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The fields of ecological and conservation genetics have developed greatly in recent decades
through the use of molecular markers to investigate organisms in their natural habitat and to
evaluate the effect of anthropogenic disturbances. However, many of these studies have
been limited to narrow regions of the genome, allowing for limited inferences but making it
difficult to generalize about the organisms and their evolutionary history. Tremendous
advances in sequencing technology over the last decade (i.e. next-generation sequencing;
NGS) have led to the ability to sample the genome much more densely and to observe the
patterns of genetic variation that result from the full range of evolutionary processes acting
across the genome (Allendorf et al. 2010; Stapley et al. 2010; Li et al. 2012). These studies
are transforming molecular ecology by making many long-standing questions much more
easily accessible in almost any organism.

When studying the genetics of wild populations, it is desirable to samples tens, hundreds or
even thousands of individuals. While it is now possible to sequence whole genomes for tens
of individuals with small genome sizes, the sequencing of hundreds of individuals with large
genomes remains prohibitively expensive, particularly where the genome sequence is
unknown. Further, for the purpose of many studies, complete genomic sequence data for all
individuals would be unnecessary and simply inflate the computational and bioinformatic
costs. A major recent advance has been the development of genotyping-by-sequencing
(GBS) approaches that allow a targeted fraction of the genome (a reduced representation
library) to be sequenced with next-generation technology rather than the entire genome,
even in species with little or no previous genomic information and large genomes. The
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subset of the genome to be sequenced in these GBS approaches may be targeted using
restriction enzymes or capture probes or by sequencing the transcriptome (reviewed in
Davey et al. 2011). In the future, as sequencing technology and computational and
bioinformatic methods develop further, whole-genome resequencing may become the
predominant method for ecological and conservation genomics. Currently, reduced
representation approaches offer the ability to not only discover genetic variants such as
SNPs but also genotype individuals at these newly discovered loci in the same data.

This special issue on ‘Genotyping-by-Sequencing in Ecological and Conservation
Genomics’ represents a diverse set of empirical and theoretical studies that demonstrate both
the utility and some of the challenges of GBS in ecological and conservation genomics. The
empirical studies include demonstrations of the utility of GBS for population genomics and
association mapping, as well as the development of genomic resources (i.e. large SNP data
sets) for target species. The studies also illustrate some of the differences between GBS
methods, in particular, aligning paired-end reads to achieve longer consensus sequences in
contrast to single-end reads with shorter alignments, and double-digest versus sonication
methods to fragment DNA. In addition, several papers describe advanced data pipelines for
handling GBS-related sequence data and critically evaluate best practices for GBS methods
and potential biases and novel features associated with GBS data. Overall, this compilation
of papers emphasizes that GBS has been quickly adopted by the scientific community and is
expected to become a common tool for studies in molecular ecology.

Population genomics

Genotyping-by-sequencing methods offer major advantages for population genomics by
screening thousands of polymorphisms throughout the genome that are subject to the full
range of evolutionary histories (variation in drift, selection, recombination, mutation) and
consequences for genetic variation. Historically, most studies in ecological and conservation
genetics have relied upon a small number of putatively neutral molecular markers (e.g.
allozymes, microsatellites, AFLPS), covering a very limited subset of the genome. These
data sets could be used to address questions related to demographic factors that affect the
entire genome (e.g. diversity, gene flow and drift, effective population sizes and genetic
relationships of populations), but they had limited ability to investigate specific loci that
have been subject to selection and adaptive evolution. However, GBS enables researchers to
identify specific genomic regions that may have experienced natural selection, in addition to
improving the precision of demographic inferences by greatly increasing the number of
putatively neutral markers assayed. For example, neutral markers alone may not identify
distinct populations that have evolved to become resistant to specific pathogens (Bonneaud
et al. 2011) or locally adapted to their habitat (Storz et al. 2009; Narum et al. 2010).
Conversely, neutral markers may identify significant differentiation among populations
based on limited gene flow or drift, but genomic regions under selection may indicate
adaptive similarity that may have been either retained after isolation (Parchman et al. 2013)
or evolved in parallel following colonization of new habitats (e.g. Hohenlohe et al. 2010).

Several studies in this issue utilize genome scans to search for potentially adaptive genetic
variation in a population genomics context as well as estimate demographic parameters
(Table 1). Included are various species of plants, marine invertebrates, marine and
freshwater fish, and small mammals, making novel inferences regarding selection in natural
populations in addition to measuring demographic parameters using neutral markers
(Catchen et al. 2013b; Corander et al. 2013; De Wit & Palumbi 2013; Hess et al. 2013;
Hyma & Fay 2013; Keller et al. 2013; Reitzel et al. 2013; Roda et al. 2013; White et al.
2013). Multiple papers demonstrate the utility of GBS for phylogenetic reconstruction
across species (Jones et al. 2013; Keller et al. 2013; Ogden et al. 2013; Roda et al. 2013).
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Additionally, three papers take advantage of GBS to identify genomic regions involved in
hybridization (Hohenlohe et al. 2013), speciation (Jones et al. 2013) and divergent
adaptation (Keller et al. 2013). Another study (Roesti et al. 2013) investigates stickleback
populations to reveal how heterogeneous recombination rates can modulate consequences of
selection and influence outlier tests for positive selection. Roesti et al. (2013) also use sex-
specific RAD locus coverage to scrutinize sex chromosome divergence and confirm the
presence of evolutionary strata in this species. All such population genomics studies face
similar challenges in navigating trade-offs in sequencing effort across loci, individuals and
populations. Accordingly, Buerkle & Gompert (2013) consider the question of optimizing
allocation of sequencing effort in GBS between depth of coverage per locus and larger
sample sizes, in order to most effectively use sequence data for population genetics.

Genome-wide association and QTL mapping studies

Screening dense markers from the genome has effectively enabled discovery of many
candidate loci involved in specific phenotypic traits, either with quantitative trait loci (QTL)
mapping or with genome-wide association studies (GWAS). In the last decade, these
approaches have been utilized extensively in humans to identify specific genes and
pathways involved human health (Hindorff et al. 2009) and to discover disease alleles in
model organisms (Flint & Eskin 2012). As GBS does not require previous genomic
information, high-density QTL mapping and GWAS studies are now being incorporated to
investigate phenotypes related to biological traits in many nonmodel species in natural
environments (e.g. Parchman et al. 2012). In this issue, Gagnaire et al. (2013) use RAD-seq
to map phenotypic and expression QTL for ecologically relevant traits in lake whitefish
(Coregonus clupeaformis). Additionally, RAD-seq was used in GWAS to identify regions of
the genome associated with traits such as colour dimorphism in species of cichlid fishes
(Takahashi et al. 2013), binary migration patterns in a salmonid fish (Hecht et al. 2013),
phenotypic shell variation of land snails (Cepaea nemoralis; Richards et al. 2013) and
thermal adaptation of ectothermic fish in desert streams (Narum et al. 2013). These studies
illustrate the potential for mapping biologically relevant traits in wild populations to provide
novel insight into ecological processes and to facilitate monitoring of species at risk to
extinction.

Genomic resources — SNP discovery

Development of genomic resources has long been a need in the field of molecular ecology,
and NGS approaches have greatly enhanced the discovery of SNPs for many nonmodel
organisms (e.g. Seeb et al. 2011). In particular, GBS has become a highly reliable approach
for identifying SNPs both within and between populations (e.g. Hohenlohe et al. 2011). All
21 of the empirical studies in this issue provide new SNP resources for several species,
highlighting the strengths of GBS approaches for providing new polymorphisms. While
GBS is clearly powerful in diploid species, two papers in this issue describe attempts to
identify SNPs in polyploid species of birch (Betula spp.; Wang et al. 2013) and four species
of tetraploid sturgeon (Ogden et al. 2013). While SNP discovery was well demonstrated in
both studies, challenges remain for calling SNP genotypes for individual organisms because
polyploids may have multiple copies of different alleles. Thus, further advances in SNP
genotyping algorithms (e.g. Serang et al. 2012) are needed in order for GBS approaches to
be applied for this purpose in polyploids.

Software pipelines

As next-generation sequencers can currently produce tens to hundreds of gigabases of
sequence data per run (see Glenn 2011 with a recent update at http://
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www.molecularecologist.com/next-gen-fieldguide-2013), advanced analysis pipelines have
become a necessity to filter, sort and align sequence data. A pipeline for GBS must include
steps to filter out poor-quality reads, classify reads by pool or individuals based on sequence
barcodes, either identify loci and alleles de novo or align reads to an index to discover
polymorphisms, and often score genotypes for each individual included in the study. The
most comprehensive pipeline for handling GBS data is Stacks (Catchen et al. 2011), and in
this issue, Catchen et al. (2013a) describe new features in Stacks to calculate population
genomic statistics (such as Fst and nucleotide diversity), create smoothed distributions
using sliding window averaging across the genome and produce output genotype files
specifically formatted for commonly used downstream analysis packages. Senn et al. (2013)
describe an extension to the Stacks pipeline, using the assembly program Cortex to assemble
paired-end reads at RAD loci and call SNPs in the assembled contigs. Tools for this paired-
end assembly step are also explored by Davey et al. (2013) and Hohenlohe et al. (2013).
These pipelines provide bioinformatics solutions for GBS studies and are broadly applicable
to many species.

Addressing biases of genotyping-by-sequencing

Genotyping-by-sequencing methods using restriction enzymes (Miller et al. 2007; Baird et
al. 2008; van Orsouw et al. 2007; Andolfatto et al. 2011; Elshire et al. 2011; Peterson et al.
2012; Parchman et al. 2012) can produce data with unique characteristics, resulting from
factors such as restriction-site polymorphism or correlations of restriction fragment length
with read depth. These features of GBS data and the genotyping biases they can produce are
reviewed in detail by Davey et al. (2013), while Gautier et al. (2013) and Arnold et al.
(2013) focus on the impact of restriction-site polymorphisms on population genetics
estimates. Gautier et al. (2013) consider the effect of allele dropout on genotyping and Fst
calculations using both individuals and pools. Arnold et al. (2013) evaluate several
additional population genetics statistics, demonstrate that the choice of restriction enzyme
and allele dropout can have substantial effects on these estimates, and assess the double-
digest RAD-seq method (Peterson et al. 2012) as well as standard RAD-seq. The test of
double-digest RAD-seq is particularly useful as this approach should in theory avoid or
reduce the bias of fragment length coverage, but Arnold et al. (2013) find that the effects of
restriction-site polymorphism on summary statistics are more pronounced with the double-
digest method.

All three papers make basic recommendations for data filtering to mitigate the most serious
effects of GBS biases, while proposing more sophisticated statistical techniques for
identifying and correcting biased genotypes. However, the extensive work of developing
these techniques and making them sufficiently general to be applied to a wide range of
species and methods remains to be done. Of the empirical papers in this special issue, all
apply some type of filter to remove loci with missing genotypes to address the problem of
null alleles and other potential biases identified here. While filtering out poor loci is the
most common suggestion to address these biases, there are not universal filter criteria that
can be applied to all studies, and thus, each of these areas must be evaluated by investigators
on a case-by-case basis. As a general guideline for future analyses of GBS data sets, all
empirical studies should strive to demonstrate how these potential biases were addressed.

Future needs

While the papers in this issue demonstrate the strength of GBS in ecological and
conservation genomics studies, they also highlight areas where further advances are needed.
This includes more advanced methods to test for and correct biases associated with GBS,
new methods to confront evolutionary theory with population genomic data, additional
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analytical tools for associating genomic variation with evolutionary processes and histories,
and new approaches for visualizing vast amounts of genomic data. These areas are expected
to provide better conceptual understanding of selection on organisms in their natural
ecosystems, along with improved knowledge of the underlying genetic basis for specific
traits related to biological processes. This knowledge will also be utilized to design effective
strategies for conserving functional genetic variation to allow for future evolution. The
summary information provided in Table 1 also provides a useful context to compare results
of different GBS methods.

In addition to advances in theory and analytical tools for genomic data, new technical
variations of GBS are expected in the near future that include complete genome typing for
individuals and genotyping large numbers of individuals at selected targets that are
considered to be biologically relevant. Also, the potential to combine RNA-seq and GBS
approaches to identify SNPs in the transcriptome associated with patterns of gene expression
offers the potential to strengthen links between genomics, transcriptomics and proteomics.
Indeed, GBS has greatly expanded research opportunities in ecological and conservation
genomics, and further advances are expected to open nearly endless doors of study to
advance our knowledge.
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