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Abstract
Using the Illumina 450K array and a stringent statistical analysis with age and gender correction,
we report genome-wide differences in DNA methylation between pathology-free regions derived
from human multiple sclerosis–affected and control brains. Differences were subtle, but
widespread and reproducible in an independent validation cohort. The transcriptional
consequences of differential DNA methylation were further defined by genome-wide RNA-
sequencing analysis and validated in two independent cohorts. Genes regulating oligodendrocyte
survival, such as BCL2L2 and NDRG1, were hypermethylated and expressed at lower levels in
multiple sclerosis–affected brains than in controls, while genes related to proteolytic processing
(for example, LGMN, CTSZ) were hypomethylated and expressed at higher levels. These results
were not due to differences in cellular composition between multiple sclerosis and controls. Thus,
epigenomic changes in genes affecting oligodendrocyte susceptibility to damage are detected in
pathology-free areas of multiple sclerosis–affected brains.
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Multiple sclerosis is an inflammatory disease of the CNS occurring in 0.1% of the
population and with a complex, as yet not completely understood pathogenic mechanism.
Large-scale genome-wide association studies (GWAS) have been used to identify
susceptibility loci1–3. However, the odds ratio for individual SNPs are relatively low and the
risk allele frequency is variable across the loci2. This observation, together with the
relatively low concordance rate in monozygotic twins, the presence of a strong gender bias,
the geographical distribution of incidence and the influence of migration on disease onset4,
has suggested the importance of epigenetic changes in modulating disease susceptibility and
its course.

Epigenetics defines the persistent modulation of gene expression in a manner that is not
dependent on changes in DNA sequence and is a term that is widely used to describe
mechanisms of transcriptional and translational regulation within the cell. It includes the
study of modifications of DNA nucleotides (for example, methylation), post-translational
modifications of lysine and arginine residues in the tail of nucleosomal histones, and
microRNAs. Epigenetic changes are cell- and tissue-specific and allow selective gene
expression in different organs by modulating the specialized expression of transcriptional
programs, even though all cells of an organism share the same DNA.

DNA methylation is the process by which methyl groups are added to cytosines and is most
commonly associated with gene imprinting and X chromosome inactivation. This regulatory
mechanism has been well characterized in cancer, where the balance between oncogene and
anti-oncogenes is modulated by methylation. Increased DNA methylation at tumor
suppressor genes decreases their expression, while hypomethylation at oncogenes increases
their expression and shifts the balance toward cancer5. The critical role of DNA methylation
in the brain has been demonstrated by its association with the neurological disorders Rett
syndrome, which involves mutations in the methyl-cytosine binding protein MECP2 (ref. 6),
and ICF syndrome, associated with mutations in the DNA methyltransferase DNMT3B (ref.
7). Additional studies in neuropsychiatric disorders have suggested the association of subtle
changes in DNA methylation with the pathogenic process. A study by Dempster et al.8, for
instance, identified several sites of differential DNA methylation in discordant twins with
schizophrenia or with bipolar disorders. Indeed, even for the most significant changes, the
reported difference between cases and controls was less than 10% (ref. 8), thus suggesting
that very small differences have important functional implications for brain physiology and
pathology.

Within this conceptual framework, we asked whether DNA methylation was altered in the
brain regions free of pathology in multiple sclerosis. A previous study on DNA methylation
in blood samples using reduced representation bisulfite sequencing from three pairs of
discordant twins in which only one had multiple sclerosis did not reveal any difference in
common among the twin pairs9. However, given the tissue specificity of epigenetic changes,
documented by previously reported differences in DNA methylation between blood and
brain10, we sought to answer the question of whether tissue free of pathological lesions or
infiltrates in multiple sclerosis–affected brains could harbor molecular changes in DNA
methylation. Previously reported differences in nucleosomal histone acetylation or
citrullination detected in normal-appearing white matter (NAWM) of multiple sclerosis–
affected brains11,12 compared to control brains suggested the possibility that epigenetic
changes might modulate gene expression.

This study was designed in two phases. First, we assessed the occurrence of genome-wide
methylation differences using the Illumina 450K array and related transcriptomic changes
using RNA-sequencing analysis (RNA-seq) in a discovery cohort of brain samples from
multiple sclerosis patients and from unaffected controls. Second, we validated the results in
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independent cohorts of samples to verify the reproducibility of the differences in DNA
methylation and the consistency of the transcriptional changes. Overall, we uncovered subtle
but statistically significant and functionally relevant differences in DNA methylation in
pathology-free areas of the multiple sclerosis–affected brains compared to controls.

RESULTS
DNA methylation analysis of multiple sclerosis–affected brains

From an initial pool of brain bank samples for NAWM of multiple sclerosis–affected and
control brains, we selected those characterized by short post-mortem interval, RNA integrity
preservation and high DNA quality (as assessed by spectrophotometric absorbance A260/
A280 ratio and electrophoretic profile). These samples, herein termed the discovery cohort,
included DNA from the NAWM, characterized by a lack of inflammatory infiltrates
(Supplementary Fig. 1a) and absence of demyelination (Supplementary Fig. 1b), of 28
multiple sclerosis patients, and from the brains of 19 patients without neurological disease
and therefore classified as controls (Supplementary Table 1). We conducted genome-wide
analysis of DNA methylation in these samples using the Illumina Infinium
HumanMethylation450 BeadChip, which allows methylation-specific hybridization to an
array of ~485,000 CpG sites spanning the entire human genome13. DNA was isolated and
subject to sodium bisulfite treatment to generate methylation-specific base changes before
hybridization. Batch effects were minimized by randomized placement of multiple sclerosis
and controls across the arrays. Potential false positives were controlled by removing probes
with low signal intensity (detection P value > 0.01) and those that overlapped common
SNPs (see Online Methods). Methylation values for individual CpG sites in each sample
were measured as β-values, which represent the ratio of the methylated hybridization signal
intensity to the sum of both methylated and unmethylated signals after background
subtraction. As regulatory methylation changes generally encompass multiple CpGs, we
sought to identify regions of the genome with differential DNA methylation between
multiple sclerosis and controls, rather than focusing on isolated changes in individual CpGs.
To that end, we used a 1-kb sliding window analysis, a variation of the tiling region analysis
that has been optimized for DNA methylation analysis14. This was followed by multiple
hypothesis test correction by calculating the false discovery rate (FDR). Differentially
methylated regions (DMRs) were defined as those windows significant at a 1% FDR.
Overlapping regions were merged to form a non-redundant set. To justify the selection of
the 1-kb sliding window, we extended a ±5-kb window around each CpG within a given
DMR and calculated the Pearson correlation coefficient for each CpG (central CpG) and its
neighbor within each respective window. This approach revealed that a 1-kb window (±500
bp) around the central CpG showed the strongest level of correlation (Supplementary Fig.
2).

To define whether differences in DNA methylation between multiple sclerosis and controls
could be attributed to the disease state itself or other variables, such as age, gender and
disease duration, we performed a correlation analysis to model the effect of each variable.
While disease duration showed minimal correlation with the DMRs (Supplementary Fig. 3),
gender and age had a greater effect, which is consistent with previous reports15,16. We also
designed a likelihood ratio test to differentiate the role of disease status on methylation from
age and gender in these DMRs (see Online Methods). This age- and gender-corrected
analysis identified 220 hypomethylated DMRs (containing 1,235 CpGs) and 319
hypermethylated DMRs (containing 1,292 CpGs) that were statistically significant at a P <
0.05 after FDR correction.

To determine whether the DNA methylation values in multiple sclerosis and control samples
independently segregated, we performed principal component analysis (PCA) using β-values
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of CpGs in statistically significant DMRs, which revealed a clear separation between the
two groups (Fig. 1a). We then compared the distribution of hypomethylated and
hypermethylated DMRs to that of the CpG distribution in the Illumina 450K array (Fig.
1b,c), which covers 99% of annotated RefSeq genes and shows a wide distribution of probes
among CpG islands, shores (2 kb flanking the islands), shelves (2 kb flanking the shores)
and sea (regions outside the previous three categories). We noted that hypomethylated
DMRs in samples from multiple sclerosis–affected brains were preferentially located in CpG
shores rather than shelves. Hypermethylated DMRs were also preferentially distributed in
shores rather than islands. Thus, differential methylation between multiple sclerosis and
controls showed an overall enriched distribution in CpG shores (P < 10−5; Fig. 1b),
characterized by the presence of gene regulatory regions with dynamic DNA methylation
patterns and functional consequences for gene expression17,18. DMRs were preferentially
found in genomic locations previously associated with enhancers and defined by
intermediate methylation (Supplementary Fig. 4a), rather than in regions with extreme
methylation values (<0.2 or >0.8). Notably, the overall distribution of the DMRs relative to
RefSeq genes (Fig. 1c) revealed a significant enrichment of hypomethylated CpGs in
regions immediately surrounding transcriptional start sites (P < 10−80). Hypermethylated
CpGs were preferentially distributed in gene bodies (P < 10−10). Within each gene, the
methylation changes in contiguous CpGs displayed concordant changes, either
hypermethylation (Fig. 2a) or hypomethylation (Fig. 2b).

To technically verify that the changes in methylation detected by the Illumina array were
reliable and accurate, we used an independent approach called Sequenom EpiTYPER, which
uses mass spectrometry to quantify methylated and unmethylated cytosines, following
bisulfite conversion. We randomly selected DMRs with a range of methylation differences,
as low as 2% and as high as 16%, to perform EpiTYPER analysis. At CpGs tested by both
the Illumina array and Sequenom assay, we observed strong correlations (P < 0.01) between
the two methods (Fig. 2d,e). We also detected concordant changes for neighboring CpGs
that were not included on the Illumina array (Fig. 2c). This provided further verification of
the Illumina array data and validated the presence of concordant changes in contiguous
CpGs across the genome.

DNA methylation changes are subtle and widely distributed
To avoid the potentially confounding influence of X inactivation on DNA methylation
patterns on the X chromosome between males and females20, we focused our analysis on
autosomal probes. The vast majority of both hypomethylated and hypermethylated CpGs
revealed subtle changes, within the range of modifications consistent with reported
environment-gene interactions (Supplementary Fig. 4b). We represented the genome-wide
map of all autosomal DMRs (for the complete annotated lists, refer to Supplementary Table
2) as a circular ideogram, composed of concentric circles depicting the entire autosome
complement, with chromosomal location annotated in a clockwise manner and statistical
significance indicated by radial arrangements and color codes (Fig. 3). Because assigning
DMRs to RefSeq genes on the basis of the proximity to the nearest gene is not considered
the most accurate method21,22, we overlapped our data set with DNase I hypersensitive sites
as reported by Sheffield et al.22. We considered only the DMRs within gene(s) associated
with the overlapping DNase I hypersensitive sites. In Figure 3 only those genes containing
statistically significant DMRs between MS and control samples (FDR <0.005) are plotted.

To begin addressing the functional significance of the widespread changes in DNA
methylation, we performed a gene ontology analysis of the data set, which revealed distinct
functional categories for the hyper- and hypomethylated DMR-associated gene lists (Table
1). While the hypermethylated DMRs identified broad processes, including actin filament–
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based processes and biological regulation, the hypomethylated DMRs were detected in
categories associated with immune response, lymphocyte mediated immunity and organ
morphogenesis (Table 1). Among the hypermethylated genes, we recognized several
oligodendrocyte-specific genes (for example, MBP, SOX8), including those regulating
survival (for example, NDRG1, BCL2L2). Despite our focus on autosomes, a gender-specific
analysis of the X chromosome in male and female subgroups identified DMRs associated
with two genes (Supplementary Table 2) in males and a separate set of two genes in females.
The female subgroup included a hypermethylated DMR neighboring GJB1, encoding the
gap junction molecule connexin 32, which is involved in oligodendrocyte function.
Together, these data suggest the existence of a trend for hypermethylation in genes
implicated in oligodendrocyte function and hypomethylation in genes implicated in
immune-related function.

Transcriptional effects of DNA methylation changes
To begin understanding the transcriptional consequences of differential DNA methylation,
we used RNA-seq and performed an unbiased, genome-wide transcriptome analysis of
multiple sclerosis and control samples of the discovery cohort. To identify the relationship
between changes in DNA methylation and gene expression, we compared the P value for
each DMR against the P value from the RNA-seq data (Supplementary Table 3) for
corresponding genes in the two data sets. A direct comparison of the hypo- and
hypermethylated DMRs with the upregulated and downregulated transcripts (Table 2)
revealed a statistically significant correlation between hypomethylated DMRs and increased
gene transcripts (P = 1 × 10−18) and between hypermethylated DMRs and decreased
transcripts (P = 9.8 × 10−5). We generated a quadrant plot to better depict this analysis (Fig.
4a). Among transcripts that were upregulated in multiple sclerosis samples compared to
controls, we detected CTSZ and LGMN, two cysteine proteases that are involved in immune
regulation but also have additional biological functions in neural cells (Fig. 4b). Among the
downregulated genes we detected CRY2, a gene involved in circadian rhythm, and BCL2L2,
which has been shown to regulate neuronal and oligodendrocyte survival (Fig. 4b). A
comparison of our data set with previously published studies further revealed a remarkable
degree of overlap between the data sets, despite the different methods of analysis and sample
collection (Table 2).

We had already screened the samples for the absence of any pathological process and lack of
inflammatory cells, but we could not discount the possibility that multiple sclerosis tissue
could have been characterized by differences in cellular composition. We addressed this
issue in two manners: first, we used the CETS R package23 to evaluate the neuronal and
glial proportion of each sample (Fig. 5a); and second, we used our RNA-seq data set to
calculate the average transcript values of genes specific for distinct cell lineages (Fig. 5b),
including astrocytes (GFAP), microglia (AIF1), neurons (RBFOX3) and oligodendrocytes
(OLIG2). These analyses revealed no significant correlations between any given cell type
and the differences detected between multiple sclerosis and control samples. To further
support the transcriptional data, we also conducted immunohistochemistry on the same
samples, which confirmed lack of HLA-DR immunoreactivity, indicative of the absence of
active microglia (Fig. 5c), and the presence of comparable numbers of OLIG2+ cells (Fig.
5d,e). Therefore, the transcript levels of CTSZ (Fig. 5f) and the corresponding
immunoreactivity pattern of this cysteine protease (Fig. 5g) could not be attributed to the
presence of microglial cells in the normal tissue, but rather must be attributed to increased
levels of RNA and proteins in neuronal and glial cells. We also examined the transcript (Fig.
5h) and protein expression of hypermethylated genes such as NDRG1 (Fig. 5i) and BCL2L2
(Fig. 5j). In both cases, we detected decreased immunoreactivity in the multiple sclerosis–
sample NAWM compared to the controls. Together, these data suggested that hyper- and
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hypomethylation occurred in functionally distinct gene categories and resulted in lower
levels of proteins involved in oligodendrocyte survival and higher levels of cysteine
proteases involved in proteolytic processing.

Validation of changes in an independent cohort
We tested the reproducibility of the methylation differences identified in the discovery
cohort in an independent validation cohort of samples (Supplementary Table 4). We focused
our analysis on significant DMRs with correlative changes with gene expression and
assessed methylation in specific genomic locations using EpiTYPER analysis (Fig. 6a). The
finding of significant changes in DNA methylation in the second independent validation
cohort strengthened the reliability of the DMR identified in the discovery cohort. Those
changes were consistent in terms of directionality of change (i.e., methylation status) and
average methylation difference between multiple sclerosis and control (Supplementary Fig.
5). As in the technical verification, neighboring CpGs not included on the Illumina array
demonstrated similar concordant changes (Supplementary Fig. 5).

We further assessed the reproducibility of the association between DNA methylation and
transcriptional consequences by performing quantitative PCR for several genes in the
validation cohort (Fig. 6b). Genes such as CTSZ and HAGHL showed significant (P < 0.05)
differences between multiple sclerosis and control samples similar to those detected in the
discovery cohort by RNA-seq (Fig. 6b). In a small third cohort of samples, independent of
the first two (Supplementary Table 5), we further validated the consistency of the
transcriptional consequences by comparing the expression of NDRG1 and LGMN between
multiple sclerosis and control NAWM (Fig. 6c). For BCL2L2, the differences in expression
in the second and third cohort showed trends that matched the RNA-seq data (i.e.,
downregulation in multiple sclerosis samples), although they did not reach significance,
likely owing to the reduced sample size (data not shown).

DISCUSSION
The association of geographic location, parent-of-origin effect24, vitamin D levels25,
smoking26 and diet27,28 with disease onset is supported by epidemiological studies, although
the possibility cannot be discounted that the same parameters might also modulate disease
course29. It is becoming increasingly clear that, under physiological conditions,
environmental influences epigenetically modulate gene expression in normal tissue, by
affecting modification of chromatin components (for example, histones), microRNAs and
subtle changes in DNA methylation. It is therefore conceivable that pathology-free areas in a
diseased brain might harbor epigenomic changes that might determine the ability to respond
to the pathological process.

In this study, we focused on DNA methylation in NAWM because this modification has
been shown to be affected by environmental stimuli. Potential confounders, such as post-
mortem interval and batch effect, were controlled by selecting only those samples with short
intervals and DNA and RNA integrity preservation and by implementing sample
randomization. The choice of the material to study was very important, as we wanted to
investigate changes occurring in DNA methylation in the absence of inflammatory infiltrates
and independent of ongoing pathology. In this study, we employed Illumina technology to
analyze the differential methylation of over 485,000 CpG sites throughout the entire human
genome and used stringent statistical criteria to define differential methylation patterns
between multiple sclerosis and controls. Although the array contains only ~2% of the total
CpGs present in the genome, it includes representation of 99% of RefSeq genes, and
therefore its use in comparative studies of human tissue is expected to become widespread.
We identified hypo- and hypermethylated DMRs by comparing the methylation state of
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multiple sclerosis samples and controls (i.e., β-values) of CpGs within a 1-kb region. We
also took into consideration the effect of gender, age and disease duration on the loci
identified by our analysis. However, only age and gender showed widespread statistically
significant effects and were corrected for, using a likelihood ratio test. The minimal effect of
disease duration and the lack of correlation with widespread differences in methylation was
important because it argued against the potential accrual of disease-related changes over
time. The effect of therapy, although of great interest, could not be assessed in this study.

The identified differences in methylation between multiple sclerosis and controls were
subtle but consistent throughout the genome. We did not observe all-or-none methylation
changes but rather subtle concordant changes (either higher or lower β-value average) in
multiple CpGs distributed at specific gene loci. These small-scale modifications are in line
with previously reported environmental influences on DNA methylation. This is in sharp
contrast with results in cancer specimens, where the pathological process has entirely
disrupted the physiology of the cells and therefore it is not unusual to detect very large
differences in DNA methylation. A potential interpretation of these findings is a model of
cumulative changes in a given cell, putting it at a heightened risk for damage. There are
precedents for small changes of DNA methylation resulting in measurable functional
outcomes. One example is the DNA methylation status of the paternally expressed gene 10
(PEG10) and its association with low birth weight30. A 5–10% change of methylation in the
imprinted PEG10 gene was associated with significant differences in birth weight and a
concomitant 1.5-fold decrease in gene expression in low birth weight babies30. Other studies
investigating the pathogenic role of DNA methylation in Alzheimer’s disease31 and
rheumatoid arthritis32 have similarly reported small but significant changes. As in our
findings, these studies did not observe changes in genomic regions at the extreme ends of
methylation values (<0.2 or >0.8) but rather at intermediate methylation levels, a range that
has been previously associated with active distal regulatory regions, such as enhancers19.
Taken together, these findings can be extrapolated to our study and allow us to propose that
small differences in methylation are indicative of environmental regulation of gene
expression and result in decreased expression of genes modulating oligodendrocyte survival.

In addition, the detected methylation differences correlated with transcriptional and
translational consequences in functionally distinct gene categories, as supported by the
immunohistochemical changes. The reliability of these changes was further demonstrated by
validating DNA methylation and gene expression changes in an independent validation
cohort of pathology-free areas from multiple sclerosis and control brains.

Hypermethylated DMRs and decreased transcript levels were detected for genes regulating
oligodendrocyte and neuronal function, including BCL2L2, a member of the antiapoptotic
BCL2 family of proteins33; HAGHL, a gene encoding the enzyme hydroxyacylglutathione
hydrolase–like and highly expressed in the brain34; and NDRG1, a gene involved in
oligodendrocyte response to stress35. The product of the BCL2L2 gene is the mitochondrial
protein BCL-W, whose antiapoptotic activity has been attributed to its ability to sequester
the pro-apoptotic BAX. Low levels of BCL-W were associated with increased neuronal
death in cultures treated with β-amyloid36, in mice with epileptic seizures37 and in rats with
photothrombotic ring stroke38. Conversely, overexpression of Blc2l2 was shown to be
protective against axonal degeneration39.

Hypomethylation was detected in genes encoding cysteine proteases, including CTSZ and
LGMN, which were also characterized by increased transcripts. The cathepsin family
includes several members that are classified into distinct subgroups on the basis of the
amino acid at the active site: aspartate protease (cathepsins D and E), serine protease
(cathepsin G) or cysteine protease (cathepsins B, C, F, H, L, S and Z and legumain). The
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role of these enzymes has been mainly studied in the context of antigen presentation40, with
cathepsin S absolutely required for antigen processing of myelin basic protein. CTSZ
encodes for cathepsin Z (also known as cathepsin X or cathepsin P), a secreted
carboxypeptidase that was originally identified from a brain cDNA library41 and found to
map to a chromosomal location separate from all other cysteine protease genes. Originally
thought to be exclusively expressed in the immune cells, CTSZ has been shown to be
upregulated in several different organs, including the brain, where it cleaves mutant
huntingtin42, and in several tumors (reviewed in ref. 43). Because it can cleave the C
terminal of proteins, CTSZ has been implicated in several processes, depending on substrate
specificity. Cleavage of the C terminal of enolase, for instance, has been functionally linked
to impaired neuronal survival44, while cleavage of the integrin receptor has been shown to
affect migration45 and cell adhesion46 and can contribute to metastatic infiltration of tumors.
The detection of cathepsin Z in glial cells has been also reported in other studies performed
in brains affected by Alzheimer’s disease and in the brains of aged C57BL/6 mice, where its
expression was found to be higher in cerebellum and spinal cord, and its levels increase with
age in neurons, astrocytes and microglial cells, but not in oligodendrocytes47. In our study,
CTSZ expression was barely detectable in NAWM from the frontal cortex of human control
brains, and its expression was higher in multiple sclerosis–affected brains, where it appeared
to localize to neurons and glial cells. LGMN encodes legumain (also known as asparaginyl
endopeptidase, or AEP), an endopeptidase with the ability to cleave MBP and generate
immunogenic peptides48.

The finding that hypo- and hypermethylated genes occur in functionally distinct gene
ontology categories suggests that hypo- and hypermethylation may occur in distinct cell
types. It is intriguing to speculate that alterations in distinct cell types might converge on
pathways regulating the ability of oligodendrocytes to respond to damage and enhancing
myelin protein processing by antigen-presenting cells. Together, these data propose a model
of disease associated with molecular changes in DNA methylation, occurring in gene
categories modulating the vulnerability of the brain tissue to the pathological process.

ONLINE METHODS
Sample preparation

Unidentified post-mortem brain frontal lobe specimens were obtained from the UK Multiple
Sclerosis Tissue Bank and the Human Brain and Spinal Fluid Resource Center at UCLA
after obtaining approval of the Institutional Review Board at both institutions. Tissue blocks
were bisected and divided into samples for histology and samples for DNA and RNA
extraction. NAWM was dissected from surrounding tissue on a benchtop cold plate (TECA)
cooled to −20 °C.

For histology, the blocks were sectioned into 5-μm slices and mounted on glass slides for
further analysis. For DNA, samples were isolated using standard phenol-chloroform
extraction and ethanol precipitation. DNA purity was assessed by measuring the A260/A280
ratio using a NanoDrop (Thermo Scientific) and DNA quality checked by agarose gel
electrophoresis for a strong band at high molecular weight. We performed PCR to check for
cross-contamination of female samples using the following primers: TTTY7 forward primer
ATTCCCTTGAGGGTCGTCTT, reverse primer GGGCACTCTTCCATCATCTT; TSPY
forward primer TCCCCTGACAGATCCTATGTAA, reverse primer
TGCTGTATTAGGTAAA ATCTGATGCT.

For RNA, samples were isolated using TRIzol (Invitrogen) extraction and isopropanol
precipitation. RNA samples were resuspended in water and further purified with RNeasy
columns with on-column DNase treatment (Qiagen). RNA purity was assessed by measuring
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the A260/A280 ratio using a NanoDrop and RNA quality checked using an Agilent 2100
Bioanalyzer (Agilent Technologies).

From an initial 64 samples, we screened for post-mortem interval (31 h or less), lack of
inflammatory infiltrates or plaques, preserved RNA integrity (RIN ≥7) and high DNA
quality (as assessed by A260/A280 ratio and electrophoretic profile). We selected for
subsequent analysis only 28 multiple sclerosis patients and 19 controls without neurological
disease that passed all quality control metrics.

A second cohort of multiple sclerosis samples was provided by R.D. and B.D.T. from the
Lerner Research Institute at the Cleveland Clinic. A second set of controls was provided by
V.H. from the Brain Bank at Icahn School of Medicine at Mount Sinai. These samples were
processed for DNA and RNA as noted above.

No statistical methods were used to predetermine sample size, as the number of available
NAWM samples was a limiting factor in selecting total sample size.

DNA methylation analysis
1.25 μg of human genomic DNA was sodium bisulfite–treated using an EZ DNA
Methylation Kit (Zymo Research). The converted DNA was analyzed on an Infinium
HumanMethylation450 BeadChip (Illumina) following the manufacturer’s guidelines. To
minimize batch effects, cases and controls were randomly distributed to different arrays.
Methylation values for individual CpG sites in each sample were obtained as β-values,
calculated as the ratio of the methylated signal intensity to the sum of both methylated and
unmethylated signals after background subtraction (β-values range from 0 to 1,
corresponding to completely unmethylated and fully methylated sites, respectively).

Data processing and statistical analysis
Data were collected randomly but not assessed blindly. Data distribution was assumed to be
normal, but this was not formally tested. Illumina array data were processed using the
Methylation Module of GenomeStudio v1.9 software using default parameters. In each
individual, probes with a detection P value > 0.01 were removed (mean n = 348). 482,421
probe sequences (50-mer oligonucleotides) were remapped to the reference human genome
hg18 (NCBI36) using BSMAP51, allowing up to 2 mismatches and 3 gaps; we retained
unique sequences for 470,681 autosomal probes and 11,122 probes mapping to the X
chromosome (chrX). β-values from the remaining probes were quantile normalized using the
normalizeQuantile function in the aroma.light R package52. As X chromosome inactivation
causes gender differences in methylation patterns on chrX, the probes on this chromosome
were normalized for males and females separately and independently of autosomal probes.
Probes that overlapped SNPs identified by the 1000 Genomes Project (minor allele
frequency ≥ 0.05) within 5 bp upstream of the targeted CpG (n = 9,409 for autosomes; n =
101 for chrX) were discarded, as such variants can introduce biases in probe performance.
The remaining 461,272 autosomal and 11,021 chrX probe sequences were annotated on the
basis of their position relative to RefSeq genes using BEDTools v2.17 (ref. 53). We defined
promoter regions as ±2 kb from transcriptional start sites (TSS), gene body regions as
transcription start to transcription end after excluding the first 2 kb of the gene, and
intergenic regions as those not annotated by the preceding categories. We also annotated
individual CpG in context with CpG island (using UCSC annotation in hg18), CpG shore
(±2 kb of island), CpG shelf (±2 kb of shore) and CpG sea (regions outside the previous
three categories).
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For each probe, β-values in multiple sclerosis cases were compared against controls using
two one-sided Student’s t-tests: p(multiple sclerosis < controls) and p(multiple sclerosis >
controls). To identify differentially methylated regions (DMRs), we used a 1-kb sliding
window based on the start coordinate of each probe, starting at the first probe and moving
down consecutively to the last probe on each chromosome, and applied Fisher’s method to
combine P values for each 1-kb region on the basis of all probes within each window14.
Significant DMRs were selected at a 1% FDR on autosomes and 5% FDR on chrX (ref. 54).
DMRs where methylation values for multiple sclerosis were less than controls for the
majority of individual CpGs were considered hypomethylated; otherwise, they were
annotated as hypermethylated.

We designed a likelihood ratio model to differentiate the influence of disease status on
methylation from confounding variables such as age and gender in these DMRs. As a test
model, we performed linear regression using age, gender and disease status as independent
variables (test model for methylation: age + gender + disease status). This model was tested
against the reduced (or null) model by using only age and gender as independent variables
(reduced model for methylation: age + gender). This test results in more significant P values
when disease status plays a major role in methylation variation. To combine P values for
each 1-kb region on the basis of all probes within each window, we applied Fisher’s method
as described above. We considered DMRs of this subset with a FDR q-value < 0.05 in favor
of the test model incorporating disease status as significantly associated with multiple
sclerosis.

The positional distribution of autosomal probes within DMRs with respect to CpG feature
and RefSeq genes was compared to the overall distribution of all filtered autosomal probes
on the array, and enrichment P values were determined by Pearson’s chi-squared test.

To compare the relationship between CpGs within the DMRs with neighboring CpGs, we
set each CpG in the DMR as a ‘central’ CpG and extended a 10-kb window (±5 kb) around
each one. We used Pearson correlation to identify the pairwise relationship between the
central CpG and neighboring CpGs within each window. For gene-specific methylation
blocks, we compared CpGs overlapping the gene promoter and gene body.

Principal component analysis was performed using the plotSampleRelations function from
lumi package. Principal components 1 and 2 were used to observe spread of the samples
using only the β-values from CpGs in significant DMRs.

To identify genes associated with each DMR, as assigning them to the nearest gene is not
always the most accurate method21,22, we overlapped them with DNase I hypersensitive
sites (DHSs) characterized as showing significant correlations with the expression levels of
nearby genes in 112 ENCODE cell lines22 and annotated the DMRs with the gene(s)
associated with the overlapping DHSs.

To determine the contribution of sample cellular heterogeneity to the DNA methylation
signatures that we identified, we used the CETS R package23 to quantify the neuronal and
glial proportions for each sample.

Detection of methylation changes by Sequenom EpiTYPER
Differentially methylated regions identified by the array analysis were verified and
independently validated using MassARRAY EpiTYPER assays (Sequenom). Genomic DNA
was sodium bisulfite–treated using an EpiTect Bisulfite Kit (Qiagen). Primers were designed
using EpiDesigner software and used to amplify DMRs: AKAP6 forward primer
TTTTTTTTGTGTGTGGTATGTGG, reverse primer CAAAA
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TCAAATTAACCTATATCCACTCC; ARHGAP22 forward primer GGGTTTA
TGTGGTTAGGGTTATTTT, reverse primer CTCCAACTCTACACTCCTCA AAAAC;
BCL2L2 forward primer TGTTTTAAGTTGTTTGGAGTTAAAGG, reverse primer
ACTTTATAACCTTTCTTTCCCTTCC; CRY2 forward primer
ATTTTAGAGAGGGGAGGGGTAGTAT, reverse primer AACACCTATTAAC
CAACAACATCAA; CTSZ forward primer TGTTTGTTATGGTTTTTGGGTT TAT,
reverse primer AAACAACTCTCCAACCTTACTCTCC; CX3CL1 forward primer
GTGGTAGGAGAGGAGGTTTTTGTAT, reverse primer ACCCTATT
TATACCCAAATCAAACC; GATA3 forward primer GTGTGTGTGTATGAG
TTTGGTTAAAG, reverse primer TCATACAAATAATAACACCAACTAAA; LRRC27
forward primer TGATGTGTTAATTTGTTTTTGAAATG, reverse primer
ACTAACCCAACACACCACTATTTCT; MBL2 forward primer AGAT
ATATTTGGGGGAAGAGGGAG, reverse primer CCAAACATCAAAAAACTC
TCAACTC; MGAT1 forward primer AAGGGTTGTTGTTATGTGATTAGGA, reverse
primer CCTAACTATACTCCCCACCAAATCT; NDRG1 forward primer
TTTTTGAGTTATATTTGGAATGGGA, reverse primer AAAAATTCCTAAC
AAAATTTTACCTACC; SBF1 forward primer GAGGAGGTTGGTTTTGGG TTAGTAG,
reverse primer AATCAAAACTTCAAATAAAAACCCC; SLC47A2 forward primer
TTATTTTTTAGATTAGATTGGAGGGG, reverse primer TA
TTACCAAATTACCCCCAACAAAA. Forward primers were designed with a 10-mer tag
(AGGAAGAGAG) and reverse primers designed with a T7-promoter tag
(CAGTAATACGACTCACTATAGGGAGAAGGCT), as per the manufacturer’s
guidelines. PCR products were then processed as previously described to determine
methylation levels55.

Like the Illumina array, the MassARRAY system provides a methylation level between 0
(completely unmethylated) and 1 (fully methylated). CpGs overlapping silent peaks, outside
the mass spectrometry analytical window (low or high mass), or lacking sufficient coverage
(methylation level determined for <90% of samples) were filtered out before subsequent
analysis. For experimental verification, Pearson’s correlation (r) was used to evaluate
concordance between methylation levels yielded by the array analysis and Sequenom assays.
For validation experiments, two one-sided Student’s t-tests and a Fisher’s method P-value
were determined as above for adjacent CpGs within an amplicon.

Gene expression analysis
Approximately 250 ng of total RNA for 20 multiple sclerosis and 11 control samples were
used for library construction by the TruSeq RNA Sample Prep Kit (Illumina) according to
manufacturer’s instructions. RNA-seq libraries were sequenced using the Illumina HiSeq
2000 instrument as per the manufacturer’s instructions. The RNA-seq data were analyzed as
previously described56. Briefly, high-quality reads were aligned to the human reference
genome (hg18), RefSeq exons, splicing junctions and contamination databases (ribosome
and mitochondria sequences) using the BWA alignment algorithm57. The read count for
each RefSeq transcript was extracted using uniquely aligned reads to exon and splicing-
junction regions for each transcript. Transcripts were filtered for a minimum read count of
10 in at least 90% of the samples. The raw read counts were inputted into DESeq2 version
1.0.16 (ref. 58) for calculation of normalized signal for each transcript and to ascertain
differential gene expression with associated P values (Wald test). The P value for each
DMR was compared against the P value from the RNA-seq data for corresponding genes
(see above for DMR-to-gene association) by plotting a quadrant plot where the quadrants
represent a 2 × 2 combination of P values for hypo- or hyper-methylated DMRs and up- or
downregulated genes.

Huynh et al. Page 11

Nat Neurosci. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



For NanoString nCounter analysis of gene expression, 100 ng of total RNA was hybridized
with a custom NanoString code set: ALDH3A1: TACCTGGACAAG
GATCTGTACCCAGTAATCAATGGGGGTGTCCCTGAGACCACGGAGCT
GCTCAAGGAGAGGTTCGACCATATCCTGTACACGGGCAGCA, ATP11A:
ATGCCATGAACCAGTGTCCTGTTCATTTCATTCAGCACGGCAAGCTCG
TTCGGAAACAAAGTCGAAAGCTGCGAGTTGGGGACATTGTCATGGTT AAGGA,
CCR6: CTTTAACTGCGGGATGCTGCTCCTGACTTGCATTAGCA
TGGACCGGTACATCGCCATTGTACAGGCGACTAAGTCATTCCGGCTCC
GATCCAGAACACTA, CREB5: ATCTGATGAATCCCAGGAGTGGAGCAAG
AGGCAGATTTTGGACACGGTTATGAGAATGACAGAAACTGCCTAAAG
CATTTATGCTCTGGCATTCGTCCCT, CTSZ: GGACACCACATATATAAAC
CATGTCGTTTCTGTGGCTGGGTGGGGCATCAGTGATGGGACTGAGTA
CTGGATTGTCCGGAATTCATGGGGTGAACCATGG, GABRA5: CTGGGC
AACGTATTTGAATAGGGAGCCGGTGATAAAAGGAGCCGCCTCTCCAA
AATAACCGGCCACACTCCCAAACTCCAAGACAGCCATACTTCCAGCG, NAV2:
ACCTAGTGCTGCCTGATTGGTGAACATTGACTTCAAGTAGCATA
GCCCTTGTGTGACTCACAACTCCGTGTCCTTCCTAAAGTTTCGGGAAG
CAGGGTTG, NDRG1: CGCCTACATCCTAACTCGATTTGCTCTAAACAAC
CCTGAGATGGTGGAGGGCCTTGTCCTTATCAACGTGAACCCTTGTGC
GGAAGGCTGGATGGACTGG, PGK1: GCAAGAAGTATGCTGAGGCTGTC
ACTCGGGCTAAGCAGATTGTGTGGAATGGTCCTGTGGGGGTATTTGA
ATGGGAAGCTTTTGCCCGGGGAACCAAAGC, POLR2A:TTCCAAGAAG
CCAAAGACTCCTTCGCTTACTGTCTTCCTGTTGGGCCAGTCCGCTCGA
GATGCTGAGAGAGCCAAGGATATTCTGTGCCGTCTGGAGCAT, RPL19:
CCAATGCCCGAATGCCAGAGAAGGTCACATGGATGAGGAGAATGAGG
ATTTTGCGCCGGCTGCTCAGAAGATACCGTGAATCTAAGAAGATCGAT CGCCA,
RPLP0: CGAAATGTTTCATTGTGGGAGCAGACAATGTGGGCTC
CAAGCAGATGCAGCAGATCCGCATGTCCCTTCGCGGGAAGGCTGTGG
TGCTGATGGGCAAGAA. Sample processing and mRNA quantifications were performed
according to manufacturer’s protocols, as described previously59. A two-tailed Student’s t-
test was performed to assess statistical differences between the average values in each
group.

For qRT-PCR, RNA was reverse transcribed with qScript cDNA Supermix (Quanta, 95048)
and qRT-PCR was performed using Perfecta Sybr Fast Mix Rox 1250 (Quanta, 101414-278)
at the Mount Sinai Shared Resource Facility. Primers used for quantitative PCR: AIFM2
forward primer ACGGTTCATCGTGGTGGTG, reverse primer
TTGGGAGTGAATGAGAGTGACC; ATP1A1 forward primer
AGGTCTTTGTAACAGGGCAGTG, reverse primer CTGCAACTGCCCG CTTAAG;
BCL2L2 forward primer TGACTGGATCCACAGCAGTG, reverse primer
TCAGCACTGTCCTCACTGATG; CTSZ forward primer CGCAA
TGTGGATGGTGTCAAC, reverse primer ACGCTCCCTTCCTCTTGATG; DHX32
forward primer GCCACTGTGACTTCATGAACAG, reverse primer
GATTTCCATCATTATCCAGTGC; GAPDH forward primer TGTTGCC
ATCAATGACCCCTT, reverse primer CTCCACGACGTACTCAGCG; HAGHL forward
primer ATGTACCTGGTCATCGAGGAG, reverse primer
CACAGCGGTCAGAGACACC; RPLP0 forward primer GCGACCTGGAA GTCCAAC,
reverse primer GTCTGCTCCCACAATGAAAC; SBF1 forward primer
CGGACTACTTCGTGCTGGTG, reverse primer TTGTCCTCCC AGTCCTTCTC. After
normalization to the geometric mean of DHX32, GAPDH and RPLP0, the average values for
each transcript were calculated as based on the values obtained in all the samples included
for each condition. A two-tailed Student’s t-test was performed to assess statistical
differences between the average values in each group.
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Gene ontology analysis and data set signature comparison
To identify enriched gene functions associated with the DMRs, we computed
hypergeometric P values for over-representation of each biological process gene ontology
(GO) category. For the annotation, genome-wide annotation for human, org.Hs.eg.db, was
used in the Bioconductor GOstats package.

Differentially expressed genes identified by RNA-seq (P < 0.05, Wald test) were compared
with genes associated with DMRs or with two previously published multiple sclerosis gene
expression data sets49,50. The significance of their overlaps was measured by Fisher’s exact
test using all Entrez genes as the background.

Immunohistochemistry
Five-micrometer frozen sections were stained with hematoxylin and eosin or with Luxol fast
blue to assess specimen quality, presence of infiltrates and myelin content.
Immunohistochemical staining was performed at the Mount Sinai Shared Resource Facility
with an avidin-biotin technique (Vector Labs). After fixation in ice-cold acetone for 10 min,
intrinsic peroxidase activity was blocked by incubation with 3% H2O2 in PBS for 15 min.
Antigen retrieval was achieved with microwave pretreatment using citric acid buffer (pH
6.0). Nonspecific antibody binding was inhibited with whole horse serum (MP Biomedicals)
and 2% BSA in PBS for 1 h before incubation with rabbit polyclonal anti-CTSZ (1:200,
antibodies-online ABIN761561), mouse monoclonal anti-HLA-DR (1:100, Novus
Biologicals NB100-78094), rabbit polyclonal anti-NDRG1 (1:100, Novus Biologicals
NBP1-95851) or rabbit polyclonal anti-Olig2 (1:100, Abcam ab81093). An anti-rabbit or
anti-mouse biotinylated immunoglobulin secondary antibody (1:200, Vector Labs) was
applied and staining developed with Vectastain ABC Reagent and peroxidase substrate
solution. Ten fields of view at 40× magnification were imaged randomly throughout the
NAWM for each sample and a minimum of 500 cells were counted for each sample. The
percentage of OLIG2-positive cells was determined and Student’s t-test performed to
identify no significant difference between control and multiple sclerosis samples.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Differential distribution of DNA methylation in multiple sclerosis–affected brains. (a)
Principal component analysis of 28 multiple sclerosis cases (triangles) and 19 controls
(circles) based on methylation levels of all CpGs within DMRs identified by a sliding
window analysis. Plotted are the first and second principal components. Percentage of
variation explained by each is given in parentheses. (b,c) Distribution of CpG sites in CpG
islands, shores, shelves and sea (b) and relative to RefSeq gene promoters, gene bodies and
intergenic regions (c). CpGs in hypomethylated and hypermethylated DMRs are compared
to all autosomal CpGs on the Illumina array using Pearson’s chi-squared test.
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Figure 2.
Changes in DNA methylation are concordant within a differentially methylated region. (a)
Plot of DNA methylation for individual CpGs within a hypermethylated DMR in intron 1 of
NDRG1. Above the plot is the complete gene structure, with dotted lines indicating the
zoomed region containing the DMR shown in the plot. Methylation for individual multiple
sclerosis cases and controls is plotted in red and black, respectively, with red and black lines
connecting the mean methylation for each consecutive CpG assayed. (b) Plot of
hypomethylated CpGs in intron 2 of LRRC27. Plot as described in a. Arrowheads indicate
CpGs that were assayed in c. (c) Methylation for individual CpGs assessed using
MassARRAY EpiTYPER. Plots are as shown in a. Below the plot is the local DNA
sequence surrounding each CpG. Arrowheads indicate CpGs with corresponding Illumina
probes in b. (d) Pearson’s correlation between methylation measured by the Illumina array
and Sequenom assay (n = 39 DNA brain samples). Plot shows data for the CpG with the
highest cross-platform correlation; however, all CpGs tested showed correlation coefficients
r > 0.6. (e) Summary of Pearson’s correlations of CpG methylation at sites measured by
both Illumina array and Sequenom assays.
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Figure 3.
Circos plot of genome-wide DNA methylation changes between brains of individuals with
multiple sclerosis and controls without neurological disease. Circular representation of the
genome. The black innermost ring (with vertical lines) represents autosome ideograms
(annotated is the chromosomal number), with the pter-qter orientation in a clockwise
direction. Small red lines represent the centromeres within each chromosome. The dots
inside and outside of the ideogram represent the Fisher’s method −log10(P value) for each 1-
kb window analyzed. Black dots outside the ideograms mark hypermethylated windows
(green dots denote significant hypermethylated windows), while dots inside mark
hypomethylated windows (red dots denote significant hypomethylated windows). Each dot
also marks the location of the Illumina 450K probe distribution along the genome. The
second outermost black circle represents baseline (zero) and the β-value difference between
multiple sclerosis and controls for significant windows after age and gender correction.
Green lines signify hypermethylated regions and red hypomethylated, with the length of
each line representing the difference level. The last two circles show the RefSeq genes
associated with differentially methylated regions: inner circle, genes associated with
hypomethylated DMRs (red); outer, genes associated with hypermethylated DMRs (green).
Only genes with a FDR q value <0.005 are shown.
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Figure 4.
Identification of genes with coordinated changes in DNA methylation and gene expression.
(a) Quadrant plot of DMRs and expression of associated genes. On the x axis is the −log10
Fisher’s P value (see Online Methods) for differentially methylated regions; on the y axis,
−log10 P value of differential expression for associated genes. Vertical dashed lines indicate
a threshold of 5% FDR and horizontal dashed lines indicate a threshold corresponding to P <
0.05. The four quadrants shown are (i) hypermethylated and upregulated in multiple
sclerosis (open green circles), (ii) hypermethylated and downregulated in multiple sclerosis
(filled green circles), (iii) hypomethylated and upregulated in multiple sclerosis (filled red
circles) and (iv) hypomethylated and downregulated in multiple sclerosis (open red circles).
A select number of genes are shown as position references. (b) Box-and-whisker plot of
normalized log2 expression for several upregulated and downregulated genes associated
with a DMR. Whiskers indicate 1.5 times the interquartile range; bottom and top of the
boxes, first and third quartiles, respectively; center lines, second quartile. Open circles
represent measurements outside of the range defined by the whiskers. MS, multiple
sclerosis.
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Figure 5.
Cell composition does not affect changes detected by immunohistochemistry. (a) Scatter
plot of neuronal (circle) and glial (square) cell contributions to the methylation signature for
each individual sample from control and multiple sclerosis–affected brains. (b) Box and
whisker plot of normalized log2 expression for GFAP, AIF1, RBFOX3 and OLIG2. In b,f,h,
whiskers indicate 1.5 times the interquartile range; bottom and top of the boxes, first and
third quartiles, respectively; center lines, second quartile. (c) Representative HLA-DR for
control (n = 5 brain samples) and multiple sclerosis (n = 10 brain samples) sections. Scale
bar, 50 μm. (d) Representative OLIG2 staining for control (n = 5 brain samples) and
multiple sclerosis (n = 10 brain samples) sections. Scale bar, 50 μm. (e) Percentage of
OLIG2+ cells in these sections. Whiskers indicate 1.5 times the interquartile range. (f)
Expression (normalized NanoString assay counts) for CTSZ (control n = 18 RNA brain
samples, multiple sclerosis n = 26 RNA brain samples; *P < 0.05). Whiskers indicate 1.5
times the interquartile range. (g) Representative CTSZ staining for control (n = 5 brain
samples) and multiple sclerosis (n = 10 brain samples) sections. Scale bar, 50 μm. (h)
Expression (normalized NanoString assay counts) for NDRG1 (control n = 17 samples,
multiple sclerosis n = 26 samples; *P < 0.05). Whiskers indicate 1.5 times the interquartile
range. (i) Representative NDRG1 staining for control (n = 5 brain samples) and multiple
sclerosis (n = 10 brain samples) sections. Scale bar, 50 μm. (j) Representative BCL2L2
staining for control (n = 5 brain samples) and multiple sclerosis (n = 10 brain samples)
sections. Scale bar, 50 μm. MS, multiple sclerosis.
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Figure 6.
Validation of methylation and gene expression changes in an independent cohort. (a)
Summary of Sequenom assays for DNA methylation differences tested in an independent
cohort (control n = 20 DNA samples, multiple sclerosis n = 10 DNA samples). Listed are
CpGs that overlap probes tested by the Illumina array. (b) Quantitative PCR of CTSZ (P =
0.021) and HAGHL (P = 0.048) in a second cohort of NAWM samples. Bar graphs (mean ±
s.e.m.) show relative transcript abundance as compared to control after normalization (*P <
0.05). (c) Gene expression of NDRG1 (P = 0.0309) and LGMN (P = 0.0209) from an
unpublished microarray study, showing relative transcript levels (mean ± s.e.m.) as
compared to control after normalization (*P < 0.05). MS, multiple sclerosis.
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Table 1

Gene ontology characterization of DMR-associated genes in multiple sclerosis

GOBPID Description P-value Gene names

Genes associated with hypermethylated DMRs (439)

GO:0030029 Actin filament–based process 0.0004 ALDOA, ATP1A2, BCAR1, BRK1, CDK5, CORO1A, CSF3, DLC1, DTNBP1,
FGD2, FMNL1, MLST8, MYBPC3, MYH6, MYH7, MYO1F, OBSCN,
PDGFA, PRKCZ, SHC1, SIPA1L1, SSH3, TPM3 (23)

GO:0009116 Nucleoside metabolic process 0.0006 ADA, AGAP1, ALDOA, ARHGEF16, ATP1A1, ATP1A2, ATP1A4, ATP5H,
BIN1, DAB2IP, DLC1, FGD2, LDHC, MACROD1, MLST8, MYBPC3,
MYH6, MYH7, NME4, NT5C, PLXNB1, PTPRN2, RASA3, SEPT9, SIPA1L1,
TBCD, TK1 (27)

GO:0065007 Biological regulation 0.0092 ACSBG1, ACSL1, ACTR8, ADA, AGAP1, AGPAT1, AGRP, AKAP8,
ALDH3A1, ALDOA, AMH, ANGPT2, APBB1IP, APEX, ARHGEF16, ATF6B,
ATP11A, ATP1A1, ATP1A2, ATP1A4, ATP6V0E1, ATRIP, BBS2, BCAR1,
BCL2L2, BIN1, BIRC5, BPI, BRD4, BRK1, C4B, CACNA1D, CASKIN1,
CBX4, CCL17, CCL22, CD37, CD59, CDH1, CDK5, CHST3, CHURC1,
CLASP1, CLIC5, CORO1A, CREB5, CRY2, CSF3, CSNK1E, CX3CL1,
CXXC5, CYP21A2, DAB2IP, DAND5, DCPS, DHRS3, DLC1, DLL1, DOK4,
DOT1L, DSCAML1, DTNBP1, DYRK1B, E2F6, E4F1, EDN2, EFS,
ENTPD2, ERCC3, F7, FAM109A, FGD2, FGFR3, FMNL1, GBX1, GDF10,
GPR114, GPR56, GTF2H1, GYLTL1B, HDAC11, HEG1, HEXIM1, HEXIM2,
HIGD1A, HIST3H3, HLA-DMA, IL17RB, IL25, IL34, INO80E, INPP5J,
INTS1, IRAK2, ITPKB, JARID2, LIMD1, LMF1, LPCAT1, MAB21L2,
MADD, MAML3, MAP3K14, MAPK3, MBP, MCF2L, MED24, MEIS2,
MLLT10, MLST8, MT1A, MT1E, MT1F, MT1G, MT1M, MT2A, MT4,
MTCH1, MTSS1L, MUSK, MYBPC3, MYH6, MYH7, MYO1F, NARFL,
NCOR2, NDRG1, NLRP3, NOTCH4, NR1H3, NUP210, OBSCN, OTX2,
PABPN1, PAG1, PBX2, PCSK6, PDGFA, PEG10, PHF21A, PIK3R1,
PLEKHG3, PLLP, PLXNB1, POLD4, POLR2C, POU2F1, PPARA, PPIL2,
PPP1R13B, PPP4C, PRAM1, PRDM16, PRKCH, PRKCZ, PTGDS, PTPRN2,
RAD9A, RAI1, RASA3, RBP1, RFX5, RIN2, RNF187, RPA1, RRM2, RXRA,
SACS, SEMA4C, SETD1A, SHC1, SHISA5, SIPA1L1, SLC17A7, SLC22A17,
SLC39A13, SLC7A8, SMAD6, SOX1, SOX8, SPI1, SPOCK2, SREBF1, SSH3,
SSTR5, SUN1, TACC3, TBCD, TBX6, TEAD2, TEF, TEP1, THRA, TLN2,
TNRC6C, TPM3, TRAF2, TSNARE1, UBE2L3, USP19, VAC14, WHSC1,
WISP1, WISP2, WNK2, ZBTB47, ZFP1, ZIC1, ZNF135, ZNF256, ZNF329,
ZNF362, ZNF414, ZNF418, ZNF488, ZNF606, ZNF664, ZNF687 (218)

Genes associated with hypomethylated DMRs (495)

GO:0006955 Immune response 1.1 × 10−7 ADAMDEC1, AIF1, AIRE, B2M, BPI, C1QA, C1QB, C1QC, C4BPA, C4BPB,
CCR6, CD19, CD37, CD4, CD7, CD81, CFD, DLG1, FCER2, HAMP, HLA-
DMA, HLA-DMB, HLA-DOA, HLA-DOB, HLA-DQA2, HLA-DQB2, HLA-F,
IRF6, IRF8, IRF9, JAK1, JAK3, KYNU, LAG3, LAT, LBP, LCP2, LGMN,
LST1, LTA, LTB, MBL2, MICB, NCR3, OSM, PSMB8, PTPN22, RARA,
RNF31, SECTM1, SLAMF7, STXBP2, TAP1, TAP2, TAPBP, TNF, TNIP2
(57)

GO:0002449 Lymphocyte-mediated immunity 3.7 × 10−6 B2M, C1QA, C1QB, C1QC, C4BPA, C4BPB, DLG1, FCER2, HLA-DMA,
LAG3, LTA, MBL2, NCR3, SLAMF7, TAP1, TAP2, TNF (17)

GO:0002443 Leukocyte-mediated pathway 4.4 × 10−6 B2M, C1QA, C1QB, C1QC, C4BPA, C4BPB, DLG1, FCER2, HLA-DMA,
LAG3, LAT, LTA, MBL2, NCR3, SLAMF7, STXBP2, TAP1, TAP2, TNF (19)

GO:0001906 Cell killing 8.6 × 10−6 B2M, FCER2, HAMP, LAG3, MBL2, NCR3, SLAMF7, STXBP2, TAP1, TAP2
(10)

GO:0035295 Organ morphogenesis 9.7 × 10−5 BHLHE23, CTSZ, DLG1, DLL1, DLX1, DLX2, EDARADD, EPHB4, FOXL2,
GLI1, GNAS, HOXC11, HOXC13, HOXC4, HOXC8, HOXC9, HOXD10,
HOXD11, HOXD13, HOXD3, HOXD4, HOXD8, HOXD9, MSX1, PHLDA2,
PPP1R13L, PTCD2, RARA, RUNX3, SOX1, SOX8, TBX3, TEAD2, TGM1,
TH, TNF, TWIST1, WNT2, ZIC1 (39)

GOBPID, gene ontology biological process identifier. Numerals in parentheses indicate the number of genes in the category.
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Table 2

Overlap between differentially expressed genes with associated DMRs and previous microarray studies of
multiple sclerosis and control NAWM samples

Upregulated RNA-seq (979) Downregulated RNA-seq (1,201)

Hypomethylated DMRs (495) 50
P = 1.0 ×

10−18

ARHGAP22, C10orf54,
C17orf62, C1QA, C1QB, C1QC,
CD37, CD4, CD48, CD84,
CEPT1, CFD, CHI3L2,
CNPPD1, CTSD, CTSZ, DAPP1,
DOK3, FAM46A, FERMT3,
GPR84, GSDMD, HLA-DOA,
IRF9, LGMN, LSP1, MFNG,
MGAT1, MRPL23, MRPS22,
MSX1, NAPSB, NOL12, OSCAR,
PATL2, PCK2, RBM14-RBM4,
RBM4, RIN3, SECTM1, SGCE,
SLC17A9, SP110, STIP1,
STXBP2, TBL2, TRIM10, TSSC4,
UBE2Z, VPS26A

20
P = 0.049

AIFM2, ANO2, CLYBL, CPAMD8,
DNAJB14, FLRT1, HLA-F, HOXC8,
IRF6, KIFC1, KYNU, OSBPL5,
PFKFB2, PITRM1, PPP1R13L,
PTPN14, SYT8, TTC22, VWF,
ZNF365

Hypermethylated DMRs (439) 18
P = 0.008

AFMID, ATP6V0E1, BIRC5,
C9orf142, CD37, FGD2,
INO80E, MSLN, MYO1F, OTX2,
PPP4C, RNF185, SDF2L1,
SGCE, SLC47A2, SPI1,
SYNGR2, UBE2L3

24
P = 9.8 ×

10−5

ATP1A1, ATP1A1OS, ATP1A2,
ATP1A4, BCL2L2, CRY2, DAB2IP,
FLRT1, MED24, NOTCH4, OBSCN,
OSBPL5, PPT2, PRDM16, RBP2,
SEC14L1, SH2D4B, SIPA1L1, TPM3,
UBAP2L, WDR37, WHSC1, WNK2,
ZSCAN18

Graumann et al.49 (349) 14
P = 0.039

ADORA3, BCL2L1, CCR1,
CSF1, CSK, CTSD, DDIT3,
IRF9, MSX1, NGFR, PLAUR,
SERPINA1, TGB2, UBE2A

37
P = 1.5 ×

10−11

ATP1A1, BCL2L2, CAMK4, CDH3,
CNTN1, DDR2, EGFR, ELAVL4,
ERBB4, ERG, FLT1, FLT3, GABRB1,
GRM5, HIVEP2, ICAM1, ITSN1,
KCNA2, MAPK10, MAPK9, MCAM,
NF1, NF2, NTRK2, PAK1, PDGFRB,
PKD1, PPP2R2B, PRKAR1A, PRKCB,
PTPN11, PTPRG, RAB6A, RASA1,
SMARCA2, SMARCA4, TFRC

Lindberg et al.50 (47) 13
P = 3.6 ×

10−11

ARPC1B, CASP1, DOK1,
FCER1G, FOLR2, GDPD5,
HCK, IRF5, LY86, MAX, MMP2,
NCF4, TGB2

3
P = 0.150

ASB1, DDR2, ZNF365

Numerals indicate the number of genes in the category.
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