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ABSTRACT
A major challenge faced by screening centers developing image-based

assays is the wide range of assays needed compared to the limited

resources that are available to effectively analyze and manage them. To

overcome this limitation, we have developed the web-based myIma-

geAnalysis (mIA) application, integrated with an open database con-

nectivity compliant database and powered by Pipeline Pilot (PLP) that

incorporates dataset tracking, scheduling and archiving, image analysis,

and data reporting. For system administrators, mIA provides automated

methods for managing and archiving data. For the biologist, this ap-

plication allows those without any programming or image analysis

experience to quickly develop, validate, and share results of complex

image-based assays. Further, the structure of the application within

PLP allows those with experience in PLP programming to easily add

additional analysis tools as required. The tools within mIA allow users to

assess basic (cell count, protein per cell, protein subcellular localization)

and more advanced (engineered cell lines analysis, cell toxicity) bio-

logical image-based assays that employ advanced statistics and provi-

des key assay performance metrics.

INTRODUCTION

H
igh-content analysis (HCA), the automated collection and

analysis of imaging data, is poised to make a dramatic

impact on both academic and commercial scientific re-

search.1 The direct examination of cells, through the use of

microscopes or other technologies, is a powerful method of under-

standing cellular function.2,3 When combined with appropriate stains

and antibody labels, a single image offers a wealth of information

about the state of biological mechanisms in the cell. However, a

significant limitation in the wide spread application of image-based

methods has been the time and effort required to capture, analyze,

and manage the large image data sets acquired during screening.4

Recently, the development of advanced microscopes that have the

ability to capture many thousands of auto-focused images per day

has removed one of the major limitations to the wide adoption of

image-based screening. Using multiwell plates in combination with

compounds, RNAi, or expression libraries generates large image data

sets that capture information from a vast biological landscape,

comparable in scale to the first genome projects.5,6 However, in

contrast to the concerted genomic efforts, data from image-based

screens often comprise a number of discrete projects performed

by researchers acting independently to address specific questions.

Therefore, the resulting image data and its associated experimental

metadata are often stored in a distinct, poorly linked fashion.5 These

disparate collections of data can severely limit collaborative efforts,

the ability to retrospectively mine existing image data sets, and ul-

timately limit the amount of information learned from each experi-

ment. These limitations have been a driving force behind the

development of the Open Microscopy Environment (OME) Remote

Objects (referenced as OMERO) software platform, a large collabo-

rative effort involving an international collection of academic and

commercial laboratories started nearly 10 years ago, which continues

to mature.5

In addition to the data management and storage problem, large

HCA image data sets also pose an analysis conundrum as well. Al-

though some large-scale image-based screens have been analyzed by

eye, this process is time-consuming, requires expert biologist(s), and

is prone to bias due to lack of quantitation.7,8 As discussed by Car-

penter et al., automated image analysis results in a greater number of

features being quantified on a cell-by-cell rather than per image

basis. This can result in a higher degree of sensitivity that is impos-

sible with the human eye and is far less labor intensive.4 Although a

growing number of commercial software solutions have been de-

veloped for automated image analysis (Cellomics, GE Healthcare, TTP

LabTech, Molecular Devices, Nikon, Vala Sciences, etc.), these tend to

be expensive and focused on a limited number of applications.9

Furthermore, these solutions are often proprietary, which can stymie

the development of new assays requiring addition of new tools and/

or modified algorithms.

A number of open source image analysis tools are available. The

ImageJ platform has been successfully used by a number of labora-

tories; however, it is optimized for the deep analysis of single images

and does not handle large multi-image data sets without additional

macros that require some degree of programming knowledge.9 Al-

ternatively, the CellProfiler project, available from and supported by

the Broad Institute, was developed to offer the ability to develop

custom analysis algorithms that can be applied to large datasets

without extensive programming or image analysis experience.4,10,11
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This platform offers an expanding library of modular and powerful

image and data analysis tools (via KNIME implementation) and

served as an excellent model for our work using the Pipeline Pilot

(PLP) software platform. However, CellProfiler relies upon external

data management support and often requires the user to provide

significant computer processing power, preferably with a computer

cluster, to efficiently analyze large complex datasets.

The Accelrys PLP platform is an enterprise level software solution

for the automation of data analysis that is widely distributed in both

commercial and academic environments. This platform utilizes a

visual programming experience allowing users to build tools that

integrate and catalog multiple data types and perform complex

analysis, data mining, informatics, and reporting. This can be per-

formed across numerical, textual, structural and, with the tools

available in the Imaging Collection, image-based data types. The

Imaging Collection tool box contains a library of configurable in-

tegrated performance primitives and ITK (www.itk.org) code-based

components that cover a large spectrum of image manipulation and

measurement functions. Importantly, the library of components is

validated and designed in a scientifically aware manner to provide a

complete set of tools needed for the robust analysis of imaging data.

In this study, we describe the myImageAnalysis (mIA) project, our

effort to develop a web-based application that provides the tools for

high-throughput/high-content image data management and analysis

to the scientific community with access to the PLP platform. This ap-

plication takes advantage of PLP capabilities to integrate multiple data

types and software tools to facilitate handling the diverse range image

data and experimental metadata produced by high-content screening.

Importantly, the mIA application allows users to design new analysis

algorithms to adapt new assays without the requirement of an on-site

image analysis/programming expert. In this study, we provide an

overview of the mIA application, and demonstrate its features on

several image data sets to seed the collaborative interest in the scientific

community leading toward additional application development.

MATERIALS AND METHODS
Sample Preparation

Samples for assay performance studies were prepared as previ-

ously described.12–14 Briefly, for the transcription factor (TF) assay,

HeLa cells stably expressing the green fluorescent protein (GFP)-

tagged androgen receptor (AR) were plated into 384-well plates in the

DMEM/F12 medium supplemented with 5% charcoal stripped fetal

bovine serum (S-FBS). After 48 h, either dihydrotestosterone (DHT) or

DMSO was added to wells to a final concentration (10 nM, 0.5%), and

plates were incubated for an additional 24 h. For the nuclear spot (NS)

assay, HeLa cells containing integrated prolactin promoter elements

and stably expressing the GFP-tagged estrogen receptor (ER) were

plated into 384-well plates in the phenol red-free DMEM supple-

mented with 5% charcoal stripped and dialyzed FBS. After 48 h, es-

tradiol, tamoxifen, or DMSO were added to selected wells to final

concentrations (10 nM, 10 nM, 0.5%), and plates were incubated for

an additional 24 h. For the cell toxicity (CT) assay, HeLa cells were

seeded into 384-well plates in the DMEM supplemented with 5%

regular FBS. After 16 h, m-chlorophenyl hydrazone (CCCP) or DMSO

was added to selected wells to a final concentration (50 mM, 0.5%),

and plates were incubated for an additional 7 h. For all assays, cells

were plated into wells at a target density of 2,000 cells per well using

a Thermo Scientific Multi-drop cell dispenser.

After incubation was complete, using a Biomek FX robot, plates

were washed with phosphate-buffered saline (PBS) and fixed for

20 min at RT in 4% formaldehyde prepared in the CSK buffer (80 mM

potassium PIPES, pH 6.8, 5 mM EGTA, 2 mM MgCl2). After fixation,

cells were briefly permeabilized (5 min) with 0.5% Triton-X and

prepared for imaging by washing in PBS, aspirating the washed so-

lution, and adding a 1 ng/mL 40,6-diamidino-2-phenylindole (DAPI)

solution. Cells were imaged in PBS.

Automated Imaging
All cells were imaged using the IN Cell 6000 Analyzer (GE

Healthcare). For the TF assay, a two color (DAPI, GFP) 2D image set

was captured using a 40·/0.95NA objective with a total of nine fields

captured per well, resulting in >500 cells imaged per well. For the NS

assay, a two color (DAPI, GFP) 3D image set was captured using a

40·/0.95NA objective with a total of nine fields captured per well,

resulting in >500 cells imaged per well. For each field, a total of 11

vertical z-planes were captured at 1mm increments. For the CT assay,

a single color (DAPI) 2D image set was captured using a 20·/0.4NA

objective with a total of two fields captured per well, resulting in

>800 cells imaged per well. For all assays, channel laser intensity and

channel exposure times were set to achieve a minimum signal to a

background ratio of 5:1. All images collected were 16-bit depth tiff

images.

Software
Enterprise Platform (version 8.5) that includes PLP was obtained

from Accelrys (San Diego, CA).*

RESULTS
Overview of the Web Application

The mIA web application is a server-based, web accessible tool for

high-content data management and image analysis built within the

Apache web service provided by the Accelrys PLP platform (Fig. 1).

To enhance functionality, the mIA server runs the freely available

GNU R project software for statistical analysis and Bio-formats

standalone Java library for converting nonstandard image formats

into the Tiff format used within the mIA analysis protocols.15,16 These

solutions are integrated within the PLP software directly (Fig. 1B).

Although based on a Microsoft Windows server, the mIA application

utilizes a number of Linux-like commands through the command line

options available within PLP and the Cygwin (www.cygwin.org)

collection of tools. Due to its internet browser-based interface, the

mIA application is platform independent (Fig. 1A), can be accessed

remotely, and requires minimal resources from the user to run.

*For access to these resources, the reader may contact the Director of Imaging at

Accelrys, Tim Moran (tim.moran@accelrys.com).
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Finally, when the mIA application is initialized, connections with the

computers/instruments that will generate the raw image sets are es-

tablished (Fig. 1C), facilitating a direct upload of the imaging data

and log files from the instrument to the system, which minimizes the

time that data remain associated with the acquiring microscope.

The mIA application is able to store, manage, and analyze hun-

dreds of thousands of images that are typically generated in a high-

throughput/high-content experiment. Importantly, all data uploaded

to mIA is fully annotated down to the individual well level and in-

clude instrument collection parameters extracted from log files,

eliminating the dataset confusion often observed in the multiperson

laboratory and/or a screening center setting. Furthermore, since all

members of a research group have access to all datasets belonging to

that group, mIA facilitates sharing of datasets and results among

collaborators.

The mIA application provides a number of automatic and manual

tools for curating the thousands of images stored on the central

server. Upon initial image set upload, mIA automatically archives the

image set and stores backup copies on multiple distinct network-

attached storage (NAS) locations (Fig. 1B), greatly increasing the

protection against image data loss. Image data that are actively being

analyzed are stored on directly attached storage (DAS), allowing for

high data transfer rates required during the image processing stage

(Fig. 1B). Administrative tools monitor available storage space on the

DAS file server and upon reaching critical levels, automatically re-

move image sets based upon (1) upload date, (2) last time accessed,

and (3) completed image analysis. After removal from active storage

space, the mIA interface allows simple one-click reactivation of ar-

chived image sets for reanalysis, as needed. These tools work to keep

the active storage space dynamic and minimize the risk of lack of

usable storage space commonly encountered in active high-content

screening centers.

Data Structure Within mIA
All data within the mIA application are organized in a project-

centered manner (Fig. 2). All users who belong to the same research

group (determined during the initial user login process) as the creator

of the project are able to view all the content within the shared

project. Each project contains six primary types of data: (1) general

information describing project scope, (2) event log data recording

each event that occurs with the project, (3) image set data, (4) nu-

merical image analysis results, (5) grouped analysis data sets, and (6)

reports generated from processed images and result data.

Two primary types of images are used within the mIA application.

A raw image set typically consists of all images from a single mul-

tiwell plate or from a set of imaged coverslips during assay devel-

opment or simply in very small experiments. The original plate

location of each image is retained allowing a quick association with

well level annotations. This annotation includes the cell line imaged,

treatment conditions, and how the cells were labeled for imaging.

Processed images are those generated by image analysis and consist

of the illumination-corrected images and mask images correspond-

ing to each identified subcellular region. All image data are stored

within the file system of the DAS file server with file locations in-

dexed for rapid access. Because the exact method used to create the

processed images is recorded and therefore can be replicated, pro-

cessed images are not archived and are removed from active storage

as space needs dictate.

The numerical data associated with a project are handled in a

singular manner. The numerical metrics extracted from each image

set reside in an independent database from that of the main mIA

application. Each analysis generates a unique metric table ranging

from 50 to >500 parameters recorded per cell. After each analysis,

mIA automatically generates additional tables describing the mean,

median, standard deviation, mode, and number of samples from each

well for each measure collected. Furthermore, if the analysis filters

the total cell population to a subset of interest, mIA also records the

members of that subpopulation and generates the summary statistics

for those cell populations. Since high-throughput/high-content

screens often span multiple multiwell plates, mIA includes func-

tionality to group analysis results from multiple plates together into a

single grouped analysis data set. This allows all data from a single

screen to be manipulated at once, ensuring consistent normalization

and interpretation across all plates in a screen.

Fig. 1. Architecture of the mIA application. (A) Users of the mIA
application use any java enabled web browser (reader) to interact
with the web server running the mIA application protocols devel-
oped within Accelrys Pipeline Pilot (PLP). (B) Server integration of
mIA. Through Accelrys PLP service, the server runs PLP protocols
that manage integration of publically available software tools such
as GNU R Stats and Bio-Formats that provide statistical function-
ality and support for a large number of image formats, respec-
tively. All key metadata, file indexing, and results are stored on a
mysql relational database server/service, while images are stored
and archived using DAS and NAS storage server solutions. (C)
Through the standard PLP file browser and network drive mapping,
users can upload data produced and stored locally by a variety of
instrument types from within the mIA interface. DAS, directly at-
tached storage; mIA, myImageAnalysis; NAS, network-attached
storage.
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The final data type associated with a project is a web-based report

specific to the type of assay or analysis being performed. This report

allows users to view overall responses, check assay quality metrics,

and view processed images associated with the observed response.

Furthermore, users have the ability to generate custom reports ex-

amining nonstandard metrics and save them to the project to share

with collaborators.

Image Processing/Analysis
One of the primary goals of the mIA project was to provide the

biologist a set of powerful, yet simple to use tools to analyze the

complex image sets that are now readily obtainable with the latest

generation of image cytometers. This is accomplished by using the

array of image analysis/manipulation tools available in the Imaging

Collection of PLP. These tools are organized into components within

the mIA interface that are combined to accomplish the steps typically

involved in image analysis: (1) loading images, (2) image correction,

(3) primary object detection, (4) secondary object detection, (5)

measurement and quantification, and (6) result classification. Im-

portantly, end users do not need to understand PLP programming;

however, for those users who are experienced with PLP, they can

easily add new functionality due to the modular nature of the com-

ponents used within the mIA interface, including the incorporation of

CellProfiler/MatLab or ImageJ image analysis tools. To increase

flexibility, custom reporting can incorporate images and other data

generated on platforms external to the mIA application.

Developing an image analysis algorithm within mIA involves the

selection of a number of point-and-click options from the interface

(Fig. 3). Initially, users must select the project and image set to de-

velop the method (Fig. 3A). Within this image set, users can choose to

use images from selected wells or images from a random set of wells

across the image set. This is useful during the initial algorithm de-

velopment where positive and negative control wells are typically

selected. In contrast, when assessing the performance of the final

algorithm, one typically uses a larger set of random wells. This ap-

proach allows the user to be confident in the algorithm performance

across the entire image set and mitigates concern for result skewing

due to unknown algorithm bias.

Actual image analysis algorithm development occurs within the

algorithm editor, which contains an extension of the pipeline strat-

egy used within PLP (Fig. 3B). Users locate each component by the

desired task they wish to accomplish and place them into the algo-

rithm in the order they wish to perform the tasks. This process is

facilitated by a number of predefined algorithms designed to ac-

complish many of the more common high-content assays performed.

Currently, there are over 40 modules and over 10 predefined algo-

rithms (Table 1) for users to select from. Three of these algorithms are

described in further detail in the following sections.

Whereas some components are fully automatic, many have set-

tings that require interactive input. Because the settings in each

component are autosaved and sharable, the mIA application is able to

provide users with most commonly used values for each setting from

all users, users within the research group, and the individual user.

This not only expedites algorithm development, but limits the al-

gorithm drift that can occur between individual users within a re-

search group. Once individual settings for components are adjusted,

the effect of these changes can be previewed using images from the

selected wells.

Fig. 2. Data structure within the relational database used by the
mIA application.
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Once development is complete, the algorithm is saved. Access to

the saved algorithm is restricted to the research group, cannot be

changed by any user, and can only be used within the algorithm

editor as template for future algorithms. Complete image sets are

analyzed by associating an image set and an analysis algorithm to

create an analysis job within mIA that is then submitted to the server.

By utilizing the parallel processing options available within PLP,

each image analysis job is divided among the available resources to

minimize the processing time required. This allows mIA to function

on a wide range of systems ranging from those containing a single

processor, to multiprocessor servers,

and finally to large computational

clusters containing hundreds of

processors.

The combination of a simple

graphical interface and predefined

analysis pipelines results in a typical

initial learning curve of less than 2 h.

Once an algorithm is developed, it

takes less than 1 min to generate new

analysis jobs on newly collected

image sets. This is in contrast to

programming within PLP itself,

which has an initial learning curve

on the order of multiple weeks if a

previous programming experience is

present. To further explain the anal-

ysis features of mIA, we use a TF

assay in the following section.

mIA: TF Assay
TFs, proteins that bind DNA (di-

rectly or indirectly) and regulate

gene expression, play a key role in a

number of biological responses and

in human disease.17 Therefore, it is of

little surprise that significant effort

has gone into the understanding of

the mechanisms that regulate these

proteins. It has become clear that

controlling the expression level,

subcellular distribution, and even the

subnuclear distribution of TFs are all

key regulatory mechanisms to control

gene expression.17,18 Traditional bio-

chemical methods for understanding

each of these mechanisms are often

time-consuming, fail to capture the

cellular heterogeneity in a popula-

tion, and are not easily amendable to

high-throughput screening.

To overcome these limitations, a

number of investigators have devel-

oped image-based methods to quantify the levels and subcellular

distribution of a TF. These algorithms have been used to successfully

analyze a vast number of proteins, such as NF-kB, STAT3 alpha and

beta, and FOXO1.19–21 We have used these methods to extensively

characterize a number of nuclear receptors and their coactivators in

both traditional cultured cancer cell lines and patient-derived pri-

mary cell lines.12,22–24 The tools that we have used to simultaneously

study the multiple aspects regulating a transcriptional factor have

been incorporated into the predefined ‘‘Transcription Factor’’ algo-

rithm within mIA’s editor (Fig. 4A).

Fig. 3. mIA image analysis pipeline editor. (A) Top half of interface that allows users to select
dataset and wells to use during method development. (B) Bottom half of the interface with partial
algorithm displayed along with component option panel.
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Image loader. The image analysis tools integrated into mIA are op-

timized for two-dimensional (2D) images, the most common image

format used in high-content screening. Loading and using this image

format is straightforward in the mIA interface. mIA also supports the

uploading of more complex, three-dimensional (3D) image sets. To

utilize these images, the mIA image loader component provides

multiple methods for automatically converting 3D images into 2D,

including projection methods (mean, maximum), middle plane se-

lection, and best focal plane selection. Furthermore, for more com-

plex analysis such as the NSs detection described in the next section,

mIA supports loading and manipulating true 3D image sets within the

analysis pipeline.

Image correction. Quantification of a biological response relies upon

an accurate measurement of the signal present in the image. A key

factor in limiting the accuracy of these measurements is uneven

illumination and/or background across a single field that can vary

by as much as 1.5-fold (unpublished observations). This issue has

become more prominent with the implementation of the larger

scientific-grade CMOS cameras recently being incorporated into

numerous imaging systems. These cameras allow the latest genera-

tion of image cytometers to capture much larger areas per field (four-

to fivefold); however, when retrofitted onto existing platforms, these

cameras can result in significant illumination issues due to limita-

tions of the light path originally designed for a smaller detector.

Furthermore, illumination issues can remain even after correction by

commercial software and/or algorithms provided by the image cyto-

meters themselves (Fig. 4B). The mIA application addresses this issue

by providing multiple options for correcting images, ranging from

image pixel intensity minimum or mode-based background subtrac-

tion to a pixel-by-pixel flat field correction that ensures equal po-

tential minimum and maximum intensity of each pixel across an

image (Fig. 4B, bottom plot). These image correction components are

included in all predefined pipelines as use of raw images will introduce

noise and degrade the quality of measurements collected. In image

sets, where appropriate correction across the entire image is not pos-

sible, mIA provides components to allow image cropping as necessary.

Primary object identification. The greatest obstacle to an accurate

analysis of image data is identifying primary objects, the initial objects

identified in an image. Typically, these objects are DNA-labeled nuclei;

however, they can be cells, speckles, whole yeast, whole bacteria, cell

clusters, and so on. The ability of an algorithm to perform this task has

important implications on the degree of accuracy in the resulting

measurements. The imaging collection within PLP has several pub-

lished and validated methods for object detection. These threshold

methods include, but are not limited to, OTSU, k-means, mean/median-

based adaptive, and Canny edge detection. Furthermore, PLP is able to

integrate tools developed within MatLab, CellProfiler, and ImageJ to

further expand the tools available to users. Whereas simple threshold-

based approaches function well on simple, well-dispersed samples,

they fail to accurately separate dense or clustered samples. To over-

come this limitation, several threshold techniques can be combined to

produce robust methods that are able to segment crowded, complex

samples. For example, mIA contains additional two identification al-

gorithms based upon the basic components within PLP. Both algo-

rithms use a combination of methods to identify either dispersed or

clustered cells. Initially, a global OTSU threshold approach is used to

Table 1. Predefined Analysis Pipelines

Type

Regions

identified Report content

Basic Cell Reports cell count and signal intensity for

each image type in dataset per well.
Cytoplasm

Nucleus

Transcription

factor

Cell Reports cell count, four key metrics

quantifying the transcription factor, and

reporter accumulation if present.
Cytoplasm

Nucleus

Nuclear spot Cell Reports cell count, percent cells with

spots, and metrics describing spot size and

intensity.
Cytoplasm

Nucleus

Spots

Cell toxicity Cell Reports a calculated toxicity index based

on markers present. Provides access to

detailed toxicity and cell cycle reports.
Cytoplasm

Mitochondria

Nucleus

Pattern and

intensity

Cell Reports cell count, signal intensity, results

clustered into those with distinct signal

patterns.
Cytoplasm

Nucleus

Multinuclear Cell Identifies multinucleated cells based on

nuclear position and reports cell count

and basic signal intensity metrics.
Cytoplasm

Nucleus

Two-color

correlation

Cell Reports cell count, signal intensities,

degree of pixel intensity correlation

between two distinct signals.
Cytoplasm

Nucleus

Bacteria intensity Bacteria Reports bacteria count and multiple signal

intensity metrics.

Yeast cell wall Yeast Reports yeast count, intensity metrics, and

percent cells with septum.
Septum

Cell wall
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identify where objects are within an image. Next, a local adaptive

threshold based on neighborhood mean pixel intensity is used to

identify potential separations between objects; finally, a distance

transformation, shape filter, and watershed from marker operation is

used to define the final identified objects (Fig. 4C, left). The two al-

gorithms differ in the shape of the final objects to be identified, with a

circular filter working best for most mammalian cells and an oval filter

working best for bacteria and yeast. Importantly, limits are set on

object size and intensity, preventing the algorithm from falsely iden-

tifying debris in the image as true objects.

Fig. 4. mIA transcription factor (TF) analysis pipeline. (A) Schematic of the steps included in the TF pipeline. (B) Although many image
cytometers apply proprietary image correction algorithms, source images (left) often contain uneven illumination artifacts observed in a
profile plot (top right) examining pixel intensity (y-axis) versus position (x-axis) across the image that are eliminated by algorithms incor-
porated into mIA (bottom right). (C) Colored masks show primary (nuclei) and secondary (cells) object detection in HeLa cells. Each analysis
produces a HTML report that includes (D) plate heat maps, (E) well response (y-axis) versus sample ID (x-axis), (F) replicate A (y-axis) versus
replicate B (x-axis) response, and (G) waterfall Z-score plots that allows rapid visualization of plate results. (H) Dose–response plots and EC50

values are generated for each dose–response series indicated by well annotations.

HIGH-CONTENT ANALYSIS WEB APPLICATION
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Secondary object identification. After the primary objects (nuclei)

are defined, the TF pipeline implements a secondary object detection

module. Secondary objects are those that surround each primary

object. In this case, the secondary objects are cells. The mIA appli-

cation currently has three methods for secondary object detection: (1)

tessellation, (2) signal limited tessellation, and (3) a watershed from

markers. By default, the TF pipeline uses tessellation to define cell

limits, as we have found this method the most straightforward and is

sufficient in most cases (Fig. 4C, right). Additional cell regions can be

identified by manipulating both primary and secondary objects, such

as the cytoplasm (cell region minus nuclear region).

Object filtering. An important advantage of image-based approaches

over biochemical methods is the ability to select which cells to an-

alyze on a cell-by-cell basis. This allows an investigator the ability to

remove cells that may artificially skew the final results. For example,

dead, dying, or mitotic cells often contain protein levels and distri-

butions that differ greatly from nonmitotic healthy cells. Further-

more, if transient transfections are used, filters can be placed to

remove either nontransfected or grossly overexpressing cells. The TF

pipeline contains filters to remove cells based upon the nuclear area,

nuclear circularity, and the expression level of the protein of interest,

typically the TF being examined. Furthermore, we have incorporated

a filter that compares the signal intensity at the extreme edge of the

cell region against the overall signal within the cell. This edge ratio

filter is useful in eliminating cells that contain errors in either pri-

mary or secondary object detection.

Object quantification. The PLP Imaging collection includes a large

number of basic and advanced shape and intensity measurements

that are available through the mIA application. Measurements are

collected for primary, secondary, and derived cell regions identified

for each cell. Within the TF algorithm, this results in greater than 100

measurements per cell. All measurements are recorded in an image

set-specific database table for later access. Furthermore, the mIA

interface allows users to define new measurements that consist of a

ratio, addition, or subtraction of any existing two measurements. The

vast selection of available measures provides the researcher with

flexibility as new biological questions arise and the ability to perform

high-level statistics to define previously unappreciated responses.

Reporting. For each image set that is analyzed, the mIA application

generates an HTML report allowing for easy visualization of the

metrics collected. The mIA algorithm editor allows the selection of a

report type that is customized to the type of assay and analysis being

performed. Each report contains up to four types of elements: (1) heat

map and bar chart visualizations, (2) Z score and robust Z-score

calculations, (3) dose–response calculations, and (4) data links

(Fig. 4D–H). The TF pipeline report displays per well metrics that

describe cell count and effects on the TF protein level, nuclear

accumulation, nuclear translocation, and nuclear hyperspeckling

pattern formation. Furthermore, if a transcriptional reporter gene is

in use, a report on reporter protein accumulation is displayed.

Assessment of algorithm performance. For basic assessment of

the TF pipeline performance, we utilized an engineered HeLa cell line

that stably expresses GFP-tagged AR, and also contains a stable

integration of a dsRED2 transcriptional reporter driven by the AR

responsive probasin promoter. Data shown (Supplementary Fig.

S1A–E; Supplementary Data are available online at www.liebertpub

.com/adt) are from a single 384-well plate containing wells treated

with either 10 nM dihydrotesterone (192 wells, DHT, positive control)

or DMSO (192 wells, negative control). Samples were imaged as de-

scribed in Materials and Methods, generating an image set contain-

ing over 10,000 images. This image set was uploaded into the mIA

application and analyzed using a single multiprocessor server at a

rate of 9.3 s per field.

Using the data analysis tools contained within the standard TF

report, we are able to visualize and quickly ( <30 s) calculate the

assay performance for each of the five standard metrics of interest

across the dataset. Using the assay quality tool associated with each

heat map within a mIA report, we determined the Z-factor value for

total AR level, AR nuclear accumulation, percent AR in the nucleus,

nuclear AR hyperspeckling, and dsRED transcriptional reporter ac-

cumulation. Whereas assay quality for each measure is assay and

cell-line specific, we were able to routinely achieve Z-factor values

ranging from 0.59 to 0.78 when using the engineered HeLa cell line.

mIA: NS Assay
Although a great deal can be learned from studying TF expression

levels and subcellular distribution, direct visualization of DNA

binding at a promoter is not possible using standard light micros-

copy. To overcome this limitation, several research groups have de-

veloped cell lines possessing multicopy gene units integrated at a

single genomic locus.25,26 The high number of TF-binding sites per

square micron of nucleoplasm allows the direct detection of a TF

targeting a gene locus, frequently termed in our group as visual

ChIP due to the similarities of biochemically detecting TF-chromatin

interactions commonly used in chromatin immunoprecipitation

assays.2,26

Our group has developed engineered HeLa cell lines that contain

multiple integrated copies of an ER-regulated prolactin promoter/

enhancer-regulated dsRED2 reporter gene. We have validated that

these cells allow us to characterize physiological responses to hor-

mones and their effect upon ER DNA binding, promoter/chromatin

remodeling, coregulator recruitment, and mRNA production.14,26,27

We have also used these cell lines to characterize how environmental

estrogens differentially affect the ER response.13

The image analysis tools to perform these studies have been in-

corporated into the mIA algorithm editor, creating the predefined

‘‘Nuclear Spot’’ analysis pipeline. The NS algorithm is largely similar

to the TF pipeline, with nuclear and cell segmentation being per-

formed in an identical manner (Fig. 5A). The NS algorithm differs in

that it also contains components that allow for the selection of the

best focus plane for each cell in an image field Z stack and the

detection of NSs that correspond to the integrated promoter ele-

ments. Although we have used the NS algorithm for the analysis of
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engineered cell lines, the same algorithm can be used for the detec-

tion of multiple spots throughout the cell allowing for the analysis of

biological processes such as DNA repair foci, cytoplasmic vesicle

formation, peroxisomes, and mitochondria.

Cell-by-cell best plane selection. The challenge of identifying a

single spot representing the TF-bound integrated locus within a

nucleus is that the vertical position of the locus can vary from nu-

cleus to nucleus. This natural biologic variation combined with the

narrow depth of field associated with high-quality/high-magnification

objectives results in many transcription arrays/spots not being ade-

quately captured in the single plane of a 2D image set. This lowers the

quality of the measurements collected. Therefore, to acquire maximal

quality data sets, more complex 3D image sets containing multiple z

planes must be captured; however,

due to larger dataset sizes, this so-

lution leads to new challenges. The

image analysis tools inherited by

mIA from PLP are optimized for 2D

image sets, therefore, the 3D dataset

must be converted to 2D. Since by

definition the optimal plane of focus

for the small NS (*1mm) consists of

only one Z position per cell in the 3D

dataset, all other Z planes contain

lesser quality, out-of-focus infor-

mation. Therefore, when projected

using the standard methods in the

image loader components, blur from

the out-of-focus planes is included,

decreasing the quality of the 2D im-

age set to be analyzed (Fig. 5B, C).

To overcome this limitation, we

have developed a component that

selects the best focus plane on a cell-

by-cell basis. This is accomplished in

a three-step process. First, following

cell segmentation, the pixel intensity

variance within the nuclear region

for each cell and each vertical z plane

is measured. Next, a mask for each z

plane is generated representing those

cells that have maximal variance in

that plane (Fig. 5D). Finally, these

masks are used to generate a final

composite 2D image that contains

only data from the single best focus

plane from each cell (Fig. 5E).

Spot segmentation. Identification and

segmentation of the NS that corre-

sponds to the integration site is an

example of secondary object detec-

tion since information from primary objects (nuclei) is used. In this

instance, detection is complicated by the relatively small spot size,

and the ratio of spot signal-to-nucleoplasm that ranges between 1.1-

and 3-fold. The small signal-to-nucleoplasm ratio is further com-

plicated by the normal exclusion of ER from the nucleolus, which

results in dark regions in the nucleus with a mean intensity two to

threefold less than the surrounding nucleoplasm. Finally, the ER, like

many other nuclear receptors, forms a hyperspeckled pattern within

the nucleus when bound to a ligand. Therefore, the algorithm must

distinguish between these speckles and the integration site.

The algorithm overcomes these issues by utilizing three processing

steps. First, the influence of the dark nucleolus is removed by iden-

tifying the 75th percentile nuclear pixel intensity and correcting all

pixels below this value up to this value (Fig. 5F). Next, a local

Fig. 5. mIA nuclear spot (NS) analysis pipeline. (A) Schematic of the steps included in the NS
pipeline. (B) Maximum projection of 3D image stack results in increased blur in 2D not seen in (C)
single best focus plane image. (D) Best plane for each cell selected by defining plane with maximal
variance. (E) Best focus plane projection results in 2D image with focused spot in each nucleus. (F)
Spot segmentation minimizes the effect of dark pixels by normalizing pixel intensity before (G) local
threshold is applied to maximize the signal to background ratio. (H) Final spot mask. 2D, two
dimensional; 3D, three dimensional.

HIGH-CONTENT ANALYSIS WEB APPLICATION

ª MARY ANN LIEBERT, INC. � VOL. 12 NO. 1 � JANUARY/FEBRUARY 2014 ASSAY and Drug Development Technologies 95



background subtraction method using a spot size radius that is

slightly larger than expected increases the signal-to-nucleoplasm

ratio from 5- to 20-fold (Fig. 5G). Finally, all potential spots are

ranked based upon the loading index (the ratio between spot intensity

and surrounding nucleoplasm intensity), maximum intensity, and

size to select the spot most likely to represent the integration site

(Fig. 5H). It is important to note that the original ER composite image

is not altered, allowing this image to be used for measurement

collection.

Assessment of assay performance. To demonstrate the performance

of the NS algorithm, we used the engineered prolactin (PRL) array

HeLa cell line (PRL-HeLa) variant stably expressing GFP-tagged ER

treated with saturating concentrations of 10 nM 17- estradiol, 10 nM

4-OH-tamoxifen, and DMSO for 24 h. A total of 120 wells were used

for each treatment condition. In total, there were over 77,000 images

from the large data set. Due to the complexity of the image set and

analysis, the image processing time is slower compared with the TF

algorithm at 31.1 s per field when a single server is used.

Using the results from this dataset, we calculated assay quality

measures for each of the five key metrics describing the ER binding

the integrated promoter elements (Supplementary Fig. S2). For the

percent cells with a spot measurement, which is an indicator of the ER

ability to bind DNA, wells treated with either estradiol (Supplemen-

tary Fig. S2A) or 4-OH-tamoxifen (Supplementary Fig. S2B) were

used as positive controls, while wells treated with DMSO were used as

negative controls for both. As expected, the NS pipeline analysis

resulted in excellent Z-factor value for detecting percent of cells with

arrays in estradiol-treated (0.91) and tamoxifen-treated (0.89) wells

compared with DMSO control. When comparing the loading index

(Supplementary Fig. S2C), the ratio between the spot mean signal and

the surrounding nucleoplasm, using estradiol (ER agonist) wells as

the positive control and tamoxifen (ER antagonist) wells as the

negative control, we achieved a good Z-factor value of 0.55. DMSO

was unable to be used as a negative control due to the absence of

arrays preventing the determination of loading index in these wells.

A slightly lower Z-factor value of 0.41 was achieved when the spot

size (Supplementary Fig. S2E) was compared between the estradiol-

treated (positive control) and tamoxifen-treated (negative control)

wells. At these concentrations of agonist and antagonist, we were

unable to observe a difference in the total signal (Supplementary Fig.

S2D) at the integration site between estradiol and tamoxifen treat-

ment conditions.

mIA: CT Assay
Traditional biochemical assays for CT have been shown to have

low sensitivity.28 This is likely due to these assays measuring a single

endpoint that involves late stages of toxicity and fails to account for

the involvement of multiple mechanisms. Furthermore, due to the

indirect nature of many biochemical assays, they are prone to false

results due to specific alterations in cell physiology not related to cell

death.29,30 An image-based approach allows for the simultaneous

analysis of multiple aspects of CT with minimal resource consump-

tion, utilizing only economical DNA and protein dyes. This method is

compatible with most image-based assays allowing for analysis of

toxicity in addition to other biologically significant responses in the

screen, maximizing available new information. Multiple well-es-

tablished cellular markers for toxicity involving multiple cytotoxic

mechanisms include cell number, nuclear size, nuclear morphology,

formation of micronuclei, DNA content/cell cycle progression, cell

size, and cell morphology.29 For a more advanced analysis of tox-

icity, additional markers can be added such as antibodies specific to

proteins involved in apoptosis. The CT pipeline supports the analysis

of both basic toxicity based on DNA dyes and also when using

additional markers (Table 2).

Toxicity index. Although many features of the CT pipeline are

similar to other analysis pipelines available within mIA (Fig. 6A), a

key feature is the generation of a HTML report that contains a

toxicity index. The toxicity index consists of a single composite

score ranging from 0 (minimal toxicity) to 1 (maximum toxicity)

based on each of the toxicity markers present in the sample

(Fig. 6B). For the data shown in Figure 6 that are derived from a

sample containing only a DNA marker dye (DAPI), the toxicity

index is calculated as follows.

Table 2. Cell Toxicity Markers Supported

Label Measures

DNA dye Cell count

Nuclear shape

Nuclear size

DNA content

DNA pattern

Phospho-histone 3 Mitotic index

Cell cycle

Click-IT EdU (Invitrogen) S-phase index

Cell cycle

Cell mask (Molecular Probes) Cell area

Cell shape

Mito-Tracker (Molecular Probes) Mitochondria mass

JC-1 Mitochondria potential

Annexin V Early apoptosis

c-PARP Caspace target

HSP-70 Cell stress

HSF-1 Cell stress
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1. Number of cells per well normalized to 0 to 1 using Equation 1

with a minimum allowed value of 0.

CountNorm = 1 -
CountSample

CountNegControl
(1)

2. Average nuclear area per well normalized to 0 to 1 using

Equation 2 if the well value is above the negative control value

or Equation 3 if below.

AreaNorm =
AreaSample - AreaNegControl

Areaa - AreaNegControl
(2)

AreaNorm =
AreaNegControl - AreaSample

AreaNegControl - Arean
(3)

3. Average nuclear circularity per well normalized to 0 to 1 using

Equation 4, wherein the higher value for circularity reflects a

more circular object.

Fig. 6. mIA cell toxicity analysis pipeline and output. (A) Schematic of the steps included in the CT pipeline. (B) Toxicity index, a composite
measurement, heat map (left) as well as heat maps for each measurement used in the index (right). (C) Summary bar chart indicating toxicity
index (x-axis) for each sample type (y-axis) in each cell line (solid vs. open bars) indicated by well annotations. (D) K-Means Cluster analysis
of defining toxicity patterns observed within dataset with an example detail available describing each cluster (inset). (E) HeLa cells were
treated with 50mM CCCP or DMSO for 7 h. A total of 120 wells were used for each treatment condition. Toxicity index calculated by examining
cell count, nuclear size, nuclear shape, DNA content, and DNA pattern. CCCP, m-chlorophenyl hydrazone; DMSO, dimethyl sulfoxide.
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CircNorm =
CircularityNegControl - CircularitySample

CircularityNegControl - Circularityn

(4)

4. Average DAPI signal per cell (DNA content) per well normal-

ized to 0 to 1 using Equation 5 if the well value is above the

negative control value or Equation 6 if below.

ContentNorm =
ContentSample - ContentNegControl

Contenta - ContentNegControl
(5)

ContentNorm =
ContentNegControl - ContentSample

ContentNegControl - Contentn
(6)

5. Average DAPI coefficient of variance (DNA patterning) per

well normalized to 0 to 1 using Equation 7.

PatNorm =
PatternSample - PatternNegControl

Patterna - PatternNegControl
(7)

6. Toxicity index is calculated using Equation 8.

Toxicity Index = 0:5(CountNorm)

+ 0:5
AreaNorm + CircNorm + ContentNorm + PatNorm

4

(8)

Due to the normalization steps involved, the toxicity index is rel-

ative to the specific sample being examined and the exact equation

used will vary depending on the toxicity markers present. The coeffi-

cients or weight of each marker can be empirically determined or based

on kinetic studies examining the correlation between each marker and

future decrease in cell count. An example using those markers present

with only a DNA dye was chosen since most HCA samples will have

these markers regardless of the specific goal of the experiment. We

have found that the toxicity index simplifies analysis and speeds

progression to secondary screens; however, a heat map of each indi-

vidual toxicity marker is also provided for complete and rapid data

review (Fig. 6B). An index range for each feature is determined by the

range of metrics that are present in the individual image sets for each

cell line if multiple cell types are present in the sample. As toxicity can

be cell line specific, the HTML report also contains a summary bar chart

displaying the toxicity index for each unique treatment condition

relative to each cell line indicated by well annotations (Fig. 6C). The CT

report also uses tools made available from the integration of the R-stats

platform to identify unique toxicity phenotypes by k-means-based

clustering of responses across all toxicity markers (Fig. 6D) and allows

the user to view the mean value for each measure for all samples

grouped into any one cluster (Fig. 6D, inset).

Assay performance. To demonstrate the performance of the CT al-

gorithm, we used HeLa cells treated with CCCP and DMSO. A total of

120 wells were used for each treatment condition. The multiwell plate

was labeled with the DNA-binding Hoechst dye and imaged. The CT

algorithm analyzed the collected image set at a rate of 3.1 s per field

when a single server was used. Using metrics corresponding to the

cell count, nuclear shape, nuclear area, DNA patterning, and DNA

content, the CT pipeline generated a toxicity index for each well (Fig.

6E). Assigning CCCP-treated wells as positive control and DMSO-

treated wells as negative control, the calculated Z- factor score within

this dataset was 0.61, indicating the ability to reliably detect toxicity

related to the CCCP compound.

DISCUSSION
In this study, we report the development and validation of the mIA

application, which has been shown to be a powerful tool for the

management and analysis of the image sets that are generated during

assay development and screening by HCA. We have shown the three

most commonly used analysis algorithms available, although there

are numerous additional tools already functioning within the appli-

cation (Table 1), with many more in development. Indeed, the algo-

rithm editor enables scientists with little background in image

analysis to generate new algorithms as new biological questions arise.

Currently, the mIA application is utilized by several laboratories

within the Texas Medical Center community, showing broad appli-

cation on a growing number of different cell types. In total, over 30

terabytes of imaging data have been successfully managed and an-

alyzed. Importantly, with the obstacle of the tedious analysis of large

image sets minimized, investigators are now planning and executing

large image-based screens that were not previously possible.

We are working with academic collaborators to further enhance

the functionality of the mIA platform. These enhancements are fo-

cused on true 3D image set analysis and incorporation of tools to

directly analyze the data stored within the growing OMERO project

for data standardization and management. mIA is already amenable

to the analysis of increasingly popular 3D culture-based assays and

screens, and OMERO integration will facilitate the sharing and

analysis of high-content data across a global HCS community. By

making the mIA application protocols freely available and an open

source to the PLP user community, we hope that the continual de-

velopment of the mIA application will facilitate new discoveries in

the many data-rich image-based screens that are currently being

performed in both the pharmaceutical and academic environments.
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Abbreviations Used

2D¼ two dimensional

3D¼ three dimensional

AR¼ androgen receptor

CCCP¼m-chlorophenyl hydrazone

CT¼ cell toxicity

DAPI¼ 40 ,6-diamidino-2-phenylindole

DAS¼ directly attached storage

DHT¼ dihydrotestosterone

DMSO¼ dimethyl sulfoxide

ER¼ estrogen receptor

FBS¼ fetal bovine serum

GFP¼ green fluorescent protein

HCA¼ high-content analysis

mIA¼myImageAnalysis

NAS¼ network attached storage

NS¼ nuclear spot

OME¼Open Microscopy Environment

PLP¼ Pipeline Pilot

TF¼ transcription factor
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