presence of low-titre anti-MUC1
antibodies and MUC1-specific cytotoxic T-lymphocytes (CTLs) in the tumour-draining
lymph nodes of patients with breast, ovarian and pancreatic adenocarcinorna prompted
preclinical and clinical studies on MUC1 as a vaccine target.98,99 Interestingly, MUC1
provided immune protection in wild-type mice against MUC1-positive tumour cells;
however, transgenic mice (which expressed human MUC1) failed to limit or regress tumour
growth owing to the development of immune tolerance.100 The adoptive transfer of CD4+ T
cells from wild-type mice provided immune protection to these MUC1 transgenic animals in
the absence of a strong autoimmune response.101,102 Vaccine studies using the MUC1–TRR
peptide (comprising five copies of the TRR) in conjunction with LEIF adjuvant
(Leishmania-derived protein that is known to stimulate human peripheral blood
mononuclear cells and antigen-presenting cells, to produce a T-helper-1 type cytokine
profile) elicited a T-helper 1 immune response along with the production of IFN-γ in
chimpanzees.103 These findings led to the clinical use of MUC1 vaccine formulations for
stimulating effective immunity against the tumour antigen.104 Many vaccine formulations of
MUC1 have been tested in patients with both resectable and advanced stage pancreatic
cancer. Initially, a synthetic mucin MUC1 peptide of 105 amino acid (having five repetitions
of the entire conserved TRR observed in MUC1) was delivered with Bacillus Calmette–
Guérin or SB-AS2 (adjuvants which elicit a strong T-helper cell and CTL response) or
incomplete Freund’s adjuvant (elicits T-helper-2-dominated antibody response).105–107

Furthermore, Kaufman et al.108 used poxvirus-based vaccine therapy for patients with
advanced pancreatic cancer. The majority of these vaccine formulations were well tolerated
with no grade II–IV level toxicities. Peptide vaccine formulation led to a partial increase in
mucin-specific CTLs with no isotype switching of antibody response.105–107
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Adoptive immunotherapy
In addition to peptide vaccines, adoptive immunotherapy has been used clinically with
MUC1-peptideloaded dendritic cells alone, CTLs alone stimulated by MUC1-expressing
human pancreatic cancer cells,109,110 and combination of both these regimes (that is,
dendritic cells pulsed with MUC1 peptide [MUC1-DC] and, CTL sensitized with a
pancreatic cancer cell line expressing MUC1 [MUC1-CTL]).111 Adoptive immunotherapy
with MUC1-activated CTLs in patients with unresectable pancreatic cancer restricted
postsurgical hepatic recurrence of pancreatic cancer; however, the treatment failed to
prevent local recurrence or peritoneal metastasis.109 Furthermore, no improvement in overall
survival was observed in these cases. As adoptive immunotherapy with MUC1-activated
CTLs was ineffective for preventing local progression of pancreatic cancer, the research
group evaluated the efficacy of this approach using a combination of MUC1-pulsed DCs and
autologous-expanded MUC1-specific T cells in 20 patients with unresectable or recurrent
pancreatic cancer.111 This combined strategy was found to be more effective for patients
with pancreatic cancer. One year survival was >20% for patients with unresectable or
recurrent pancreatic cancer and a complete response was seen in one of the two patients who
had multiple lung metastases at the time of diagnosis. Five patients had stable disease and
the mean survival time was found to be 9.8 months.111 These studies indicate the efficacy of
MUC1-based adoptive immunotherapy for pancreatic cancer and warrant future randomized
studies with a larger patient set.

Limited studies have been carried out to test the immunomodulatory efficacy of other
mucins. Wu et al.112 mapped the HLA-A*0201-restrictive CTL epitopes of MUC4, and,
among various peptides, CTL corresponding to P01204 peptide produced protective
immunity against MUC4 positive tumours. Furthermore, an increased number of IFN-γ-
producing T cells after treatment with the P01204 peptide emphasizes the importance of the
identified peptide for producing anti-tumour CTLs.112

Mucin antibodies
In addition to a T-cell response, anti-mucin antibodies conjugated to toxins or radionuclides
have been tested as therapeutic regimens for various malignancies. Among them, Pankomab
(Glycotope GmbH, Berlin, Germany) anti-MUC1 antibody is highly tumour specific (breast,
gastric, colorectal, liver, cervical and thyroid) and exhibits strong antibody-dependent cell
cytotoxicity. Owing to its rapid internalization upon toxin coupling, it is able to effectively
induce toxin-mediated antigen-specific tumour cell killing.113 Development of this drug has
been moved to phase II trials (NCT01222624) after successful completion of phase I trials,
which were done for dose escalation of the antibody in patients with advanced, MUC1-
expressing solid malignancies. In addition, the anti-CA125 antibody B43.13, known as
oregovomab, emerged as a potential therapeutic agent for patients with advanced stage
ovarian cancer as it forms immune complexes with circulating CA125 and generates a broad
cellular and humoral immune response against CA125 when compared with the free
molecule.113 However, it failed in phase III trials with no improvement in overall patient
survival when compared with those given placebo and with no substantial difference in the
quality of life.114

Other approaches
In addition to antibody-based and vaccine-based approaches, decoy peptides that attenuate
MUC1 cytoplasmic tail interaction with β-catenin are being used in preclinical studies for
functional targeting of MUC1.115 The major issue in their usage involves nonspecific
targeting of other receptors. Furthermore, small-molecule drugs (GO-201) that inhibit
MUC1-cytoplasmic tail oligomerization by binding to the CQC (membrane proximal
cysteine–glutamine–cysteine) motif and thus causing functional blockage have shown
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promising results in various tumour cell lines.116 Also, the MUC1-conjugated aptamer
specifically targeted drug-loaded quantum dots to tumour cells.117 Although mucins are
attractive targets for therapy, their expression in various normal tissues and large pools of
circulating N-terminal ectodomains might limit the efficacy of the targeting agent (mucin-
specific antibodies, peptides or aptamers).

Conclusions
Pancreatic cancer is a lethal malignancy characterized by a dense desmoplastic reaction and
altered expression of multiple mucins. Aberrant mucin expression involves the complex
synchrony of malignant cells and their microenvironment. Oncogenic mutations, epigenetic
changes, inflammatory factors and the hypoxic milieu act as major mediators for the
observed aberration in mucin expression.41,76,118–122 Mucins, in turn, facilitate tumour
growth, proliferation, oncogenic signalling, EMT and metastasis. Moreover, they directly
interact with, as well as dictate, the formation and composition of the TME (they recruit and/
or interact with stromal cells, ECM and milieu of growth factors and cytokines). This
Review discusses the versatile role of mucins in tumour hierarchy. Limited but interesting
studies have unravelled both a direct and indirect role of mucins in the composition and
behaviour of the TME; however, many areas are still obscure, including: the pathobiological
significance of mucins (expression of multiple members of the family), their spliced,
polymorphic and mutated forms; types of glycan modification and responsible
glycosyltransferases; and contributions from individual domains and their interaction with
TME in autochthonous, genetically engineered mouse models of tumours and patient
samples. Once these key interactions are elucidated, blocking these processes using
inhibitors will be helpful in designing improved therapeutics and early diagnostic and/or
prognostic markers. Overall, evolving research in the field of pancreatic cancer with special
reference to the role of mucins could lead to the development of therapeutic regimens that
combine targeting of the tumour cells and its microenvironment.
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Key points

• Mucins, by virtue of their extended ectodomain, variety of domains and varied
degree of glycosylation, act as multifaceted glycoproteins that have evolved
convergently to protect the exposed surfaces of organisms

• Pancreatic cancer is characterized by the aberrant expression of both
transmembrane and secretory mucins

• De novo expression of MUC4, MUC5AC, and MUC16 is observed in pancreatic
cancer as early as pancreatic intraepithelial neoplasia and expression increases
gradually with disease progression and subsequent metastasis

• Altered attributes of mucins are used by tumour cells to facilitate their growth,
proliferation, interaction with the extracellular matrix or stromal cells and
detachment from the primary tumour for invasion and metastasis

• CA19-9, the FDA-approved prognostic marker for pancreatic cancer, is a
carbohydrate antigen (sialyl Lewisa) present on the surface of MUC1, MUC16
and MUC5AC; MUC1-based therapies are in preclinical and clinical trials
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Review criteria

Relevant literature on mucin interactions with the tumour microenvironment were
identified by searching the PubMed database for articles published until January 2013.
The search terms used in combination with “mucins” were “pancreatic cancer”,
“expression”, “localization”, ”glycosylation”, “receptor tyrosine kinases”, “hypoxia”,
“extracellular matrix”, “collagen”, “fibronectin”, “AMOP”, “vWD”, “EGF”, “nidogen”,
“adhesion”, “anti-adhesion”, “tumour microenvironment”, “macrophages”, “endothelial
cells”, “stromal cell”, “diagnostic marker”, “prognostic marker”, “therapy”, “vaccine”,
“gene therapy”, “CA19-9”, “carbohydrate antigen”, “circulating tumour cells”, “O-
glycans” and “N-glycans”. All papers identified were full-text articles published in peer-
reviewed journals. Owing to the journal policy of limitation of citations, only important
references are listed.
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Figure 1.
Domain structure of transmembrane and secretory mucins. The characteristic domains of
transmembrane mucins (represented by MUC1 as well as domains present exclusively in
MUC4) and secretory mucins (represented by MUC5AC). See Box 1 for further details on
the individual domains. Abbreviations: AMOP, adhesion-associated domain in MUC4 and
other proteins; EGF, epidermal growth factor; NIDO, nidogen-like domain, SEA, sea urchin
sperm protein– enterokinase–agrin; TM, transmembrane; TR, tandem repeat, vWD, von
Willebrand factor D domain; vWF-like, von Willebrand factor like domain.
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Figure 2.
Mucins in transition from normal to malignant cells. Mucins with their extended structure,
hygroscopic nature and gelation abilities act as both sensor and defensive barrier to foreign
insults under normal conditions. Cancer cells manipulate mucins at multiple levels to
promote tumorigenicity. Events initiated by mucins (circled numbers) mediate the
interactions between tumour cells and the surrounding stroma to create conditions
favourable for tumour progression.
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Figure 3.
Antigenic and differently expressed O-glycans of pancreatic cancer. Tn and sialyl-Tn
antigen are the simplest O-glycans formed by the addition of N-acetylgalactosamine to the –
OH group of serine/threonine residues. These antigens are expressed in >80% of human
carcinomas and are involved in mediating invasion and metastasis of tumour cells.123,124

Thomsen-Friedenreich (TF)/T antigen/core 1 are formed by the addition of galactose to Tn
antigen through β1-3 linkage; these glycans are expressed in >90% of human malignancies.
MUC1-associated TF and galectin-3 interactions promote metastasis by facilitating adhesion
to endothelial cells.125 Core 3 glycans are synthesized by the addition of N-
acetylglucosamine to Tn antigen; further addition of β-1,6-N-acetylglucosamine to the core 3
forms core 4 glycans. These glycans are tumour suppressive and are predominantly
expressed in healthy cells.126,127 Lewis antigen: Fucosylated carbohydrate antigen sialyl
Lewisa (or CA19-9, prognostic marker for PC) and sialyl Lewisx (or NCC-ST-439,
prognostic marker for breast cancer) are overexpressed during neoplastic developments,
whereas disialyl Lewisa and sialyl-6-sulpho-Lewisx are expressed in healthy cells. By acting
as ligands for E-selectin, sialyl Lewisx mediates the adhesion of tumour cells to vascular
endothelial cells and facilitates their metastasis.92
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Figure 4.
Tumour cells crosstalk with stromal cells via mucins. Neoplastic developments elicit a
proinflammatory and hypoxic environment leading to a desmoplastic and fibrotic reaction
and enhanced mucin expression (1).41,76,118–122 Aberrantly upregulated mucins sterically
hide the tumour-associated antigens from invading macrophages, neutrophils and cytotoxic
T cells (2), and indirectly protect tumour cells from the cytotoxic effects of activated
immune effector cells (3). TAG72 and CA125 modulate M2 macrophages to an
immunosuppressive phenotype (4). Aberrantly localized mucins interact and impart stability
to various RTKs and aggravate oncogenic signalling (5). MUC1 cytoplasmic tail, through
interactions with a variety of proteins, mediates oncogenic signalling (6); its interaction with
galectins promotes tumour cell survival during metastasis by avoiding killing by NK cells
and helps in extravasation through interaction with ICAM1 (7). Similarly, MUC4 and
MUC16 interactions facilitate metastasis (7). Overexpression of mucins and the hypoxic
environment in pancreatic tumour cells leads to the production of various factors, that in
turn, remodel the extracellular matrix and induce neoangiogenesis (8). Abbreviations: MMP,
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matrix metalloproteinase; PanIN, pancreatic intraepithelial neoplasias; RTK, receptor
tyrosine–protein kinase.
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Figure 5.
Mucins as therapeutic targets. Mucin-based immunotherapies being used in clinical and pre-
clinical studies include antibody-targeted therapies (antibodies conjugated to radionuclides,
immunotoxins and antibody-labelled gold nanoparticles) (1); cell-based therapies
comprising adoptive transfer of CTLs, antigen pulsed dendritic cells, or a combination of
both dendritic cells and CTLs] (2); recombinant peptide vaccines that enhance the mucin-
antigen presentation by dendritic cells stimulating the immune response and tumour cell
killing (3); and small-size inhibitory peptides that block mucin cytoplasmic tail interaction
with other signalling molecules or mucin mimetic inhibiting cytoplasmic tail
oligomerization, thus preventing its translocation to the mitochondria or nucleus (4). Mucin
silencing by RNA interference and mucin promoter driven suicide gene therapy are other
approaches to develop mucin-based targeted therapy (suicide gene therapy) (5).
Abbreviations: CTL, cytotoxic T lymphocyte; TAA, tumour-associated antigen.
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Table 2

Mucins as diagnostic and therapeutic targets

Target Nature, pattern and mode of action Diagnostic use Comment Study

CA19-9 mAb against sialyl Lewisa present on
apical surface and supra-nuclear
cytoplasm of healthy ductal epithelial cells
Located on plasma membrane, cytoplasm
of tumour cells and on stroma surrounding
the cells

Sensitivity (70–90%)
Specificity (68–91%) in
serum

Clinical prognostic marker,
but nonspecific as elevated in
benign diseases Absent in
Lewis a−/b− patients Variable
and poor specificity

87,89,135

CA50 Monosialoganglioside and a sialylated
glycoprotein epitope reactive mAb against
epithelial cells of the bile duct

Sensitivity (78–84%)
Specificity (70–85%) in
serum

Elevated during jaundice and
cholestasis with positivity
rates similar to CA19-9

135

CA242 Undefined epitopic structure with
antigenic distribution on the membrane of
epithelial cells, and in the intraluminal
mucus

Sensitivity (57–82%)
Specificity (76–93%) in
serum

Elevated during cholestasis
and jaundice Poor release into
circulation Lower sensitivity
and specificity than CA19-9

135,136

CA195 Sialylated Lewis and Lewis glycolipid
antigenic epitope

Sensitivity (76–82%)
Specificity (73–85%) in
serum

Lower sensitivity and
specificity than CA19-9

137

CA125/MUC16 Peptide expressed on MUC16 and reactive
with apical surface of epithelial cells

Sensitivity (45–57%)
Specificity (76–78%) in
serum

Elevated during cirrhosis,
hepatitis, pancreatitis, and
jaundice Lower sensitivity and
specificity than CA19-9
CA19-9 measurement on
MUC16 carrier increases
specificity Specificity 100%
for FNAs

17,85,91,135

DUPAN 2 Sialyl Lewis C antigen with distribution in
the apical surface of the epithelial cells

Sensitivity (48–64%)
Specificity (85–94%) in
serum

Poor sensitivity 135

SPan-1 Reactive with Lewis a−b− epitopic
structure Located in the plasma
membrane, cytoplasm and stroma
surrounding the cells

Sensitivity (82–94%)
Specificity (50–85%) in
serum

Similar diagnostic efficacy to
CA19-9 Predictor of
gemcitabine treatment failure

135,137

CAM17.1 (mAb
reactive against
colorectal
carcinoma cell
membranes)

Sialylated protein with distribution on
apical surfaces of epithelial cells

Sensitivity (67%)
Specificity (90%) in
serum

Few studies with limited
patient group CA19-9 in
parallel serum set (76%
sensitivity and 78%
specificity)

135,137,138

MUC4 Transmembrane mucin with de novo
expression during PanIN I with
cytoplasmic and apical expression

Sensitivity (78–90%)
Specificity (100%) in
FNAs

Low levels in serum 83,85

MUC5AC Gel-forming mucin with de novo
expression during PanIN I

Sensitivity (85%)
Specificity (100%) in
serum

Potential diagnostic marker in
combination
with CA19-9 (our unpublished
data)

139

PAM4 Reactive mucins and epitope absent in
normal pancreas but expression observed
in PanIN-I–III and pancreatic cancer

Sensitivity (74%)
Specificity (85%) in
serum

Potential diagnostic marker in
combination with CA19-9

140

Abbreviations: FNA, fine-needle aspiration; mAb, monoclonal antibody; PanIN, pancreatic intra-epithelial neoplasia.
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Table 3

Mucins as potential target(s) for pancreatic cancer therapy

Targeted antigen Therapeutic regimen Immune response Comment Study

MUC1 vaccine (105 amino acid
conserved tandem repeat
domain)

VNTR peptide with BCG
adjuvant (phase I/II); SB-AS2
adjuvant (phase I); and
incomplete Freund’s adjuvant
(phase I)

Both cellular and
humoral immune
response

Suppressed immune system Few
studies with a limited number of
patients

105–107

MUC1-pulsed dendritic cells Adoptive transfer of dendritic
cells transfected with MUC1
cDNA (phase II); MUC1
peptide (phase I/II)

Vaccine well tolerated;
MUC1-reactive CTL
response

No increase in anti-MUC1
antibody levels with high,
nonspecific T-cell activation

141,142

MUC1-pulsed dendritic cells or
CTLs

MUC1-peptide-pulsed dendritic
cells in combination with
activated CTLs (phase II)

Low tumour:healthy
tissue ratio and high
liver accumulation

Well tolerated with mean
survival of 9.8 months and stable
disease in five patients

111

PAM4 antibody targeted
radiotherapy

131I-PAM4 mAb 99mTc-PAM4
mAb 90Y-PAM4 mAb and its
humanized PAM4
(clivatuzumab tetraxetan)

Efficient targeting of
tumour with no
secondary reaction
toward the formulation

In case of clivatuzumab
tetraxetan, 12 of 21 patients with
pancreatic cancer were targeted;
3 patients had a partial
response144

143–146

Inhibitors of oligomerization
(GO-201)

Small molecule drugs inhibiting
MUC1-CT oligomerization by
binding to CQC motif blocks
MUC1 functioning

Regressed growth of
xenograft tumours

Promising drug candidate 116,147

Abbreviations: BCG, Bacillus Calmette–Guérin; CT, cytoplasmic tail; CTL, cytotoxic T lymphocyte; mAb, monoclonal antibody; PanIN,
pancreatic intra-epithelial neoplasia; VNTR, variable number of tandem repeats.
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