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Proteasome Modulates Positive and Negative Translational
Regulators in Long-Term Synaptic Plasticity

Chenghai Dong,* Svitlana V. Bach,* Kathryn A. Haynes,* and Ashok N. Hegde
Department of Neurobiology and Anatomy, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, North Carolina 27157

Proteolysis by the ubiquitin-proteasome pathway appears to have a complex role in synaptic plasticity, but its various functions remain
to be elucidated. Using late phase long-term potentiation (L-LTP) in the hippocampus of the mouse as a model for long-term synaptic
plasticity, we previously showed that inhibition of the proteasome enhances induction but blocks maintenance of L-LTP. In this study, we
investigated the possible mechanisms by which proteasome inhibition has opposite effects on L-LTP induction and maintenance. Our
results show that inhibiting phosphatidyl inositol-3 kinase or blocking the interaction between eukaryotic initiation factors 4E (eIF4E)
and 4G (eIF4G) reduces the enhancement of L-LTP induction brought about by proteasome inhibition suggesting interplay between
proteolysis and the signaling pathway mediated by mammalian target of rapamycin (mTOR). Also, proteasome inhibition leads to
accumulation of translational activators in the mTOR pathway such as eIF4E and eukaryotic elongation factor 1A (eEF1A) early during
L-LTP causing increased induction. Furthermore, inhibition of the proteasome causes a buildup of translational repressors, such as
polyadenylate-binding protein interacting protein 2 (Paip2) and eukaryotic initiation factor 4E-binding protein 2 (4E-BP2), during late
stages of L-LTP contributing to the blockade of L-LTP maintenance. Thus, the proteasome plays a critical role in regulating protein
synthesis during L-LTP by tightly controlling translation. Our results provide novel mechanistic insights into the interplay between

protein degradation and protein synthesis in long-term synaptic plasticity.
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Introduction

Synaptic plasticity allows the nervous system to store informa-
tion. Short-term synaptic plasticity and memory depend on
changes in neurotransmitter release and alterations in receptors
and other pre-existing proteins (Kandel and Schwartz, 1982; Sos-
sin, 2008). Long-term synaptic plasticity and memory, however,
require protein synthesis (Byrne et al., 1991; Hernandez and
Abel, 2008; Wang and Morris, 2010). In the recent past, several
studies have established that protein degradation also plays a role
in synaptic plasticity and memory (Hegde, 2010; Fioravante and
Byrne, 2011; Jarome and Helmstetter, 2013). The precise roles of
protein degradation and how proteolysis relates to protein syn-
thesis are not clear, however. The requirement for protein syn-
thesis has been well studied in a cellular model of long-term
synaptic plasticity, late-phase long-term potentiation (L-LTP;
Frey et al., 1988; Nguyen et al., 1994). Temporally, L-LTP can be
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divided into an “induction” phase and a “maintenance” phase.
L-LTP induction requires translation of pre-existing mRNAs in
dendrites (Kelleher et al., 2004b) while L-LTP maintenance de-
pends on new transcription in the nucleus and on translation of
the newly transcribed mRNAs in the cell body (Nguyen et al.,
1994).

The protein degradation that is critical for synaptic plasticity
occurs primarily through the ubiquitin-proteasome pathway
(UPP; Hegde, 2010; Jarome and Helmstetter, 2013). In this path-
way, protein substrates are marked by attachment of several ubiq-
uitin molecules and are degraded by a proteolytic complex called the
proteasome. Previously, we showed that proteasome inhibition dif-
ferentially affects L-LTP depending on the site of inhibition within
the neuron. Dendritic proteasome inhibition enhances induction
of L-LTP whereas nuclear proteasome inhibition blocks mainte-
nance of L-LTP (Dong et al., 2008). Through a series of experi-
ments, we previously obtained evidence indicating that L-LTP
induction is enhanced because proteasome inhibition in den-
drites stabilizes proteins translated from pre-existing mRNAs
and that L-LTP maintenance is blocked by interference with tran-
scription caused by nuclear proteasome inhibition (Dong et al.,
2008). Additional experiments revealed that proteasome inhibi-
tion also blocks maintenance of L-LTP in isolated dendrites
(Dong et al., 2008). Together, these data suggested that protea-
some tightly controls translation by modulating both positive
and negative regulators of translation.

Local translation of pre-existing mRNAs in dendrites depends
on the mammalian target of rapamycin (mTOR) pathway (Stew-
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ard and Schuman, 2001). Therefore, we A
hypothesized that the proteasome regu-
lates translation through interaction with
the mTOR pathway and tested this idea by
inhibiting different parts of the pathway.
We found that inhibiting components of
the mTOR pathway greatly reduced the
enhancement of L-LTP induction caused
by the proteasome inhibitor B-lactone.
We then focused on four mTOR pathway
components: eukaryotic initiation factor
4E (eIF4E; Gingras et al., 1999) and eu-
karyotic elongation factor 1A (eEFI1A;
Negrutskii and El'skaya, 1998), two trans-
lational activators; and eukaryotic initia-
tion factor 4E-binding protein 2 (4E-BP2;
Pause et al., 1994) and polyadenylate-
binding protein interacting protein 2
(Paip2; Khaleghpour et al., 2001), two
translational repressors. Here, we show
that early during L-LTP, proteasome inhi-
bition stabilizes the translational activa-
tors eIlF4E and eEF1A and that at late
stages of L-LTP, proteasome inhibition
stabilizes the translational repressors 4E-
BP2 and Paip2.

Materials and Methods

Animals. Mice were obtained from Harlan Lab-
oratories and used for experiments using a pro-
tocol approved by the Institutional Animal
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Care and Use Committee of Wake Forest Uni-
versity Health Sciences.

Extracellular recording. Using a tissue chop-
per, transverse hippocampal sections (400 wm)
from 6- to 12-week-old C57BL/6 male mice
were prepared in an oxygenated and chilled ar-
tificial CSF (ACSF) containing 125 mm NaCl, 3
mu KCl, 2.3 mm CaCl,, 1.3 mm MgCl,, 25 mum
NaHCO;, 1.25 mm NaH,PO,, and 10 mm glu-
cose, pH 7.4. The slices were submerged at
32°C and superfused with ACSF (1.5 ml/min).
All recordings were obtained from slices main-
tained at 32°C. For recording of field EPSP
(fEPSP), in the CA1 region of the hippocampus, a bipolar stimulating
electrode was used to stimulate the Schaeffer collateral pathway while
recording in the stratum radiatum. The stimulation intensity was ad-
justed to give ~35% of the maximal fEPSP slope and the baseline re-
sponses were recorded at this intensity. L-LTP was induced by giving four
100 Hz trains spaced 5 min apart (Dong et al., 2008). Extent of LTP was
expressed as percentage increase relative to baseline in the fEPSP slope at
different time points as stated in figure legends. For experiments with the
proteasome inhibitor B-lactone (Cayman Chemical), after recovery, the
slices were pre-incubated with the reagent in oxygenated ACSF for 30
min. Inhibition of the proteasome by B-lactone is irreversible and there-
fore the inhibitory effect of the drug cannot be washed out.

The pharmacological reagents rapamycin, LY294002, 4EGI-1, U0126,
U0124, and anisomycin (EMD Millipore), were prepared in dimethyl-
sulfoxide (DMSO). For these reagents the same concentration of DMSO
alone was used for controls. All these reagents were applied to hippocam-
pal slices before pre-incubation with B-lactone except anisomycin, which
was applied after pre-incubation with B-lactone.

L-LTP in isolated dendrites. We separated the dendrites by means of a
surgical cut to the slice as described previously by others (Frey and Mor-
ris, 1997; Woo and Nguyen, 2003; Cracco et al., 2005) and us (Dong et al.,
2008). We placed the hippocampal slices in ice-cold ACSF containing
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Figure 1.
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Rapamycin pretreatment significantly reduces 3-lactone-mediated enhancement in Ep-L-LTP in isolated dendrites.
A, Schematicillustration of surgical isolation of dendrites (modified from Dong etal., 2008). A cut (black bar) is made just below the
pyramidal cell body layer in the CAT region. Recording electrode (Rec) is placed in the dendritic layer of pyramidal cells. Position of
the stimulation electrode (Stim), and the layers stratum radiatum and stratum oriens are also indicated. DG, dentate gyrus. B,
Treatment of cut slices with rapamycin before B-lactone treatmentssignificantly (p << 0.01) diminishes the magnitude of Ep-L-LTP
relative to 3-lactone treatment alone. Inset, Representative traces taken at different time points (1 = 30 min; 2 = 180 min) for
treatment with 3-lactone alone and rapamycin + [-lactone.

sucrose instead of NaCl and MgCl, instead of CaCl, (replacement chem-
icals were of same molarity), and made a cut below the cell body layer of
CA1 region. The slices were then placed in normal ACSF and allowed to
recover for 2 h before the experiment. L-LTP was induced as described
previously (Vickers et al., 2005; Dong et al., 2008).
Immunohistochemistry. After being subjected to an L-LTP-inducing
protocol (4 X 100 Hz), free floating hippocampal slices were fixed in 4%
paraformaldehyde for 1 h followed by five 30 min washes with PBS at
room temperature. Control slices for each L-LTP experimental condition
were time matched with respect to incubation in ACSF alone or in ACSF
containing f-lactone. After washing, slices were blocked in a solution
containing 4% normal goat serum (Vector Laboratories), 0.4% Triton
X-100, and 0.05% sodium azide in PBS at 4°C for 5 h. Slices were then
incubated in blocking solution containing polyclonal primary antibodies
against eIF4E (1:80; Bethyl Laboratories), eEF1A (1:80; Abcam), Paip2
(1:50; Proteintech), or 4E-BP2 (1:50; Abcam) at 4°C overnight. Follow-
ing primary antibody incubation, slices underwent four 20 min washes in
0.2% Triton X-100 in PBS and were incubated in Alexa 488-conjugated
goat anti-rabbit secondary antibody (1:300; Invitrogen) and To-Pro-3
(1:500; Invitrogen) at 4°C for 8 h. Following secondary antibody incuba-
tion, slices underwent five 30 min washes in 0.2% Triton X-100 in PBS
and were mounted with Prolong Gold antifade reagent (Invitrogen).
Images were taken with a Carl Zeiss LSM510 laser scanning confocal
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microscope and analyzed using Image] (National Institutes of Health
(NIH), Bethesda, MD).

Metabolic labeling of hippocampal proteins with °S-methionine. Coro-
nal hippocampal slices were made using a tissue chopper and allowed to
recover in oxygenated ACSF at 32°C. After 1 h of recovery, slices were
treated with rapamycin (1 um) or 4EGI-1 (100 um) for 1 h before treat-
ment with B-lactone (25 um) for 30 min. All slices were incubated in 15
wCi/ml *3S-methionine (1175 Ci/mmol; PerkinElmer). Because the ef-
fect of 4EGI-1 has shown to be reversible (Moerke et al., 2007; McMahon
et al., 2011), slices in the 4EGI-1 groups also had 4EGI-1 added during
the **S-methionine incubation. Slices were collected at 30, 60, 90, and
120 min after initiation of metabolic labeling and immediately frozen
on dry ice. Slices were then homogenized with radioimmunoprecipita-
tion assay buffer (50 mm Tris-HCl, pH 7.4, 1% NP-40, 0.5% Na-
deoxycholate, 0.1% SDS, 150 mm NaCl, 2 mm EDTA, 50 mM NaF)
including 1 X protease inhibitor cocktail (EMD Millipore). The homog-
enate was incubated on ice for 1 h, centrifuged at 15,000 X g for 30 min,
and the supernatant was collected and processed for Bicinchoninic Acid
(BCA) protein estimation assay (Thermo Scientific). After SDS-PAGE of
50 ug protein from each sample, the gels were stained with Coomassie
blue stain as a loading control measure. After destaining, gels were
incubated for 1 h in En’Hance liquid autoradiography enhancer
(PerkinElmer) and then rinsed in ice-cold water for 30 min, dried,
and exposed to Kodak BioMax Light film. The autoradiographic im-
ages were taken using Gel Doc (Bio-Rad), and optical density was
quantified using Image] (NIH, Bethesda, MD). Background was sub-
tracted from each measurement, and protein loading differences were
controlled for using the optical density from Coomassie blue gel stain.
Experimental groups for each time point were normalized to their
time-matched control.

Data analysis. Data were analyzed by using one-way ANOVA followed
by a post hoc Tukey test or Student-Newman—Keuls test (pairwise
multiple-comparison procedure) as appropriate. In some cases, when
the data were not normally distributed, we used Kruskal-Wallis one-way
ANOVA on ranks because under such circumstances, this is the most
suitable alternative to classical ANOVA and provides higher statistical
power compared with ANOVA (Lantz, 2013). For comparison between
two groups, Student’s f test was used. The values are expressed as mean *+
SE. The sample size (1) in each dataset corresponds to the number of
animals (not slices) used to collect the data.

Results

Rapamycin pretreatment significantly reduces the
B-lactone-mediated increase in the early part of L-LTP in
isolated dendrites

Previously we showed that the enhancement in the early part of
L-LTP (henceforth referred to as Ep-L-LTP), which encompasses
the induction phase, brought about by proteasome inhibition is
blocked by prior incubation with rapamycin in intact slices
(Dong et al., 2008). We also showed that proteasome inhibition
enhances Ep-L-LTP in isolated dendrites in the same way as it
does in the intact hippocampal slices (Dong et al., 2008). These
data provided indirect evidence that proteasome inhibition en-
hances Ep-L-LTP by stabilizing the locally translated proteins
from the pre-existing mRNA in dendrites via the mTOR path-
way. Before commencing to test this idea rigorously, it was im-
portant to obtain direct evidence that rapamycin inhibits the
enhancement of Ep-L-LTP upon pre-incubation with B-lactone
in isolated dendrites. To do this, we placed a surgical cut between
the pyramidal cell bodies and dendrites in the stratum radiatum
(Fig. 1A) and induced L-LTP after treatment with B-lactone
alone or after incubation with rapamycin followed by treatment
with B-lactone. We found that rapamycin pretreatment signifi-
cantly reduces the extent of Ep-L-LTP in isolated dendrites (at 30
min: control, 193 * 20%, n = 7; rapamycin, 148 = 9%, n = 8;
p <0.01, t test; Fig. 1B).
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Figure2. PI3Kinhibition reduces normal L-LTP and 3-lactone-mediated enhancement
of Ep-L-LTP. A, Pretreatment with PI3K inhibitor LY294002 significantly (p < 0.0001)
reduces L-LTP. Inset, Representative traces taken at different time points (1 = 30 min;
2 =180 min) for no treatment “Control” and treatment with LY294002. B, Normal basal
synaptic transmission in LY294002-treated hippocampal slices (n = 7) compared with
vehicle-treated control (n = 7) slices. The graph shows input—output curves of fEPSP
slope (mV/ms) versus stimulus at the Schaffer collateral pathway upon treatment with the
vehicle (DMSO) or LY294002. , Incubation with LY294002 before 3-lactone application
significantly (p < 0.0001) decreases the enhancementin Ep-L-LTP. Inset, Representative
traces taken at different time points (1 = 30 min; 2 = 180 min) for 3-lactone alone and
LY294002 + B-lactone.

These data suggest that in both intact slices and isolated den-
drites, proteasome inhibition stabilizes the proteins whose trans-
lation is regulated by the mTOR pathway. Therefore, in the rest of
this study we performed a series of experiments to systematically
test the role of the mTOR pathway in enhancement of Ep-L-LTP
observed with proteasome inhibition.

Phosphatidyl inositol-3 kinase inhibition markedly lowers
B-lactone-mediated increase in Ep-L-LTP
In the mTOR pathway, typically an extracellular ligand such as
the insulin growth factor binding to its receptor activates phos-
phatidyl inositol-3 kinase (PI3K), which in turn activates mTOR
complex 1 ultimately leading to activation of a translation initia-
tion factor complex containing eIF4E (Hay and Sonenberg, 2004;
Zoncu et al.,, 2011).

To test the role of PI3K, we first characterized the effect of
PI3K inhibitor LY294002 on L-LTP. Previous work by others
has determined that LY294002 reduces the protein synthesis-
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independent early LTP (Opazo et al,
2003). Its effect on L-LTP has not been
studied, however. Therefore, we first
tested the effect of LY294002 on L-LTP.
Application of LY294002 (20 um) before
tetanization significantly reduced the am-
plitude of L-LTP (at 30 min: control,
178 £ 13%, n = 6; LY294002, 131 = 10%,
n = 8 p < 0.0001; at 180 min: control,
138 = 5%, n = 6; LY294002, 103 * 5%,
n = 8 p < 0.0001, t test; Fig. 2A). We
found that pretreatment with LY294002,
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however, does not affect basal synaptic
transmission (Fig. 2B).

Next, we tested the effect of LY294002
on the B-lactone-mediated increase in
Ep-L-LTP. We pre-incubated the slices
with LY294002 before applying B-lactone
(25 um). We found that LY294002 signifi-
cantly reduced the effect of B-lactone on Ep-
L-LTP (at 30 min: B-lactone, 199 = 11%,
n = 8; LY294002 + B-lactone, 121 * 6%,
n =8 p < 0.0001, ¢ test; Fig. 2C).

Disruption of eIF4E-eIF4G interaction
greatly decreases the B-lactone-
mediated enhancement in Ep-L-LTP
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Our previous results provided several lines
of evidence that the 3-lactone-mediated en-
hancement in Ep-L-LTP occurs because of
stabilization of proteins locally translated
from pre-existing mRNAs in dendrites. In
addition, the experiments described above
showed that rapamycin reduces the en-
hancement in Ep-L-LTP by proteasome
inhibition in isolated dendrites. These re-
sults suggest that the mTOR pathway
plays a role in B-lactone-mediated aug-
mentation of Ep-L-LTP. To test this hy-
pothesis rigorously, we examined the role
of some of the key components of the
mTOR pathway downstream of PI3K
(Hay and Sonenberg, 2004).
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Eukaryotic mRNAs have a special nu-
cleotide, 7-methyl guanosine triphos-
phate, attached to their 5’ end which is
referred to as the cap (Pestova et al., 2007).
The process of translational initiation of
mRNAs with a cap begins with binding of
an initiation factor complex in which in-
teraction between eIF4AE and eIF4G plays a
critical role (Gingras et al., 1999). There-
fore, disrupting this interaction should reduce
translation and thus decrease proteasome
inhibition-mediated enhancement of Ep-L-
LTP. To test this hypothesis, we used a
small molecule called 4EGI-1 that inhibits
elF4E-elF4G interaction (Moerke et al., 2007). Since the effect of
4EGI-1 on L-LTP has not been characterized, we tested its effect
on L-LTP. We found that 4EGI-1 (100 uM) significantly inhibits
L-LTP (at 30 min: control, 168 * 7%, n = 8; 4EGI-1, 129 = 6%,
n =29, p <0.0001; at 180 min: control, 135 = 9%, n = 8; 4EGI-1,
114 * 5%, n = 9; p < 0.0001, ¢ test; Fig. 3A). Additionally, we

Figure 3.

150
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Aninhibitor of elF4E-elF4G interaction decreases normal L-LTP and 3-lactone-mediated enhancement of Ep-L-LTP.
A, Pretreatment with 4EGI-1,
tative traces taken at different time points (1 = 30 min; 2 = 180 min) for no treatment “Control” and treatment with 4-EGI-1. B,
Normal basal synaptic transmission in 4EGI-1-treated hippocampal slices (n = 8) compared with vehicle-treated control (n = 7)
slices. The graph shows input—output curves of fEPSP slope (mV/ms) versus stimulus at the Schaffer collateral pathway upon
treatment with the vehicle (DMSO) or4EGI-1. €, Incubation with 4EGI-1before B-lactone significantly (p << 0.0001) decreases the
enhancement in Ep-L-LTP. Inset, Representative traces taken at different time points (1 = 30 min; 2 = 180 min) for 3-lactone
alone and 4EGI-1 + B-lactone.

an inhibitor of elF4E-elF4G interaction, significantly (p << 0.0001) reduces L-LTP. Inset, Represen-

found that 4EGI-1 does not have any effect on basal synaptic
transmission (Fig. 3B).

Next we tested the effect of 4EGI-1 on B-lactone-mediated in-
crease in Ep-L-LTP. We pre-incubated the slices with 4EGI-1 before
applying B-lactone. We observed that 4EGI-1 significantly reduced the
effect of B-lactone on Ep-L-LTP (at 30 min: B-lactone, 192 * 19%, n =
8;4-EGI-1 + B-lactone, 127 * 10%, n = 10, p < 0.0001, ¢ test; Fig. 3C).
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Figure 4.  ERK function is essential for 3-lactone-mediated enhancement of Ep-L-LTP in
intact slices as well as isolated dendrites. 4, In intact slices, pre-incubation with MEK inhibitor
U0126 before B-lactone treatment (but not with an inactive analog U0124) significantly (p <
0.001) reduces Ep-L-LTP. Individual traces taken at 30 min are shown in the inset. B, In isolated
dendrites, pre-incubation with MEK inhibitor U0126 before 3-lactone treatment (but not with
an inactive analog U0124) significantly (p << 0.001) reduces Ep-L-LTP. Individual traces taken
at 30 min are shown in the inset.

Extracellular signal-regulated kinase inhibition significantly
decreases f3-lactone-mediated enhancement in Ep-L-LTP
Extracellular signal-regulated kinase (ERK; also called mitogen-
activated protein kinase, MAP kinase) plays a role in regulating
translation induced by neuronal activity and phosphorylation
of some translation factors including eIF4E (Kelleher et al,
2004a). In forskolin-induced L-LTP, upregulation of translation
of mRNAs that contain 5’ oligopyrimidine tracts depends on
mTOR, ERK, and PI3K (Gobert et al., 2008). Furthermore, ERK
upregulates the components of the translation machinery in den-
drites, such as eEF1A, that are regulated by the mTOR pathway
(Tsokas et al., 2007). These observations suggest cross talk be-
tween ERK and the mTOR pathway. Therefore we sought to test
whether ERK plays a role in the increase in Ep-L-LTP brought
about by proteasome inhibition.

To test whether ERK plays a role in B-lactone-mediated en-
hancement of Ep-L-LTP, we pre-incubated the slices with U0126
(20 uM), an inhibitor of MEK, a kinase that activates ERK. As
control, we used an inactive analog U0124 (20 um). We then
treated the slices with B-lactone. We found that U0126 (but not
the inactive analog U0124) significantly inhibits the B-lactone-
mediated increase in Ep-L-LTP (at 30 min: U0126 + B-lactone,
139 = 15%, n = 8; U0124 + B-lactone, 193 * 15%;n = 6; p <
0.001, t test; Fig. 4A).

Since the induction of L-LTP depends on protein translation
in dendrites, it was important to test whether ERK function is
critical for enhancement of Ep-L-LTP in dendrites caused by
proteasome inhibition. Therefore, we tested the effect of U0126
and the inactive analog U0124 on hippocampal slices surgically
cut to isolate dendrites (Fig. 1A) before treating the slices with
B-lactone. We observed that U0126 (but not U0124) significantly
inhibits the B-lactone-mediated increase in Ep-L-LTP in isolated
dendrites (at 30 min: U0126 + B-lactone, 151 * 10%, n = 9;
U0124 + B-lactone, 180 * 13%, n = 6; p < 0.001, ¢ test; Fig. 4B).
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Blockade of protein synthesis after proteasome inhibition in
isolated dendrites prevents the decline in L-LTP maintenance
brought about by proteasome inhibition alone

The increase in Ep-L-LTP mediated by $-lactone is not main-
tained, and by ~150 min after tetanization it starts to decline
below L-LTP levels observed in untreated control slices. Previ-
ously we showed that in intact slices this decline is likely to occur
because proteasome inhibition blocks the transcription required
for L-LTP maintenance (Dong et al., 2008). We did, however,
observe the decline in L-LTP with 3-lactone even in isolated den-
drites. What causes the decline in L-LTP maintenance in isolated
dendrites? We hypothesized that initially translation activators
are stabilized by B-lactone and in later stages, translation repres-
sors are stabilized. We postulated that the synthesis of these re-
pressors occurs at basal level (i.e., they are not translationally
regulated) because earlier biochemical evidence suggested that
translational activators are regulated by titratable repressors
(Meyuhas, 2000). Therefore, inhibition of their degradation
causes their buildup, leading to inhibition of translation at later
stages; thus causing blockade of L-LTP maintenance. A corollary
of this hypothesis is that, in the absence of the repressor buildup,
the initial stabilization of translational activators by proteasome
inhibition should be adequate for L-LTP maintenance. If these
ideas are correct, then blocking protein synthesis after applica-
tion of B-lactone to slices should prevent the decline in L-LTP
maintenance. To test this hypothesis, we treated the surgically cut
hippocampal slices (Fig. 1A) with B-lactone. We then incubated
the slices with anisomycin (25 uM) for 1 h after which we induced
L-LTP. After inducing L-LTP, we continued anisomycin appli-
cation through the superfusion fluid for an additional hour
(Fig. 5A). We found that application of anisomycin after in-
cubation with B-lactone reversed the decline in L-LTP mainte-
nance in isolated dendrites (at 180 min: B-lactone, 103 £ 4%;
[B-lactone + anisomycin, 128 * 12%; control, 131 * 15%; F(, ;) =
17.578, p = 0.001, one-way ANOVA; B-lactone vs Control: p =
0.004; B-lactone vs B-lactone + anisomycin: p < 0.001;
B-lactone + anisomycin vs Control: p = 0.168; post hoc Tukey
test; Fig. 5B).

Expression of translational activators peaks early and that of
repressors peaks later during L-LTP

To test our hypothesis at the molecular level, we examined the
quantities of two positive translational regulators eIF4E and
eEF1A, and two negative translational regulators Paip2 and 4E-
BP2 in the mTOR pathway. In non-neuronal cell types these
proteins are known to be degraded by the UPP (Murata and
Shimotohno, 2006; Yoshida et al., 2006; Koiwai et al., 2008;
Yanagiya et al., 2012). We chose 4E-BP2 because in hippocampal
neurons 4E-BP1 expression is negligible and 4E-BP2 is the pre-
dominant isoform (Banko et al., 2005).

We first determined the time course of expression of these
proteins. For eIF4E and eEF1A, we induced L-LTP with the
4-train protocol (4 X 100 Hz) and fixed the slices 30, 45, 90, and
120 min after tetanization. We then performed immunobhisto-
chemistry with anti-eIF4E and anti-eEF1A antibodies and visu-
alized the immunoreactivity by using confocal laser scanning
microscopy. Both eIF4E and eEF1A reached their peak level of
expression at 45 min (elF4E [all time points]: H,) = 17.996,p =
0.001, n = 6, Kruskal-Wallis one-way ANOVA on ranks; eIF4E
[at 45 min]: 562 * 145%, p < 0.05 compared with its time-
matched control and other time points, Student-Newman—Keuls
post hoc test; eEF1A [all time points]: H,, = 15.116, p = 0.004,
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n = 6, Kruskal-Wallis One-way ANOVA
on ranks; eEF1A [at 45 min]: 341 = 93%,
p < 0.05 compared with its time-matched
control and other time points, Student—
Newman—Keuls post hoc test; Fig. 6).

For Paip2 and 4E-BP2, we induced
L-LTP with the 4-train protocol and fixed
the slices 30, 60, 90, and 120 min after
tetanization. We then performed immu-
nohistochemistry with anti-Paip2 and
anti-4E-BP2 antibodies and visualized the
immunoreactivity by using confocal mi-
croscopy. Both Paip2 and 4E-BP2 reached
their peak level of expression at 90 min
(Paip2 [all time points]: Hy,, = 23.672,
p =0.001, n = 6, Kruskal-Wallis one-way
ANOVA on ranks; Paip2 [at 90 min]:
323 £ 33%, p < 0.05 compared with its
time-matched control and other time
points, Student-Newman—Keuls post hoc
test; 4E-BP2 [all time points]: Hyy =
13.468, p = 0.009, n = 6, Kruskal-Wallis
one-way ANOVA on ranks; 4E-BP2 [at 90
min]: 263 * 35%, p < 0.05 compared
with its time-matched control and other
time points, Student-Newman—Keuls
post hoc test; Fig. 7).
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The time course results described above
support the idea that early during L-LTP
translational activators increase, and at
later stages the translational repressors ac-
cumulate. If proteasome inhibition were
to increase the quantities of these activa-
tors and repressors, then the enhance-
ment of Ep-L-LTP and the blockade of
L-LTP maintenance by B-lactone could
be explained in molecular terms. There-
fore, we first tested whether B-lactone
treatment enhanced the amount of
elF4E and eEF1A during L-LTP. Since it
would be difficult to reliably measure an increase over and
above the peak expression level of these proteins, we chose a
time point preceding the time when the expression of these
proteins peaked during L-LTP. Given that the amounts of
elFAE and eEF1A peak at 45 min, we tested the effect of
B-lactone at 30 min. Although B-lactone treatment caused an
increase in eEF1A and eIF4FE in control slices, in slices with
L-LTP induction after incubation with B-lactone, the quantity
of these proteins was significantly higher than treatment with
B-lactone alone or L-LTP alone. (eIF4E: with L-LTP induction,
257 £ 32%; B-lactone alone, 314 * 42%; with L-LTP induction
after B-lactone, 478 = 78% relative to time-matched control set
at 100%; F; 54y = 12.680, p = 0.001, n = 7, one-way ANOVA;
LTP vs B-lactone + LTP, p < 0.01; B-lactone vs B-lactone + LTP,
p < 0.05, Student—-Newman—Keuls post hoc test; eEF1A: with
L-LTP induction: 152 = 19%; B-lactone alone, 253 = 13%; with
L-LTP induction after B-lactone, 363 * 36% relative to time-
matched control set at 100%; F; »5, = 33.168, p = 0.001, n = 6;
one-way ANOVA; LTP vs B-lactone + LTP, p < 0.001; B-lactone

Figure 5.

100
Time (Min)

Reversal of proteasome inhibition-mediated decrease in L-LTP maintenance in isolated dendrites by subsequent
inhibition of protein synthesis. 4, Schematic outline of the experiment: hippocampal slices were pre-incubated with 3-lactone for
30min and then they were incubated with anisomycin for 60 min. Anisomycin was also added to the ACSF used for superfusion and
maintained for 60 min after the first tetanus. B, Treatment with (3-lactone alone (open diamonds) blocks L-LTP maintenance in
isolated dendrites relative to L-LTP without any treatment, i.e., control (open circles). Application of anisomycin after 3-lactone
treatment (filled triangles) reverses blockade of L-LTP maintenance and restores maintenance to normal levels seen in L-LTP
without any treatment, i.e., control (3-lactone vs B3-lactone + anisomycin: p << 0.001; B-lactone + anisomycin vs Control:p =
0.168). Inset, Representative traces taken at different time points (1 = baseline, 2 = 30 min; 3 = 180 min) for 3-lactone,
[3-lactone + anisomycin, and control.

vs B-lactone + LTP, p < 0.001; Student—-Newman—Keuls post hoc
test; Fig. 8).

Next, we investigated the effect of B-lactone on Paip2 and
4E-BP2 at 60 min because these proteins reach their peak
expression level at 90 min. While B-lactone treatment in-
creased the amount of Paip2 and 4E-BP2 in control slices, in
slices with L-LTP induction after incubation with B-lactone
the quantity of these proteins was significantly higher than
treatment with B-lactone alone or L-LTP alone (Paip2: with
L-LTP induction, 232 = 23%; B-lactone alone, 193 = 30%; with
L-LTP induction after B-lactone, 345 * 45% relative to time-
matched control set at 100%; F; 5oy = 12.008, p < 0.001, n = 6,
one-way ANOVA; LTP vs B-lactone + LTP, p < 0.05; B-lactone
vs B-lactone + LTP, p < 0.01, Student—Newman—Keuls post hoc
test; 4E-BP2: with L-LTP induction, 207 £ 21%; B-lactone
alone, 242 * 30%; with L-LTP induction after B-lactone,
467 * 85% relative to time-matched control set at 100%;
Hy = 17.567, p < 0.001, n = 6, Kruskal-Wallis one-way ANOVA
on ranks; LTP vs B-lactone + LTP, p < 0.05, n = 6; B-lactone vs
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B-lactone + LTP, p < 0.05, n = 6; Student—Newman—Keuls post
hoc test; Fig. 9).

Inhibition of mTOR pathway components blocks B-lactone-
mediated increase in newly synthesized proteins

Our electrophysiological data indicate that proteasome inhibi-
tion by B-lactone has its effects on L-LTP through modulation of
the components of the mTOR pathway. To directly test the con-
nection between the 3-lactone effect and translation mediated by
the mTOR pathway in the hippocampus, we measured the syn-
thesis of new proteins by monitoring **S-methionine incorpora-
tion over time. First, we measured the effect of B-lactone and that
of rapamycin. We found that B-lactone causes an increase in
*>S-methionine-labeled proteins and pre-incubation with rapa-
mycin blocks this increase at all time points (for example, at 60
min; B-lactone, 158 = 35%; rapamycin + B-lactone, 96 = 15%;
rapamycin alone, 76 * 32% relative to control set at 100%;
H;, = 15.299, p < 0.01, n = 6, Kruskal-Wallis one-way ANOVA
on ranks; Control vs B-lactone, p < 0.05, n = 6; B-lactone vs
rapamycin + [B-lactone, p < 0.05, n = 6; Student—Newman—
Keuls post hoc test; Fig. 10A, B).

Next we performed a time course experiment to test the effect
of 4EGI-1, which inhibits interaction between eIF4E and elF4G.
We observed that pre-incubation with 4EGI-1 prevents the in-
crease in the amounts of **S-methionine-labeled proteins caused
by B-lactone at all time points (for example, at 60 min: 3-lactone,
157 £ 63%; 4EGI-1+ B-lactone, 53 = 27%; 4EGI-1 alone, 59 *
25%; relative to control set at 100%; H s, = 19.747, p < 0.001,
n = 6, Kruskal-Wallis one-way ANOVA on ranks; Control vs

B-lactone, p < 0.05, n = 6; B-lactone vs 4EGI-1+ B-lactone, p <
0.05, n = 6; Student—-Newman—Keuls post hoc test; Fig. 10 C,D).

Discussion

The role of the UPP in synaptic plasticity, although now generally
accepted, is still not clear with respect to mechanistic knowledge.
Through a series of electrophysiological experiments, we previ-
ously showed disparate roles for proteasome-mediated degrada-
tion in dendrites and the nucleus. We found that in dendrites the
proteasome limits synaptic plasticity, and therefore proteasome
inhibition enhances Ep-L-LTP (which includes the L-LTP induc-
tion phase), which depends on local protein translation from
pre-existing mRNAs in dendrites. Earlier, we also obtained mo-
lecular evidence for an opposite role for the proteasome in the
nucleus in facilitating transcription (Dong et al., 2008). Nuclear
proteasome inhibition, therefore, blocks L-LTP maintenance by
hindering the new gene transcription required for this process. In
this study, we provide evidence for an important new role for the
proteasome in control of the translation required for L-LTP
through modulation of positive as well as negative translational
regulators.

It must be noted that although others have investigated the
effect of proteasome inhibition on synaptic plasticity, they failed
to discover the enhancing effect of proteasome inhibition on
what we call Ep-L-LTP. This is most likely because one study used
nanomolar concentration of lactacystin (precursor of 3-lactone;
Fonseca et al., 2006) even though the effective concentration is in
the micromolar range (Fenteany et al., 1995; Dick et al., 1996).
We previously systematically tested dose responses of B-lactone
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and found that nanomolar concentrations did not affect either
induction or maintenance of L-LTP but micromolar concentra-
tions did (Dong et al., 2008). A second study used MG-132 (Kar-
pova et al., 2006), which is not a highly specific proteasome
inhibitor and is known to effectively inhibit other proteases such
as calpain and cathepsin B (Chain et al., 1999; Tang and Leppla,
1999). These issues were discussed in-depth in our previous publi-
cation (Dong et al., 2008). Our current study provides new molecu-
lar evidence to support our earlier electrophysiological results and
begins to provide a mechanistic explanation for the role of the pro-
teasome in Ep-L-LTP as well as L-LTP maintenance.

Proteasome inhibition-mediated enhancement of Ep-L-LTP
depends on the mTOR pathway and ERK function

Previously, we had an indication that the mTOR pathway might
be critical for enhancement of Ep-L-LTP because it was inhibited
by rapamycin before treatment with B-lactone (Dong et al.,
2008). The results of the present systematic study support a role
for the mTOR pathway in mediating Ep-L-LTP increase upon
B-lactone treatment. A key signaling molecule that lies upstream
of mTOR is PI3K. Our results showed that LY294002, an inhibi-
tor of PI3K, significantly reduced the increase in Ep-L-LTP
brought about by B-lactone. Moreover, a molecule that hinders
the interaction between eIF4E and elF4G, 4EGI-1, greatly re-
duced the enhancement in Ep-L-LTP caused by proteasome in-
hibition. Also, our **S-methionine-labeling experiments showed
that 4EGI-1 blocks the B-lactone-mediated increase in newly
synthesized proteins. Among the translational activators, eIF4G
is thought to be a master effector of the mTOR pathway (Thoreen

etal., 2012). Thus, our data support the idea that the proteasome
limits translation through the mTOR pathway, and therefore,
proteasome inhibition enhances mTOR-mediated translation
leading to an increase in Ep-L-LTP.

Our experiments also showed that ERK is crucial for Ep-L-
LTP enhancement mediated by proteasome inhibition. There are
conflicting reports on the link between the mTOR pathway and
ERK during LTP. A study showed that the kinase upstream of
mTOR, PI3K, regulates induction of LTP through an ERK-
independent mechanism (Opazo et al., 2003). This study, how-
ever, did not examine L-LTP. Hence, it is likely that protein
synthesis-independent early LTP uses ERK through a different
signaling pathway compared with L-LTP. In support of this idea,
another study on L-LTP induced by forskolin also found a role
for ERK, mTOR, and PI3K (Gobert et al., 2008). We previously
showed that proteasome inhibition-mediated Ep-L-LTP en-
hancement depends on cAMP-dependent protein kinase (PKA)
(Dong et al., 2008). Therefore, the signaling pathways that are in
play in forskolin-induced L-LTP (which works through activa-
tion of PKA) are perhaps similar to the one in the electrical L-LTP
paradigm used by us and many others.

Enhancement of Ep-L-LTP by proteasome inhibition likely
depends on stabilization of translational activators

Previously we showed that incubation of hippocampal slices with
anisomycin before treatment with 3-lactone blocks the protea-
some inhibition-mediated enhancement in Ep-L-LTP (Dong et
al., 2008). Proteasome inhibition likely stabilizes proteins that
have a positive influence on L-LTP. Therefore, we hypothesized
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that the proteins that promote translation might be among these
positive regulators of L-LTP. We chose to test our hypothesis by
studying eIF4E and eEF1A, both of which are known to be sub-
strates for the UPP in non-neuronal cell types (Murata and
Shimotohno, 2006; Koiwai et al., 2008). Our time course studies
on the expression of eIF4E and eEF1A showed that the peak
induction time (45 min) approximately coincides with the peak
of L-LTP induction. We observed increased expression of these
proteins both in the cell body and dendritic layers. Proteasome
inhibition augments the levels of eIF4E and eEF1A. This likely
leads to enhanced translation of other positive regulators of
L-LTP, thus leading to an increase in Ep-L-LTP.

Blockade of L-LTP maintenance in dendrites by proteasome
inhibition is likely due to stabilization of translational
repressors

In isolated dendrites, Ep-L-LTP is enhanced but is not sustained.
Since application of anisomycin after treatment of the slices with
B-lactone restores normal levels of L-LTP, we reasoned that the
decay in L-LTP in isolated dendrites occurs because of slow
buildup of translational repressors. Our immunohistochemical
experiments on the time course of Paip2 and 4E-BP2 expression
support this notion. The peak amount of these negative transla-
tional regulators is seen at 90 min, which is before the decay of
L-LTP. Application of B-lactone further increases the quantity of
these repressors. Therefore, proteasome inhibition-mediated de-

cay in L-LTP maintenance in dendrites is likely due to increased
activity of translational repressors such as Paip2 and 4E-BP2.

Possible roles of protein degradation in regulating translation
critical for L-LTP induction and maintenance

Based on our earlier results and the present data, it appears that
protein degradation by the UPP limits induction of L-LTP (and
Ep-L-LTP) by degrading the translational activators such as
eIF4E and eEF1A. These activators, as well as the positive regula-
tors of synaptic plasticity whose synthesis these activators stimu-
late, are likely to be rapidly synthesized and degraded. Hence the
new protein synthesis requirement for L-LTP induction reflects
the need to overcome degradation to provide a net increase in
these proteins. This notion is supported by the results showing
that when we applied anisomycin after B-lactone, L-LTP was still
induced. We postulate that this seeming protein synthesis inde-
pendence of L-LTP was due to the fact that the rapidly turning-
over proteins, which otherwise would be degraded were now
stabilized. This idea is supported by our *>S-methionine-labeling
experiments, which show that B-lactone increases the quantity of
newly synthesized proteins and inhibition of mTOR pathway
components blocks this increase.

Under physiological conditions, stimulations that are suffi-
cient to induce L-LTP likely cause stabilization of these activators
perhaps by phosphorylation of specific residues in these proteins.
In support of this idea, several proteins are known to be made
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resistant to degradation by phosphorylation (Hegde, 2004).
elF4E and eEF1A are both known to be degraded by the UPP but
the signals that trigger their degradation have not yet been iden-
tified. A well studied Ser-209 phosphorylation of eIF4E does not
affect its ubiquitination (Murata and Shimotohno, 2006). Thus,
phosphorylation on different sites or other post-translational
modifications might make eIF4E a target for ubiquitination and
degradation. In addition to stabilization of the activators, for the
translation required for L-LTP to proceed, the repression by the
negative regulators needs to be relieved. Degradation of trans-
lational repressors such as 4E-BP2 also might be regulated by
phosphorylation, since degradation of a closely related mole-
cule 4E-BP1 is known to be regulated by phosphorylation in non-
neuronal cell types (Yanagiya et al., 2012).

Our studies have just begun to identify the elements of trans-
lational pathways regulated by ubiquitin proteasome-mediated
proteolysis during L-LTP. Degradation of translational activators
likely plays a role in setting the threshold for induction of L-LTP
in that only strong enough stimuli would cause stabilization of
translational activators and allow adequate translation to pro-
ceed. It appears that degradation of repressors is also necessary
for translation to continue. Eventual stabilization of repressors
during late stages of L-LTP likely limits the duration of transla-
tion and may be important in preventing saturation of synaptic
strengthening. Also, it is becoming clear that too much transla-
tion is harmful. For example, excessive protein synthesis that
occurs in Drosophila Fragile X mutants blocks long-term memory
(Bolduc et al., 2008). Also, increasing the levels of eIF4E in mice
results in exaggerated cap-dependent translation and causes syn-
aptic pathology and autism-like behavior (Gkogkas et al., 2013;
Santini et al., 2013). Thus, ubiquitin proteasome-mediated pro-
tein degradation is likely to be critical for physiological regulation
of translation in the nervous system and therefore perturbation
of proteolytic regulation of translation might lead to neuronal
pathology. Dysregulation of proteolysis, which is often seen in
neurodegenerative diseases (Gong et al., 2006; Dennissen et al.,
2012), therefore might have an impact on neuronal function
through its deleterious effect on protein synthesis as well.
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