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Abstract
Non-invasive enumeration of rare circulating cell populations in small animals is of great
importance in many areas of biomedical research. In this work we describe a macroscopic
fluorescence imaging system and automated computer vision algorithm that allows in vivo
detection, enumeration and tracking of circulating fluorescently-labeled cells from multiple large
blood vessels in the ear of a mouse. This imaging system uses a 660 nm laser and a high
sensitivity electron-multiplied charge coupled device camera (EMCCD) to acquire fluorescence
image sequences from relatively large (~5 × 5 mm2) imaging areas. The primary technical
challenge was developing an automated method for identifying and tracking rare cell events in
image sequences with substantial autofluorescence and noise content. To achieve this, we
developed a two-step image analysis algorithm that first identified cell candidates in individual
frames, and then merged cell candidates into tracks by dynamic analysis of image sequences. The
second step was critical since it allowed rejection of >97% of false positive cell counts. Overall,
our computer vision IVFC (CV-IVFC) approach allows single-cell detection sensitivity at
estimated concentrations of 20 cells per mL of peripheral blood. In addition to simple
enumeration, the technique recovers the cell’s trajectory, which in the future could be used to
automatically identify, for example, in vivo homing and docking events.
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1. Introduction
There are many areas of pre-clinical biomedical research that require high-sensitivity
detection and enumeration of rare circulating cell populations in the blood stream of small
animals, including early stage cancer metastasis, immunology and novel stem cell therapies
(1–5). Although extraction of peripheral blood (PB) samples and subsequent analysis with
conventional flow cytometry is still the gold-standard method for cell enumeration, “in vivo
flow cytometry” (IVFC) approaches are rapidly gaining acceptance since they allow
continuous, non-invasive optical detection of circulating cells in situ. For example,
fluorescence microscopy IVFC uses a laser line focused across a small arteriole in a mouse
ear or retina. As fluorescently-labeled cells pass through this excitation beam, a transient
fluorescence “spike” is detected with a photomultiplier tube (6,7). Since data can be
obtained continuously, changes in cell populations that occur over minutes or hours can be
measured. This is in contrast to more conventional techniques where PB samples can be
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drawn typically only once per day (8). In addition to fluorescence IVFC, two-photon IVFC
(9,10), photoacoustic IVFC (11,12) and photothermal IVFC (13) designs have also been
recently reported in the IVFC literature (14–17).

Despite these advances, one of the primary technical challenges associated with IVFC is the
relatively small blood sampling volume. For most reported IVFC methods this on the order
of 1 μL per minute, although Galanzha et. al. recently reported photoacoustic detection from
a mouse aorta using a focused transducer where the flow rate is on the order of 1–2 mL per
minute (18,19). Given that mice have approximately 2 mL of circulating blood, this limits
the overall sensitivity of IVFC and in most cases means that very rare circulating cell
populations (below about 103 cells per mL) are very difficult to detect. For experimental
applications where circulating cell concentrations are sufficiently low (e.g. early-stage
metastatic spread of cancer), mice must be euthanized and the entire PB analyzed, thereby
eliminating the possibility of serial study of the same animal (20). As such, new higher-
sensitivity IVFC designs that allow detection of very rare cell populations are needed.

One evident solution to the problem is simply to “zoom out” to a larger fluorescence
imaging field-of-view (for example, to a larger region of the ear) so that more blood vessels
and correspondingly larger blood volumes are optically sampled. In the context of rare-cell
detection, the use of “macroscopic” fluorescence imaging with a wide field-of-view presents
two significant technical challenges. First, this requires relatively high laser illumination
intensity and high applied detector gain which results in detection of substantial non-specific
tissue autofluorescence. Further, individual cells become small relative to the total image
(1–5 pixels in dimension) and of comparable intensity to noise on autofluorescence. As we
demonstrate, cells become difficult to distinguish from background autofluorescence and
noise in a single image. Second, at low circulating cell concentrations (as we use in the
experiments described herein) cells pass through the imaging field-of-view very
infrequently, e.g. on the order of one cell per minute or less. As such, a method for
automated detection and counting of cells to assist a human operator is highly desirable.

In this work we approached this problem by utilizing a simple a priori feature of circulating
cells, i.e. that they are in motion. Circulating cells appear in multiple temporally-related
frames of an image sequence. As we demonstrate, this simple property can be exploited to
identify cells in noisy image sequences. To our knowledge, this macroscopic computer
vision approach to rare cell fluorescence IVFC has never been studied previously. It is
important note that the idea of computer vision “cell tracking” or “cell counting” is not
novel (21–26). However, previously reported methods typically identify clearly defined
objects with strong background contrast, for example, of cells in culture on a microscope
slide. In the present case, our objective was to image circulating cells in situ with a widefield
imager so that they appear as only a small cluster of pixels with comparable intensity to the
noise on the autofluorescence background. Therefore, existing software packages for
identifying or tracking cells (e.g. Imaris, Bitplane (27–29) or Volocity, Improvision (30–32))
in our experience are generally not suitable for tracking small moving cells in widefield
fluorescence image sequences such as those presented here. This motivated us to develop a
new computer vision algorithm as described in this work.

In this paper, we describe and validate our rare-cell ‘computer vision in vivo flow
cytometry’ (CV-IVFC) method, first in flow phantom models and then in nude mice in vivo.
As we demonstrate, this method allowed us to sample relatively large blood volumes and to
detect circulating cells at very low concentrations. We typically imaged 3–4 large artery-
vein pairs simultaneously along with the surrounding capillary bed of the ear. Based on
reported blood flow rates of vasculature in the ear (6–19) we estimate that the instrument
samples about 10–12 μL of peripheral blood minute. We demonstrate that we could detect
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injected concentrations of approximately 2.5 × 103 cells / mL Vybrant-DiD-labeled multiple
myeloma (MM) cells. As we quantify in detail below, this algorithm enabled high detection
sensitivity with a small false alarm rate (when compared to human operator), yielding an
overall estimated system sensitivity of 20 circulating cells per mL. To our knowledge, CV-
IVFC represents an entirely new, high-sensitivity but easily implementable approach to rare
cell sensing and enumeration in pre-clinical small animal models.

2 Materials and Methods
2.1 Fluorescence Macroscope Design

A schematic and photograph of the video-rate fluorescence macroscope used in these
experiments are shown in figure 1. The sample, either a tissue-mimicking flow phantom or a
mouse ear (see below), was placed on an adjustable imaging platform and was
transilluminated with the output of a 660 nm solid-state diode laser (DPSS-660; Crystalaser
Inc., Reno, NV). The output beam was expanded to approximately 5 mm full-width at half
maximum using a simple plano-convex lens pair (f = 50 mm and 200 mm; Edmund Optics,
Barrington, NJ). A 660 nm “clean-up” filter (d660/20x Chroma Technology, Rockingham,
VT) was also used in front of the laser to remove a small amount of out-of-band NIR output
from the laser. The light intensity at the sample was 10 mW/cm2. At this intensity a small
amount of tissue autofluorescence photobleaching (about 0.8% per minute on average) was
observed during the in vivo experiments.

We used a high-sensitivity, 14-bit electron multiplied charge coupled device (EMCCD)
camera (iXonEM+855 Andor Technology, Belfast, Northern Ireland) fitted with a low-
magnification objective with NA = 0.055 (2X Mitutoyo Plan Apo Infinity-Corrected Long
WD Objective Edmund Optics, Barrington, NJ) and 200 mm 1X tube lens (Mitutoyo MT-1,
Edmund), so that the imaging field of view was about 5 × 5 mm2. The depth of focus of this
objective was 91 μm and we were able to resolve cells within 75 μm above or below this
region (although cells were slightly blurry) so that the effective working depth of field was
about 241 μm in tissue. This is well matched to the mouse ear, since the thickness is about
250–300 μm and most of the blood vessels are located within 100 μm of the ear surface
(33,34). As such, essentially all cells traveling in blood vessels in the field of view were
detectable. Fluorescence images were acquired with a 710 nm filter with 50 nm bandpass
filter in place (et710/50m; Chroma) while the laser was illuminating the sample. The filter
was mounted in a motorized 6-position filter wheel (FW102, Thorlabs Inc., Newton NJ).
Crossed linear polarizers (25 mm diameter, Edmund) were also placed between the laser and
the sample, and between the sample and the EMCCD to further reduce leakage of the laser
light into the imager. In principle this polarizer pair was not required but was experimentally
found to reduce laser leakage into the fluorescence channels, although this had the drawback
of reducing the detected fluorescence by 50%. White light images of the sample were
acquired by removing the fluorescence filter from the optics train (i.e. moving to an open
position of the filter wheel) so that all wavelengths were detected by the camera and by
back-illuminating the sample with an LED ring (Digi-Slave L-Ring 3200, Edmund). We
chose to use a red laser and a near-infrared fluorophore for these experiments since tissue
autofluorescence is markedly reduced compared to, for example, the blue-green wavelength
region. Other lasers in the near-infrared range (such as a Titanium:Sapphire laser or diode-
pumped solid state lasers) could similarly be used with near-infrared dyes such as Vybrant
DiL, Alexafluor750 or Cyanine-7. In principle visible lasers and fluorophores could also be
used (as is done routinely in microscopy IVFC (6,7)), but as we discuss this would result in
an increase in tissue autofluorescence and potentially greater attenuation of light through the
~250–300 μm thick ear.
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The exposure time for fluorescence images was typically 0.05 s, resulting in a frame rate of
approximately 19 Hz (allowing time for data transfer to on-board memory). We also re-
binned the 1024 × 1024 imaging array to 128 × 128 pixels in on-board camera hardware,
which also increased the frame rate on the camera. Given our optics and camera
configuration, a 10 μm diameter cell occupied an object only about 1–5 pixels in dimension
in each image (rapidly moving cells were often recorded as a streak that were up to 5 pixels
in length). Further, given the large imaging field of view relative to cell size, detection of
fluorescently-labeled circulating cells required application of gain to the EMCCD camera.
This could be configured with a personal computer running Andor software, and typically
we operated this between 10–90 out of a maximum of 300 (arbitrary units). This resulted in
substantial imaging noise (as opposed to background intensity) on the order of the detected
cell intensity which necessitated the development of the imaging algorithms described here.
Use of a higher magnification objective with a larger NA would have resulted in greater
sensitivity and required less camera gain to resolve cells, however, this would have come at
a cost of smaller imaging field of view and depth of focus, so that the overall cell detection
sensitivity of the CV-IVFC instrument would have been reduced. During data collection we
acquired 1000 frames per imaging sequence (52 s), but this could be repeated an arbitrary
number of times with only about 0.5 s lag between image sequence acquisition to allow
transfer of image sequences to the PC.

2.2 Computer vision algorithm
We developed a two-step algorithm to analyze image sequences and extract the tracks of
moving cells from noisy widefield fluorescence images as shown schematically in figure 2.
The overall strategy was as follows: in the first step we identified candidate cells in
individual images in the sequence, and in the second step we connected cell candidates in
multiple image frames into cell tracks. We first performed basic flat-field correction of the
image (for the laser beam profile), followed by pixel-by-pixel background subtraction
(Step-1A). This was done by taking the mean value mij of each image pixel pij in all N image
frames in the sequence,

(1)

In Step-1B we converted the 14-bit image sequence into a binary image sequence by
subtracting this mean value (pixel-by-pixel) and comparing the resulting value to a threshold
value τ as follows,

(2)

Therefore, in general there was no condition that a cell be a specific size or shape. Rather at
least one pixel must have exceeded the threshold for a cell to be identified as a candidate. As
we discuss, selection of the particular threshold τ for each sequence was very important
since it altered the performance of the algorithm with respect to overall sensitivity and false
alarm rate (see section 2.5 and sections 3.3 below for greater detail). We observed
substantial inter-experimental variability in overall image intensity (~50%) and therefore
determined that a fixed threshold across all experiments was not suitable. Instead, we set the
threshold as a function of percentile of all pixel intensities (ranging from 0 to 16383) in the
image sequence; as we demonstrate, threshold percentiles in the range of 99.93 to 99.99
were empirically determined to work well in mice in vivo. We further note that the raw
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image intensity data sets directly from the EMCCD were processed by the algorithm and no
prior image manipulation filters (such as edge, sharpen, contrast etc.) were employed since
these can often exacerbate existing noise or introduce additional artifacts in the image
sequence.

Following this operation, the resulting binary image sequence contained the set of
circulating cell candidates which in practice greatly outnumbered the actual number of cells.
Specifically, many post-threshold cell candidates were due to image noise (as we show, for
in vivo data this was about 97% of candidates). Therefore, in Step 2 cells were distinguished
from background noise through dynamic analysis of image sequences to identify cell
“tracks”. First, (Step 2A) cell candidates were connected into tracks in consecutive frames.
For each cell candidate, a search §k was performed on pixels pij in the next image frame
inside a radius equal to two times the dimension (e.g. diameter) of the candidate cell Φk from
the center of the candidate cell Pij:

(3)

Typically this diameter was about 1–3 pixels, but could be slightly longer for fast moving
cells where ~5 pixel long “streaks” were observed. This search was performed for all
candidates in the image sequence. When multiple cell candidates were observed inside this
radius, the closest candidate was selected to merge to the track. Because cells were relatively
dim and the intensity could intermittently drop below the threshold, gaps in a given cell’s
track (of up to ~10 frames) were often observed after Step 2A. As such, in Step 2B these
were connected together by merging individual tracks that occurred relatively close together
in space and time as follows: when the final position of one track (identified in Step 2A)
occurred within a radius of 15 pixels and within 15 image frames from the first position of
the next identified track in the image sequence, the tracks were merged. We then applied a
second condition for merging cell tracks in Step 2C that combined the start and end points of
consecutive identified tracks Sm

T(start) and Sn
T-t(end) observed at times T and T-t,

respectively,

(4)

where M was the condition for merging the tracks. The search area was determined by
analyzing the final position and velocity v of the previous track (Sm

T-t),

(5)

where τ was the inverse of the frame rate (in this case 0.052 s) and by extrapolating the final
position assuming a speed in the range of 0.5v to 2v as follows,

(6)

where t was the elapsed time since the end of the previous track. The three search regions
§m1, §m2 and §m3 centered on Pm1, Pm2 and Pm3 with a radius of 0.5vt, vt and 2vt,
respectively; in practice, this produced a cone-shaped search area. Therefore Step 2B and
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Step 2C differed in the search region for merging as follows: Step 2B used a circular search
radius whereas Step 2C used a cone oriented in the direction of cell movement. At the end of
Step 2, remaining cell candidates that did not connect to any track (i.e. were observed in
only single frames) were discarded from the analysis. As we show, this was the case for
about 97% of cell candidates that were identified in Step 1. As such Step 2 was critical in the
rejection of false positive counts. Last, for visualization, cell tracks were overlaid onto the
white light image of the sample (mouse ear vasculature). A total cell count in an image
sequence was obtained by simply counting the total number of identified cell tracks detected
in an image sequence.

2.3 Phantom Measurements
We first tested our imager and algorithm in an optical flow phantom model which was
intended to mimic a blood vessel in a mouse ear. Disk shaped phantoms (figure 3a)
approximately 2 mm thick by 20 mm in diameter were made from polyester resin (Casting
Craft, Fields Landing, CA) with Titanium Oxide (TiO2; Signa-Aldrich Inc., St. Louis, MO)
and India ink added at 50 parts per million to yield optical properties similar to biological
tissue at near-infrared wavelengths. Specifically, based on previously published
characterization of similar phantoms (35) the final optical properties at 700 nm were
estimated to be as follows: reduced scattering coefficient μ′s = 15 cm−1 and absorption
coefficient μa = 0.1 cm−1. Strands of microbore Tygon tubing (250 μm internal diameter,
TGY-010C, Small Parts, Inc, Seattle, WA) were embedded in the phantom in either an arc
or in a straight line (N = 2 each) before hardening to mimic a blood vessel. The position of
the clear tubing is indicated with an overlaid dotted line in figure 2a. These were attached to
a syringe mounted on a precision microsyringe pump (70–2209, Harvard Apparatus,
Holliston, MA), so that solutions of fluorescent micropsheres suspended in PBS could be
passed through the phantom at controlled linear flow rates between 0.5 and 10 mm/s,
therefore approximately matching the blood flow rates in large ear blood vessels reported in
the literature (6,12). We used 6 μm diameter fluorescent microspheres with absorption
maxima at 645 nm, and emission maxima near 695 nm (Peakflow Claret, P-24670,
Invitrogen, Calsbad, CA), to match commonly used Cyanine5.5 and Alexafluor-680 organic
fluorophores. Microspheres were suspended at a concentration of 3,000 spheres / mL. For
these experiments, the EMCCD gain was set to 10 (arbitrary units; out of a maximum of
300). Image sequences were acquired for a total of 5 minutes for each phantom.

2.4 In Vivo Measurements
We performed in vivo testing of our system and algorithm using six nude (nu/nu) mice
injected intravenously with Vybrant-DiD-labeled Multiple Myeloma (MM) cells. All mice
were handled in accordance with Northeastern University’s Division of Laboratory Animal
Medicine rules on animal treatment and care. MM cells were grown in culture and
suspended in RPMI with 0.1% Bovine Serum Albumin (BSA) at a concentration of 1 × 106

cells / mL. Cells were labeled with 1 μmol/L of Vybrant-DiD and incubated for 30 minutes
at 37°C and then spun down and re-suspended at a final concentration of 5 × 104 cells / mL
prior to injection. Mice were anesthetized with a combination of Ketamine (100 mg/kg) and
Xylazine (5 mg/kg). 100 μL of the cell suspension were injected intravenously via the tail
vein, so that the injected cell population was 5 × 103 cells, or approximately 2.5 × 103 cells
per mL of PB (assuming about 2 mL of mouse blood). Mice were then placed on the
translation stage and positioned so that the ear was flat on a microscope slide in the imager
field of view. A glass cover-slip was also added (with a drop of water) to keep the ear flat
during imaging. For in vivo experiments we increased the EMCCD gain to 90 (arbitrary
units; out of a maximum of 300) due to the relative dimness of the labeled MM cells
compared to the fluorescent microspheres. As above, image exposure times were set to 0.05
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s, yielding a frame rate of about 19 Hz. Images were acquired for approximately 30 minutes
for each of the six mice.

2.5 Performance Metrics
We used two standard metrics to assess the performance of our imaging system and cell
detection algorithm, specifically, sensitivity = TP / (TP + FN) and false alarm rate (FAR) =
FP / minute. Here TP is “true positive” cell count, FN are the “false negative” counts (in this
case, cells that were undetected by the algorithm) and FP are the “false positive” counts. As
noted in section 2.2, we tested a range of histogram threshold percentiles from 99.93 to
99.99, and quantified each performance metric at each level. To determine the “true” cell
counts, a human operator manually counted the circulating cells appearing in the image
sequences and compared them with those identified by the algorithm. Therefore, these
metrics do not reflect circulating cells that may have been missed if they were not
sufficiently bright to be visible on image sequences. However, the number of detected cells
was generally in good agreement given the low concentration of injected cells and peripheral
blood volume in the imager field-of-view.

Results
3.1 Optical Flow Phantom Testing

We first tested our CV-IVFC approach in tissue-mimicking optical flow phantoms (fig 3a)
with fluorescent microspheres. We tested a range of flow speeds (0.5 to 10 mm/s) as well as
straight and curved flow channel geometric configurations. An example set of fluorescence
images acquired during the experiment are shown in figs 3b–f, along with the corresponding
mean background subtracted and thresholded image sequence (after Step 1) in figs 3g–k. In
this case, a phantom with a curved flow channel and linear flow speed of 5.1 mm/s is shown.
By inspection of figs 3b–f, fluorescence contrast was excellent in the optical flow phantom
model and this allowed us to verify that the algorithm could correctly identify and track
small (~1–3 pixels diameter) fluorescent targets (indicated by red arrows and dotted circles),
even when significant directional changes were observed. The extracted microsphere track
(green curve) was overlaid on the white light images of the phantom as shown in figs. 3l–p.
It is important to note that the algorithm successfully distinguished moving fluorescent
targets from stationary bright pixels or pixel groups. For example, two stationary bright
pixels can be clearly observed in the raw fluorescence images in figures 3b–f, but these
points were rejected (primarily) during Step 1 of the CV-IVFC algorithm (fig 3g–k).
Residual stationary pixels that were not rejected in Step 1 (for example due to photon
counting noise as in figs. 3g,h) were rejected in Step 2, since they did not form trajectories
in subsequent image frames (see section 2.2). In general, microspheres were successfully
tracked at speeds up to 10 mm / s, which exceeds the expected flow speeds in blood vessels
in the mouse ear in vivo of 0.5 to 5 mm / s from literature values (6,12). Since fluorescence
contrast was extremely high in the flow phantom models, it was not necessary to adjust the
threshold value in Step 1 (as opposed to the in vivo experiments where this was necessary;
see below) so that we used a single threshold value of 99.96% of maximum. The overall
system performance over all four phantoms and flow speeds tested was sensitivity = 0.993
and the false alarm rate = 0.074 / minute.

3.2 Testing in Mice In Vivo
We next tested the CV-IVFC in nude mice injected with very low concentrations (injected
concentrations of ~2,500 cells / mL peripheral blood) of fluorescently-labeled multiple
myeloma (MM) cells. An example fluorescence image sequence acquired in vivo is shown
in figure 4a–e. By inspection, the noise and background autofluorescence (for example, from
sebaceous glands on the ear (28)) observed was significantly higher than in phantoms, and
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made discrimination of cells in individual frames (red arrows with dotted circles) more
difficult. As is evident in figs 4f–j, a much larger number of “cell candidates” (i.e. pixels
that exceed the threshold after background subtraction) were identified after Step 1, which
greatly outnumbered the true numbers of cells. However, the vast majority of these cell
candidates did not form cell tracks as defined in Step 2 and were therefore rejected by our
algorithm (please see section 3.3 below). The trajectories of the subset of cell candidates that
did form tracks (in Step 2) were stored and counted by the CV-IVFC algorithm. Example
tracks of two circulating cells are shown in fig 4k–o, overlaid on white light images of the
mouse ear vasculature. In this case (and in about 95% of cells observed), these cell tracks
appeared to correlate to the large blood vessels indicated by dark regions in the white light
image. This specific example also demonstrates the ability of the algorithm to distinguish
between multiple circulating cell tracks in the same image sequence (indicated by green and
yellow tracks). Likewise, figure 5 shows an example case where a single cell changed speed
and direction rapidly as it moved from one blood vessel to another (in figs 5c,h,m). Other
example cell detection events are shown in the movie files included online
(“cell_detection1.avi” to “cell_detection4.avi”). It is possible that a given volume of
peripheral blood may pass twice through the imager field of view so that this could
potentially result in over-counting of cells. In the future, this effect could be corrected by
considering the direction of movement (distal or proximal) and adjusting the cell count
accordingly.

Cells that were moving rapidly were often recorded as “streaks” rather than single points
(for example, as observed in “cell_dection3.mov”, about 1.5 s into the video). In general this
had the effect of reducing the recorded intensity, i.e. since the intensity was divided over the
pixels in the streak. However, as long as the intensity exceeded the threshold (Step 1B) and
the object appeared in multiple frames of an image sequence (Step 2B and 2C) it was
recorded as a cell track. Moreover, the ear was easily immobilized (by securing the mouse
and using a drop of water on the ear) so that image sequences were generally free of
breathing artifacts. It is also worth re-iterating that the injected cell concentrations used here
were extremely low and were generally below the operating range of other reported optical
IVFC techniques. Therefore, occurrences of circulating cells passing through the imager
field of view were very rare compared to the total length of video sequences (specifically
about 0.5 per minute on average) thereby underscoring the importance of the automated
detection algorithm.

While it is difficult to exactly quantify the number of cells in circulation during these
experiments (as opposed to the injected concentration), we estimate this concentration as
follows: we injected on average 5 × 103 labeled MM cells suspended in 100 μL of media,
which were diluted in the ~2 mL blood volume for a total injected concentration of
approximately 2.5 × 103 cells per mL of peripheral blood. From previous analysis of
extracted PB samples, it is estimated that about approximately 10–20% of injected cells
were retained in circulation 5 minutes after injection, with the balance either trapped at the
site of the tail vein injection, or trapped rapidly in the lungs and in the spleen after injection
of the initial bolus. Moreover, MM cells are known to home to the bone marrow
continuously during circulation, so that we estimate that overall there was 250–500 cells /
mL in circulation during these experiments. At this concentration, we observed 0.5 cells per
minute over all experiments performed. Assuming that the lower limit of sensitivity for our
system would occur when only 1 cell observed in a 60 minute period, this is about 17 cells /
mL. Conservatively then, we estimate that the practical lower limit of detection sensitivity of
our approach is about 20 cells / mL. To better quantify the true circulating cell population in
the future, we could extract peripheral blood samples and analyze them using conventional
flow cytometry. However, the low concentrations of circulating cells used here would
necessitate euthanizing the mouse and analyzing peripheral blood volumes on the order of 1
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mL. Moreover, measurement of cell populations at multiple time points in the 30 minute
period following injection would be required because MM cells are known to clear rapidly
from circulation (6,7).

3.3 Performance Metrics
In figs 4 and 5, the threshold value τ used in Step 1 (eqn 2) was arbitrarily selected to be the
99.96th percentile of all measured pixels in the image sequence. However, the overall
performance of the algorithm could be controlled by adjusting this threshold. The concept is
shown in figure 6a, where the distribution of background (autofluorescence) noise is shown
for a typical mouse (blue curve), along with the distribution of fluorescence intensities of
circulating cells (red curve). Here, all pixel values for all image frames of full 30 minute
acquisition for a single mouse are represented. Data is presented following mean
background subtraction (i.e. Step 1A), so that that mean value for the background is zero but
the standard deviation was 980 counts. Likewise the mean and standard deviation of the cell
intensities were 7304 counts and 1955 counts, respectively. The dotted vertical line indicates
the value of the 99.96th percentile (i.e. the threshold) which in this case was 4200 counts.
Although only a small overlap between the blue and red curves is evident by inspection, it
should be emphasized that the number of points in the blue distribution outnumbers the
number of points in the red distribution by a factor of 104; as such, this small overlap results
in many potential false positive cell candidates that are removed in Step 2 of the algorithm.
We therefore quantified the performance of our CV-IVFC method over all 6 in vivo data sets
according to sensitivity and FAR as a function of the selected threshold. As shown in fig. 6b,
use of a lower threshold (i.e. 99.93rd percentile) resulted in a sensitivity of better than 0.9,
but resulted in a relatively high FAR of 1.5 per minute (fig. 6c). Increasing this threshold
(e.g. to 99.99th percentile) reduced to false alarm rate to only 0.04 per minute on average,
but likewise this resulted in a reduction of sensitivity to 0.65. Therefore, it is possible for the
end user to adjust this threshold to trade-off sensitivity and FAR depending on the specific
cell-counting application. This is illustrated explicitly in the operating curve shown in fig 6d.
As we have noted (and by inspection of the image sequences) the use of simple background
subtraction and thresholding (in Step 1) was not sufficient to identify circulating cells in the
image sequences. This is shown in fig. 6e, where the FAR realized after Step 1 (threshold
step) and Step 2 (merging step) as described in detail in fig. 2 and section 2.2 above shown.
As indicated, the dynamic merging analysis performed in Step 2 reduced that FAR by at
least 97% for all threshold values used. As such, the second step was critical for the CV-
IVFC approach, as noted primarily due to substantial tissue autofluorescence and EMCCD
imager noise. Moreover, we note that less brightly labeled cells (e.g. with a fluorophore with
smaller extinction coefficient or quantum yield) would result in a shift of the dotted curve to
the left, so that more overlap between the distributions and a greater potential increase in the
false alarm rate would be observed. Similarly, an increase in autofluorescence noise (e.g. if a
visible fluorescent dye were used) would result in increased overlap. In this case, the
threshold in Step 1b could be increased, or the radius of merging (Steps 2b,c) decreased to
reduce the FAR, but this would most likely come at a reduction in sensitivity. Likewise, a
microscope objective with greater magnification could be used to reduce the
autofluorescence noise, but this would come at a cost of a smaller imaging area and less
overall sensitivity.

Finally, we note that in addition to detection and counting, our computer vision IVFC
approach allows us to automatically extract cell behavior information. For example, as
shown in the histogram in figure 7, we extracted the speed of circulating cells from the
detected cell tracks. These data were generated from a total of 85 tracked cells, and the mean
speed from each cell is displayed (i.e. since cells frequently changed speed during the track).
A wide range of speeds were observed, and the mean speed was about 1.2 mm / s over the
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experiments performed which is in good agreement with literature values. We also observed
events such as rapid changes in flow speed (supplemental video “cell_detection3.avi”); in
this case, the cell rapidly changed speeds from 7.4 mm / s to 1.5 mm / s, presumably as it
entered a smaller region of the blood vessel. Generally the range of cells speeds observed
were consistent with previously reported literature values in the mouse ear. For example
Novak et. al. (6) reported flow speeds of 1–3 mm / s, and Zharov et. al. (12) reported flow
speeds of 0.5–4 mm / s. It is possible that faster moving cells were recorded less frequently
than slower moving cells due to the streak effect described above. However, observed tracks
consistently coincided with the location of larger blood vessels with larger blood flow rates
so that we do not believe this was a major effect. MM cells were also observed to stop at a
site in the tissue (e.g. supplemental video “cell_detection4.avi”), which we interpret to have
been a possible docking event at the blood vessel wall. In the future, we could modify our
algorithm to automatically identify and characterize homing and extravasation events for
example, for immune cells in response to inflammatory injury (37). As such, this approach
can yield information that cannot be obtained with existing IVFC techniques that simply
count cell events.

Discussion and Conclusions
In summary, we have developed a new computer vision IVFC method for detection and
enumeration of very rare circulating cells. The CV-IVFC algorithm utilized a fairly
straightforward “detect-and-connect” methodology that nonetheless resulted in a powerful
IVFC instrument. The main advantage of the CV-IVFC approach is the high detection
sensitivity, owing to the relatively large imaging area (5 × 5 mm2) and correspondingly
large blood sampling volume. In the experiments shown here, 3–4 large artery-vein pairs in
the ear and the surrounding capillary bed were typically simultaneously sampled. To our
knowledge, this has never been implemented previously. In future work, it could also allow
us to automatically characterize cell behavior in vivo, for example, in studying the adhesion,
rolling and extravasation of immune cells in response to insult. Moreover, although we have
chosen to focus on rare circulating cells in the present work in principle the algorithm would
also work with higher circulating cell concentrations. As shown in figure 4, multiple cells
could be tracked simultaneously in an image sequence, so that operation with several orders
of magnitude greater cell concentrations is feasible.

While in principle the automated computer vision algorithm is “optional” (since a human
operator could manually count cells in a fluorescence video sequence) in the case of the rare
circulating cell populations shown here the frequency of cell detection events was 0.5 per
minute or less on average, thereby making this extremely tedious in practice. Another
advantage of our computer vision IVFC approach is that false positives identified by the
algorithm can easily be rejected by a human operator, simply by reviewing the video
sequence and checking the identified cells (again, this is not possible with many existing
IVFC systems). The use of the dynamic analysis (Step 2) rejected > 97% of false positives,
making this a much less time consuming activity.

Although we have chosen to use a cell membrane-labeling fluorophores (Vybrant-DiD) for
these proof of concept experiments, in principle the CV-IVFC system could be used for a
wide range of biological models using, for example, constitutively expressed red fluorescent
proteins (RFPs), although to date we have not explicitly tested this. RFPs would most likely
yield less-brightly labeled cells than the Vybrant-DiD dye used here. Comparison of the
extinction coefficients quoted in the product literature, for example, for Turbo-FP650
(Evrogen Inc.) and Vybrant DiD (Life Technologies Inc.) suggests that RFP-MM labeled
cells would be on the order of 3 times less brightly-labeled than the cells used here (although
a literature search failed to reveal the relative quantum yields and expected local fluorophore
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concentrations of labeled cells which also contribute to brightness). The fluorescence
distributions presented in fig. 6a imply that cells 3 times less bright would be detectable, but
with a greater false alarm rate (or decreased sensitivity). Again, this could be accommodated
by adjustment of the merging algorithm in Step 2 or use of a higher powered objective with
smaller field of view but better contrast. Likewise, receptor targeted near-infrared
fluorescent nano-particles (29,30) in principle could be used with the instrument. Moreover,
we have chosen to use a near-infrared dye here but in principle the CV-IVFC approach
could be used for virtually any visible or near-infrared fluorophore, simply by changing the
laser and filter combinations of the instrument. Again, we have not yet explicitly tested this
and we anticipate that the associated increase in background autofluorescence noise may
result in increased false alarm rates, which would also necessitate optimization of the
instrument and cell tracking algorithm. Optimization of the collection optics, for example,
through alternative selection of filters or removal of the second linear polarizer may also
improve collection of fluorescence light and further improve sensitivity of the instrument in
future versions.

Finally, we note that the false alarm rate could be reduced simply by restricting the area
under consideration to regions corresponding to large artery-vein pairs (i.e. the dark regions)
on white light images. We chose not to do this here since we observed a small fraction of
cells (about 5%) moving between these larger vessels, presumably in the capillary bed in the
ear. As such this improvement in FAR would have come at a penalty of about 5% in
sensitivity, which was deemed to be more important for the CV-IVFC approach. Moreover,
MM cells were intravenously injected immediately prior to imaging in the case and therefore
were generally circulating in larger blood vessels. In the case of, for example, a metastatic
cancer model this fraction could be significantly higher and have even greater effect on the
overall instrument sensitivity.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(a) Schematic and (b) photograph of the fluorescence macroscope used to acquire image
sequences for this work (see text for details). Abbreviations: M – mirror, Lin Pol - linear
polarizer, Obj – 2X objective. (c) Photograph of a mouse ear positioned on the imaging
stage for in vivo experiments. As shown, a large region of the ear is illuminated and imaged.
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Figure 2.
Flow chart of the two-step automated computer vision analysis of fluorescence image
sequences as well as example images obtained after each step. The algorithm identified cell
candidates (Step 1) from image sequences, and then connected them dynamically into cell
tracks (Step 2). The position of the cell is indicated with a red arrow and dotted circle. See
text for details.
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Figure 3.
(a) Photograph of an ear-mimicking phantom with curved length of embedded Tygon
tubing. The position of the clear tube is indicated with the dotted black line. (b–f) Raw
fluorescence image sequence (separated by 0.25 s) showing a fluorescent microsphere (red
arrows and dotted circles) flowing in the phantom. The stationary white points were
autofluorescent inclusions in the flow tube, simulating stationary tissue autofluorescence
observed in vivo. (g–k) the same image sequence is shown after application of Step 1 of the
algorithm. (l–p) The CV-IVFC algorithm successfully connected the sphere path in a
trajectory over the arc. This trajectory was over-laid on the white light image of the phantom
(green line).
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Figure 4.
(a–e) An example fluorescence image sequence obtained from the ear of a mouse, where
each image is separated by 0.4 s. Two fluorescently-labeled MM cells (red arrows and
dotted circles) passed through the field of view, with the second cell appearing in (c) and the
first disappearing in (e). By inspection, these were difficult to discriminate from
autofluorescence in a single image. (f–j) The corresponding image sequence is shown after
the background subtraction and thresholding operation performed in Step 1. The relatively
large number of “false alarm” cell candidates in the sequence are evident, but these were
rejected by dynamic analysis of the image sequence in Step 2 (see text section 2.2. for
details). (k-0) The extracted tracks of the two cell candidates are shown (here indicated by
green and yellow curves), overlaid on the white light image of the mouse ear vasculature.
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Figure 5.
(a–e) Example fluorescence image sequence of a single MM cell (red arrows and dotted
circles) that was observed to rapidly change direction in two blood vessels in the mouse ear.
Images shown were separated by 0.4 s. (f–j) Corresponding images sequence after
thresholding operation performed in Step 1, and (k-0) the full track of the MM cell that was
correctly recovered and over-laid on the white light image of the mouse ear.
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Figure 6.
Performance metrics of the computer vision algorithm as a function of the threshold level
(as a function of maximum pixel intensity – see text for details) over all 6 mice studied. (a)
Example distributions of background signal (blue curve) and cell fluorescence signal (red
curve) following mean background subtraction. Data shown is for all pixels in a 30 minute
image sequence from a single mouse. The dotted vertical line indicates a threshold of 99.96
percentile, which in this case was 4200 counts. b) Sensitivity of the CV-IVFC method in
vivo as a function of threshold level. (c) The corresponding false alarm rate (FAR) as a
function of threshold, and (d) the sensitivity and false alarm rate operating curve. (e) The
overall average false alarm rate (FAR) as a function of threshold, obtained over the six mice
studied after Step 1 and Step 2 of the detection algorithm. As shown, the dynamic analysis
in Step 2 resulted in rejection of >97% of false alarms over all thresholds tested.
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Figure 7.
Incidence of cell speed range observed from all tracked cells in vivo, normalized to the total
number of cell observations. The average cell speed was about 1.1 mm/s.
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