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Abstract

The site frequency spectrum (SFS) is of primary interest in population genetic studies, because the SFS compresses
variation data into a simple summary from which many population genetic inferences can proceed. However, inferring
the SFS from sequencing data is challenging because genotype calls from sequencing data are often inaccurate due to high
error rates and if not accounted for, this genotype uncertainty can lead to serious bias in downstream analysis based on
the inferred SFS. Here, we compare two approaches to estimate the SFS from sequencing data: one approach infers
individual genotypes from aligned sequencing reads and then estimates the SFS based on the inferred genotypes (call-
based approach) and the other approach directly estimates the SFS from aligned sequencing reads by maximum like-
lihood (direct estimation approach). We find that the SFS estimated by the direct estimation approach is unbiased even
at low coverage, whereas the SFS by the call-based approach becomes biased as coverage decreases. The direction of the
bias in the call-based approach depends on the pipeline to infer genotypes. Estimating genotypes by pooling individuals in
a sample (multisample calling) results in underestimation of the number of rare variants, whereas estimating genotypes
in each individual and merging them later (single-sample calling) leads to overestimation of rare variants. We charac-
terize the impact of these biases on downstream analyses, such as demographic parameter estimation and genome-wide
selection scans. Our work highlights that depending on the pipeline used to infer the SFS, one can reach different
conclusions in population genetic inference with the same data set. Thus, careful attention to the analysis pipeline and
SFS estimation procedures is vital for population genetic inferences.

Key words: site frequency spectrum, base-calling errors, maximum likelihood, accuracy.

Introduction
The availability of full-genome sequence data promises
to increase understanding of molecular evolution in a
broad array of organisms. These large-scale data sets also
raise statistical challenges because inferred genotypes from
sequencing data are often inaccurate due to high error
rates (e.g., base-calling and alignment errors) (Bentley et al.
2008; Nielsen et al. 2011). If these errors not accounted for,
population genetic inference based on the genotype calls
could be misleading (Pool et al. 2010).

Population genetic inference often proceeds by compress-
ing large-scale variation data into simple and informative
summary statistics, such as allele frequencies, heterozygosity,
and nucleotide diversity. The distribution of allele frequencies
across sites, the so-called site frequency spectrum (SFS), is of
primary interest, as many summary statistics are simple func-
tions of the SFS and a number of population genetic infer-
ences can proceed directly from the SFS. For example, a family
of unbiased estimators of the population mutation rate �,
called � estimators, is a simple function of the SFS (Achaz
2009). These include Watterson’s � estimator that uses the
number of segregating sites (Watterson 1975) and Tajima’s �

estimator that is based on the average number of pairwise
nucleotide differences between two sequences (Tajima 1983;
Gutenkunst et al. 2009). Inferring demographic history (such
as rates of ancestral population growth) can proceed from the
SFS directly (Gutenkunst et al. 2009) or using approximate
Bayesian computation approaches (Beaumont 2010) that
often rely on summary statistics of the SFS. Another use of
the SFS is in testing neutrality based on the frequency spec-
trum (Tajima 1989; Fu and Li 1993; Fay and Wu 2000; Achaz
2008, 2009). Neutrality tests based on the SFS compare dif-
ferent estimators of � to determine whether the observed SFS
deviates from that expected under the standard constant-size
equilibrium mutation-drift model. Large deviations from a
background distribution have been used to detect local
gene regions under selection, and this approach is used in
many empirical genome-wide selection scans (Andolfatto
2007; Begun et al. 2007; Andersen et al. 2012; Axelsson et al.
2013).

A number of approaches can be taken to infer the SFS
from NGS data. These can be classified into two broad cate-
gories. The first of these is a call-based approach, in which
individual genotypes are first inferred from aligned short reads
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and then the SFS is estimated based on these inferred geno-
types by allele counting. To infer genotypes from short-read
data, a number of programs have been developed, which
identify single-nucleotide variants (SNVs) and call genotypes.
Among them, two of the most popular tools are the Genome
Analysis Toolkit (GATK) (McKenna et al. 2010; DePristo et al.
2011) and SAMtools (Li, Handsaker, et al. 2009; Li 2011). The
details of the differences in the implementation of SAMtools
and GATK are presented in table 1. Both programs determine
whether a site is polymorphic based on the pileup of reads at
a given site (SNV calling) and estimate individual genotypes if
the site is variable (genotype calling). Each program has two
different SNV and genotype calling pipelines, a single-sample
and a multisample calling mode. With the single-sample call-
ing pipeline, aligned sequencing read data are analyzed for
one individual at a time and then the most likely genotypes
for that individual alone are determined. In contrast, with the
multisample calling pipeline, aligned sequencing read data are
analyzed for all individuals in a sample simultaneously and
then the most likely genotype configurations for all individ-
uals are determined. Imputation methods represent an ex-
tension of multisample calling in which a reference panel is
used and often linkage disequilibrium (LD) from multiple
variant sites is integrated into making calls at any one variant
(Li, Willer, et al. 2009). In practice, imputation methods are
generally restricted to well-studied species with reference
samples such as the 1000 Genomes panel in humans
(Abecasis et al. 2012) and the Drosophila Genome
Reference panel in Drosophila melanogaster (Mackay et al.
2012).

The second approach is a direct estimation approach, in
which the SFS or summary statistics are directly inferred from
aligned short reads. This approach makes an implicit assump-
tion that inferred genotypes from sequencing data are inac-
curate and model this uncertainty. Several approaches have
been developed in this framework (Johnson and Slatkin 2008;
Lynch 2008, 2009; Liu et al. 2009, 2010; Kang and Marjoram
2011; Keightley and Halligan 2011; Kim et al. 2011). Recently,

Li (2011) proposed an EM algorithm and Nielsen et al. (2012)
proposed an approach using Broyden–Fletcher–Goldfarb–
Shanno (BFGS) steps to obtain the maximum likelihood
estimate (MLE) of the SFS based on individual genotype
likelihoods across all individuals and all sites. Both of these
methods are implemented in the ANGSD software (Nielsen
et al. 2012).

In this article, we use detailed, realistic simulations to
investigate the accuracy of these approaches to infer the
SFS from NGS data and the impact of bias in the inferred
SFS on the downstream analysis, such as genome-wide selec-
tion scans based on rank statistics and parameter estimates
for a given demographic model. Motivated by an interest in
populations and species that have nonexistent or poor im-
putation panels, we focused here on two-stage approaches
that use single-sample and multisample calls to infer the SFS.
On the basis of our findings, we conclude with guidelines and
recommendations for conducting population genetic infer-
ence using low-coverage sequencing data to avoid spurious
conclusions.

Results

Evaluating Accuracy of the Inferred SFS under the
Standard Model

We first evaluated the performance of the two SFS estimation
approaches (the call-based and direct estimation approach)
as a function of sequencing coverage. For this comparison, we
simulated 100 replicates of sequencing data for 10 diploid
individuals each from genomic regions of length 100 kb
under the standard model. The accuracy of the inferred SFS
was evaluated by two metrics: 1) the shape of the inferred SFS
in comparison to the ground-truth SFS (fig. 1A and B) and 2)
the distance between the inferred SFS from the ground-truth
SFS as measured by the Kullback–Leibler divergence metric
(KL divergence, see Materials and Methods) (fig. 1C).

We found that the direct estimation approach (repre-
sented as Direct) outperformed the call-based approach
(represented as Single-GATK, Multi-GATK, Single-SAMtools,

Table 1. Comparison of a GATK and SAMtools’s Multisample Calling Pipeline.

Step GATK SAMtools

[Calculating Genotype Likelihoods] For each individ-
ual, at each site, the likelihoods for 10 possible
genotypes (AA,GG,CC,TT,AC,AG,AT,CG,CT,GT) are
computed based on aligned reads.

Independent errors assumed. Dependent errors assumed.

[SNP calling] At each site, determine whether a site
is polymorphic based on posterior probabilities of
nonreference allele counts P(Xa

jD,�) where � is
an expected SFS under the standard model and
D is aligned reads.

A site is polymorphic if a
arg maxk PðX ¼ kjD, �Þ > 0:

A site is polymorphic if
PðX ¼ 0jD, �Þ< cutoff (default = 0.5).

[Genotype Calling] If a site is considered polymor-
phic, the maximum a posteriori genotype is as-
signed to each individual.

At each site, the same genotype prior
probabilities are used:
P(AA) = 1� 3h/2
P(Aa) = h

P(aa) = h/2,
where h is an expected heterozygosity

(default = 0.001)

At each site, genotype prior probabilities
are computed based on the estimated
nonreference allele frequency q and
assuming Hardy–Weinberg equilibrium:
P(AA) = p2

P(Aa) = 2pq
P(aa) = q2

aX denotes nonreference allele counts in a sample of n individuals.
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and Multi-SAMtools) across all coverage ranges (fig. 1).
The inferred SFS by the direct estimation approach was
most similar to the ground-truth SFS. In contrast, the esti-
mated SFS by the call-based approach became less accurate as

coverage decreased and most of the deviation came from the
sites with low allele frequency, such as singletons and dou-
bletons (fig. 1A and B). For higher coverage data (10� per
individual), the estimated SFS by the call-based methods
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FIG. 1. Evaluation of accuracy of inferred SFS by the call-based and direct estimation approach based on 100 replicates of genomic regions of length
100 kb. (A) Shapes of the inferred SFS (shown in colors in legend) compared with the ground-truth SFS (shown in gray) for coverage 2� (top), 5�
(middle), and 10� (bottom). (B) Relative deviation of a fraction of sites with the nonreference allele counts of 1–4. (C) Distance between the inferred
and ground-truth SFS as measured by KL divergence.
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approaches the ground-truth SFS, but the difference does not
become negligible until 20� or higher (data not shown).

We also found that, depending on the genotyping pipeline
(single-sample or multisample calling), the call-based ap-
proach resulted in different levels of performance in estimat-
ing the SFS. Interestingly, bias at the sites with rare variants
went in opposite directions—single-sample calling led to
overestimation of rare variants, whereas multisample calling
led to underestimation of rare polymorphisms (fig. 1A and B).
At coverage 2�, on average, singleton calls by single-sample
calling were increased by more than 100% and doubleton
calls were increased by 90%, thus leading to a skew in the
SFS toward rare variants. In comparison, singleton calls by
multisample calling were decreased by 60% and doubleton
calls were decreased by 10%. This led to a distortion of the
observed SFS, so that singletons were observed less often than
doubletons, which is unexpected under the standard model.
Overall though, we observed that the call-based approach
with multisample calling (represented as Multi-GATK and
Multi-SAMtools) performed better than the call-based
approach with single-sample calling (represented as Single-
GATK, Single-SAMtools) as reflected by the smaller KL diver-
gence for multisample calling (fig. 1C).

The opposite performance of the single-sample and
multisample caller (i.e., the multisample caller leading to
underestimation of rare variants, whereas single-sample

caller leading to overestimation of rare variants) is likely
because a small number of erroneous reads strongly affects
a single-sample caller, whereas a small number of correct
alternate reads tends to be ignored in multisample caller.
For example, at a site for an individual, suppose that we ob-
serve three aligned reads with two reference bases (R) and one
nonreference base (V). If the base quality is reasonable, a single
sample caller will often weigh the nonreference base as a real
variant and produce a heterozygote call (G = R/V) even
though a site is truly fixed for a reference allele. In contrast,
if all other individuals are fixed for the reference, the
multisample caller will more often consider the nonreference
base as a sequencing error and produce a homozygote call
(G = R/R) even though a site is a truly singleton site and reads
come from a heterozygous individual.

Finally, controlling for the genotype calling pipeline, the
KL divergence was smaller for SAMtools than GATK (fig. 1C).
Consistent with this, we observed that SAMtools led to less
overestimation (with single-sample calling) or less underes-
timation (with multisample calling) problems at sites with
low frequency (fig. 1A and B). That said, SAMtools appears
to be systematically underestimating minor allele frequen-
cies, which causes underestimation for low-frequency
nonreference alleles and overestimation for high-frequency
nonreference alleles. Around frequency 1/2, SAMtools ei-
ther underestimates or overestimates nonreference allele
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FIG. 2. The effect of filtering of on the SFS construction for each call-based approach (panel columns) and coverages of 2�, 5�, 10�, and 20�
(panel rows).
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frequencies (depending on which allele is minor) leading to
the lowest accuracy around frequency 1/2. The different
performance between GATK and SAMtools might be due
to different models for calculating genotype likelihoods
(step 1 in table 1) and different priors for inferring genotypes
(step 3 in table 1).

Impact of Filtering

When analyzing sequencing data, researchers often use strict
filters to account for uncertainty associated with genotype
calls. A common practice is to use genotype calls that exceed
some threshold for genotype quality (GQ) or depth of cov-
erage (DP) and treat less confident genotype calls as missing
data. However, these filters can adversely affect SFS estimation
based on genotype calls (Johnson and Slatkin 2008; Kim et al.
2011). Therefore, we explored whether it is better to estimate
the SFS with filtering or without filtering. As a filter, we used a
combination of GQ of 0 or 20, and DP of 0 or half of mean
coverage (i.e., 1 for 2�, 2 for 5�, 5 for 10�, and 10 for 20�).
Figure 2 shows that filtering based on GQ or DP does not
alleviate the bias associated with called-based approaches.

Impact on � Estimators and on Neutrality Tests
under the Standard Model

Next, we investigated the impact of bias in inferred SFS on �
estimators and a neutrality test. With the call-based approach,
both � estimators and the neutrality test were biased. The bias
direction depended on the genotype calling pipeline (fig. 3,
call based): with the single-sample calling pipeline, �̂s and �̂�
were overestimated and Tajima’s D was negatively skewed

because of an excess of low frequency variants in the inferred
SFS, whereas with the multisample calling pipeline, �̂s and �̂�
were underestimated and Tajima’s D was skewed toward
positive values due to a deficit of low frequency variants in
the inferred SFS. Comparing �̂s and �̂�, the bias was bigger in
�̂s than in �̂� for a sample size of 10. This is because adding a
new artificial singleton by sequencing errors adds a new seg-
regating site but adds only 2/10 to the average pairwise dif-
ferences. In contrast, for the direct estimation approach, both
�̂s and �̂� were unbiased (mean �̂s and �̂� were close to true
value of 0.001) and consequently Tajima’s D was unbiased
(mean D was close to zero as expected under the standard
model (fig. 3, Direct).

Motivated by the fact that sequencing errors typically
appear as artificial singletons and result in a false excess of
observed singletons, Achaz (2008) proposed to ignore single-
tons when computing � estimators to reduce bias while re-
taining a powerful enough test to detect deviations from the
standard model. We explored if using Achaz’s correction fol-
lowed by the call-based approach can reduce bias in � esti-
mators and in the neutrality test (fig. 3, call based +

correction). In our simulated sequencing data, however, his
assumptions about sequencing errors occurring as only sin-
gletons were violated: We observed sequencing errors af-
fected not only singletons but also other allele-frequency
bins (supplementary fig. S2, Supplementary Material online)
and sequencing errors led to either an excess of singletons
(with the single-sample calling pipeline) or a deficit of single-
tons (with the multisample calling pipeline). Nevertheless,
Achaz’s correction followed by the call-based approach
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FIG. 3. Bias in � estimators (top, middle) and neutrality test statistics (bottom) by the call-based approach alone, the call-based approach plus Achaz’s
correction, and the direct estimation approach, as a function of mean coverage.
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could reduce bias in � estimators and Tajima’s D across ranges
of coverage.

SFS and Parameter Estimation under the Exponential
Population Growth

To explore robustness of SFS estimation to departures from
the standard model, we evaluated the performance based on
the simulated sequencing data under an exponential popu-
lation expansion model with a growth rate of 0.01% (fig. 4). As
expected, we observed that the ground-truth SFS under the
exponential population growth model showed an excess of
rare polymorphisms compared with that under the constant
population size model (supplementary fig. S3, Supplementary
Material online) and resulted in a negative Tajima’s D (fig. 4D).

We observed similar bias patterns as in figure 1: The direct
estimation outperformed that the call-based approach. The
estimated SFS by the direct estimation approach was most

similar to the ground-truth SFS across the range of coverages
simulated, whereas the estimated SFS by the two-step
estimation approach had bias in that rare variants were over-
estimated with the single-sample calling pipeline and under-
estimated with the multisample calling pipeline at low
coverage (fig. 4A and B). Furthermore, bias in the estimated
SFS subsequently influenced neutrality tests: Tajima’s D with
the multisample calling pipeline was more positive than the
ground-truth Tajima’s D, whereas Tajima’s D with the single-
sample calling pipeline was more negative (fig. 4D).

Interestingly, under the population growth model, the
single-sample calling pipeline performed better than the
multisample calling pipeline as shown by the KL divergence
(fig. 4C). In particular, at coverage 2�, the estimated SFS with
the multisample calling pipeline in GATK was extremely dis-
torted in that singleton calls were less than doubleton calls
(fig. 4A), which in turn led to a positive Tajima’s D showing an
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evidence of population contraction (fig. 4D). The poor per-
formance of the multisample calling pipeline is because the
Bayesian inference for SNP discovery and genotype calling in
GATK and SAMtools is based on priors that are derived under
a constant size model.

Next, we investigated how the bias in the estimated SFS
affects demographic inference based on the inferred SFS. By
using dadi, we estimated parameters for the exponential pop-
ulation growth model, such as a present population size (N)
and a time when population growth has started (T), based on
the inferred SFS from sequencing data (fig. 5). The MLE of the
growth rate with the direct estimation approach was almost
unbiased across all ranges of coverage (close to the true
growth rate 0.01%), whereas the growth rate was overesti-
mated with the call-based approach with the single-sample
calling pipeline and underestimated with the call-based
approach with the multisample calling pipeline. This bias
became more serious as coverage decreases: In particular, at
coverage 2�, the growth rate estimate from GATK multisam-
ple calling becomes negative (–1%) indicating the inappro-
priate inference of population contraction rather than
growth.

Impact of Changes in Parameters

To assess the robustness of our results, we explored how
changes in nucleotide diversity (�), sequencing error rates
("), and underlying coalescent models affect the SFS estima-
tion. To allow a straightforward comparison, we used the
same parameters as in figure 1 apart from varying one
parameter of interest at a time.

First, we examined the case where expected nucleotide
diversity is five times smaller than the sequencing error rate
(� ¼ 2� 10�4, � ¼ 10�3) and five times larger than the er-
ror rate (� ¼ 5� 10�3, � ¼ 10�3). Supplementary figures S2
and S3, Supplementary Material online, show that the SFS
reconstruction methods behave almost identically as in
figure 1—we observe that the SFS estimated by the direct
estimation method is close to the true SFS even at 2�,
whereas the SFS by the call-based approach is biased in
that the single-sample caller overestimates rare variants and
the multisample caller underestimates rare variants. However,
when diversity gets smaller than the error rate, we observe

that the KL divergence is larger for the single-sample caller
compared with the multisample caller (fig. 6A). When diver-
sity becomes larger than the error rate, the KL divergence for
both single-sample and multisample caller becomes larger
(fig. 6A).

Next, we explored the effect of sequencing error rates on
the SFS reconstruction with a fixed diversity of 10�3 under
the standard model. We observed similar bias patterns to pre-
vious cases (supplementary fig. S5, Supplementary Material
online), but when the error rate reaches 10�1, we need cov-
erage higher than 20� for the estimated SFS by the call-based
approach to be correct.

Finally, we examined how underlying coalescent models
affects the SFS reconstruction based on sequencing data. We
examined the case where the SFS is skewed to rare variants
(population growth model) and the SFS is skewed to medium
frequencies (population decline model) (supplementary
fig. S6, Supplementary Material online). In both cases, we
observed that the bias pattern in the inferred SFS was similar
to that for the constant population size model (fig. 4 for
the population growth model, supplementary fig. S7,
Supplementary Material online, for the population decline
model). We also observed that the violation to the constant
size model led to a larger KL divergence for the multisample
caller than the single-sample caller (fig. 6).

Genome-Wide Selection Scans

We next explored how error in the SFS affects the perfor-
mance of genome-wide selection scans by an outlier detec-
tion approach. For this evaluation, we simulated sequencing
data of length 10 Mb where a new beneficial mutation arose
around 5 Mb, increased in frequency, and became fixed at the
time of sampling. Figure 7B shows that at coverage 2�,
Tajima’s D with the direct estimation approach was almost
unbiased in both neutral and selected regions, whereas
Tajima’s D was skewed positive with the call-based approach
with multisample calling and skewed negative with the call-
based approach with the single sample calling. However, after
converting Tajima’s D to rank-based statistics, such as empir-
ical P values, the difference between the direct estimation and
call-based approach became negligible enough to select the
same set of windows as a candidate region of a positive
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selection even at low coverage (fig. 7A). This indicates that
rank-based statistics are less sensitive to bias in the inferred
SFS, and if a positive selection is strong enough to be distin-
guishable from the neutral background, one can identify re-
gions of positive selection with relative robustness to the SFS
estimation approach used. However, over 100 replicates, the
direct method had a higher power and smaller false-positive

rates than the call-based approaches, and all call-based
approaches performed with similar power and false-positive
rates (fig. 7C).

Discussion
With the rapid development of sequencing technologies, the
obstacle in population genetic studies is in our ability to
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interpret such data with precision. The results shown here
demonstrate that, depending on the pipeline used to analyze
sequencing data, one can reach starkly different conclusions
with the same data set. Simple allele counting after inferring
individual genotypes from aligned sequencing data (call-
based approach) leads to bias in the estimated SFS toward the
sites with rare variants, and this bias is in opposite directions
depending on the pipeline to infer genotypes: Multisample
calling leads to underestimation of rare variants, whereas
single-sample calling leads to overestimation of rare variants.
Next, the bias in the inferred SFS subsequently results in bias
in � estimators, neutrality test, and demographic inference. In
contrast, we have shown that the SFS directly estimated from
aligned sequencing data (direct estimation approach) was
almost unbiased across ranges of coverage. Finally, genome-
wide selection scans based on rank-based statistics are less
sensitive to bias in the inferred SFS enough to capture the
correct regions of positive selection even at low coverage.
Given that many current studies using low to medium cover-
age sequencing data often use inferred genotypes to precede
population genetic inference, our studies highlight that care is
vital to avoid any potential bias problems and incorrect
conclusions.

We reason that the increased performance of the direct
estimation approach over the call-based approach is that it
gains information from other individuals across all sites,
whereas the call-based approach with multisample calling
gains information from other individuals only at a given site
and that with single-sample calling considers read data only
for a given individual at a given position. Moreover, because
the direct estimation approach can easily handle missing data,
more information can be utilized to infer the SFS. To estimate
the SFS from genotype calls by allele counting, we only used
fully observable sites. The fraction of fully observable sites
rapidly decreases as coverage decreases. We observed that
for a sample of 10 individuals, only 20% of sites are fully ob-
servable at coverage 2�, 90% of sites at coverage 5�, and
99.9% of sites at coverage 10�. Handling missing data in SFS-
based approaches has been a problem before short-read se-
quencing data and approaches to ameliorate the problem
include subsampling the data down to a sample size for
which most sites are observed (e.g., Nelson et al. 2012). An
advantage of the direct estimation approach is that it
can easily handle missing data during SFS estimation: It as-
signs a noninformative genotype likelihood for missing
genotypes and maximized the likelihood of the SFS. In this
way, it can utilize full information available in data, though it
comes at a greater computational cost associated with the
EM algorithm.

It is worth noting that there exist other frequently used
tools for SNP discovery and genotype calling other than
GATK and SAMtools. Among them, Stacks (Catchen et al.
2013) is a popular pipeline commonly used. Stacks is similar
to the single sample calling in that it only considers read data
for a given individual at a given site: It models read data for a
single individual at a specific site with a multinomial distri-
bution with a sequencing error rate for each site estimated by
maximum likelihood (Hohenlohe et al. 2010). Then, it uses a

likelihood ratio test (LRT) to assess the support for the most
likely genotype at a 5% significance level. If the LRT is not
significant, then the model assigns a homozygote genotype
for the most commonly observed nucleotide. Another tool,
Beagle (Browning and Browning 2009; Browning and Yu
2009), takes advantage of the pattern of LD at nearby sites
to infer genotypes, and as a result, genotype calling accuracy is
significantly improved and missing genotypes can be im-
puted. However, Beagle requires a modest sample size (e.g.,
on the scale of 50 individuals or higher) for LD information
and imputation, and this can be challenging for studies with
nonmodel organisms.

We should emphasize that our simulation studies are
based on multiple assumptions that can be often violated
in reality. In our simulation of sequencing data, we assumed
that reads had been aligned to the reference without errors.
In practice, however, this assumption is often violated in a
region with repeats, insertions, deletions, and copy number
variants. Hence, it might be important to catalog such regions
to avoid potential bias due to alignment errors. Furthermore,
we assumed that the number of reads at each site for a given
individual is distributed according to a Poisson distribution. It
is well known that the distribution of the number of reads
follows an overdispersed Poisson distribution. Therefore, even
though we concluded that the bias is almost negligible at
mean coverage greater than 20� from our simulation studies,
in reality, we might still observe nonnegligible bias at such
coverage.

One may argue that future studies will have increased
coverage and many of these problems will disappear.
However, with limited budgets, we expect a category of ex-
perimental work will continue in which it is most advanta-
geous to maximize the number of individuals by using low
coverage. The insights gained here suggest how careful anal-
ysis of low-coverage data can provide useful population ge-
netic inferences and that unquestioning use of basic analysis
pipelines will be problematic.

Materials and Methods
To compare different approaches for estimating the SFS
from sequencing data, we first conducted population genetic
simulations to produce haplotype data and then overlaid
sequencing errors assuming a paired-end short read sequenc-
ing approach.

Population Genetic Simulations

We simulated phased haplotypes for individuals by coalescent
simulations under three different scenarios: the standard
model (a neutral model with a constant population size)
and two deviations from the standard models: a neutral
model with an exponential population growth and positive
selection on a new beneficial allele (a hard sweep model
where a newly arisen beneficial allele increases in frequency
and ultimately is fixed in a population). All coalescent simu-
lations were performed using MSMS (Ewing and Hermisson
2010) with an effective population size of 10,000 diploid
individuals, a mutation rate per-base per-generation of
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2.5� 10�8 and a recombination rate of 1� 10�8. To simulate
exponential population growth, we assumed that the popu-
lation began with an initial population size of 10,000 to reach
a present size of 40,000 in 16,000 generations (i.e., growth rate
of 0.01%). To simulate exponential population decline, we
used the initial population size of 40,000 that reached a pre-
sent size of 10,000 in 16,000 generations (i.e., growth rate of
�0.01%). To simulate positive selection, we introduced a new
advantageous mutation with a selective advantage of 0.01 in
the middle of the simulated region and conditioned the sim-
ulations on the allele just reaching fixation in a population.
Under each scenario, we simulated 100 replicates of 100
kilobase pair (kb) genomic regions for a sample size of 10
diploid individuals to evaluate the accuracy of the estimated
SFS. To perform genome-wide selection scans and parameter
estimation for the exponential population growth, we simu-
lated 10 megabase pair (Mb) genomic regions for a sample
size of 10 diploid individuals. Finally, we randomly combined
pairs of haplotypes to create genotype data, an assumption of
panmixia.

Sequencing Experiment Simulations

To simulate 100-bp paired-end short read sequencing data for
a given individual, we first sampled one of two haplotypes
with an equal probability and then picked a starting position
of the first read uniformly and a starting position of the
second read by adding a paired-end distance from the last
position of the first read. The paired-end distance was chosen
according to a Poisson distribution with a rate set to 204 bp
based on analysis of an Illumina 100 bp paired-end library of
Drosophila melanogaster sequences (results not shown). On
the basis of the two starting positions for the paired reads, we
generated each read based on the underlying haplotype but
with errors introduced according to the empirical distribution
of base quality scores (after recalibration) from the same se-
quence library. The distribution of observed error rates from
sequencing experiment simulations is shown in supplemen-
tary figure S4, Supplementary Material online.

Estimating the SFS

We assessed two ways to infer the SFS: the call-based and
direct estimation approaches. With the call-based approach,
we first inferred individual genotypes from aligned sequenc-
ing data and then computed the SFS from genotype calls by
simple allele counting. In this case, we ignored uncertainty
associated with genotype calls. To infer individual genotypes,
we used one of two freely available programs, GATK (version
2.1-11) and SAMtools (version 1.4), and in each program we
used either their single-sample or multisample calling proce-
dures. Through this article, we refer to the results of these
procedures as Single-GATK, Single-SAMtools, Multi-GATK,
and Multi-SAMtools. To reconstruct the SFS from genotype
calls by allele counting, we only used fully observable sites: the
sites in which all individuals in a sample have at least one
short read covering the site (hence, a genotype is observable
for all individuals). With the direct estimation approach, we
directly estimated the SFS from aligned sequencing data

without inferring genotypes (Nielsen et al. 2012). We used
the freely available program ANGSD (version 0.522) with an
EM algorithm option to obtain the MLE of the SFS (Nielsen
et al. 2012). We refer to results of this procedure as Direct.

Computing Summary Statistics for Population
Genetic Inference

On the basis of the estimated SFS, we computed � estimators
and neutrality test statistics. We computed four � estimators:
1) two original � estimators, Watterson’s � estimator (�̂sÞ

based on the number of segregating sites (S) and Tajima’s �
estimator (�̂�Þ based on the average pairwise differences (�Þ,
and 2) two more recent � estimators that ignore singletons to
increase robustness to sequencing error, one derived from
Watterson’s �-estimator (�̂s�1Þ and one derived from
Tajima’s �-estimator (�̂��1Þ (Achaz 2008, 2009). In the ab-
sence of sequencing errors and under a strict neutral model,
these � estimators are unbiased estimators of a population
mutation rate � ¼ 4Ne�, where Ne is an effective population
size and � is a mutation rate per-site per-generation.

For neutrality tests based on the SFS, we used Tajima’s D as
it is a well used and powerful test of neutrality (Simonsen et al.
1995; Fu 1997) and Achaz’s Y (Achaz 2008), which is derived
from Tajima’s D by ignoring singletons. Without sequencing
errors and under the standard model with a constant popu-
lation size, the expected value of D and Y are near zero re-
gardless of sample size (Tajima 1983; Achaz 2009). The
variance of D is expected to be one, but recombination redu-
ces the variance in D to be smaller than one (Tajima 1989).

Quantification of Accuracy of the SFS Estimation

To evaluate the accuracy of the SFS estimated from sequenc-
ing data as a function of coverage, we computed the KL
divergence of the estimated SFS from the ground-truth SFS
(computed from genotype data) for each SFS estimation
method.

We also evaluated the accuracy of the estimated SFS in
each nonreference allele frequency bin i/(2n) in a sample of n
diploid individuals. For each nonreference allele frequency
bin, we computed a relative deviation of the fraction of
sites with frequency i/(2n) in the estimated SFS fseq(i/2n)
from that in the ground-truth SFS ftrue(i/2n).

Relative deviation
i

2n

� �
¼

fseq
i

2n

� �
� ftrue

i
2n

� �
ftrue

i
2n

� �
To compare ground-truth SFS to the estimated SFS by each
allele frequency bin, we made error matrices E of dimension
(2n + 1) by (2n + 1). Each element Eij of the error matrix
E (i, j = 0, 1, . . . , 2n) is the fraction of the sites where the
observed counts (the nonreference allele counts at each site
computed from sequencing data) are j and the ground-true
counts (the nonreference allele counts from genotype data)
are i. Hence, diagonal elements Eii of E represent the fraction
of correctly estimated sites (true positives) for each allele
frequency bin i/(2n).
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Genome-Wide Selection Scans

To simulate a genome-wide selection scan, we generated
10-Mb genomic regions in which a new beneficial mutation
arose in the middle of the region and identified a candidate
region of positive selection by an outlier detection approach
scan (Andolfatto 2007; Begun et al. 2007; Andersen et al. 2012;
Axelsson et al. 2013):

1) Estimated the SFS by using the call-based or the direct
estimation approach in sliding windows of size 100 kb
with an increment of 20 kb.

2) Computed Tajima’s D associated with each window
based on the estimated SFS.

3) Converted Tajima’s D to empirical P values based on
their ranks.

4) Identified outlier windows if the empirical P value asso-
ciated with a given window is�1%. The cutoff of 1% was
chosen based on visual identification of an outlier mode
presumed to represent selected loci (supplementary fig.
S4, Supplementary Material online).

Estimating Parameters in an Exponential Population
Growth Model

For demographic inference, we used the python module dadi
(Gutenkunst et al. 2009). Dadi finds MLEs of parameters for a
user-specified demographic model based on the observed
SFS. We simulated a 10-Mb genomic region under the expo-
nential population growth model and then estimated the
present population size (N) and time when the growth had
started (T, measured in units of 2 N generations). We found
the MLEs first by a grid search to find a peak of likelihood
surface and then by BFGS steps to localize the peak.

Supplementary Material
Supplementary figures S1–S7 are available at Molecular
Biology and Evolution online (http://www.mbe.oxfordjour
nals.org/).
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