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Abstract
In a typical case-control study, exposure information is collected at a single time-point for the
cases and controls. However, case-control studies are often embedded in existing cohort studies
containing a wealth of longitudinal exposure history on the participants. Recent medical studies
have indicated that incorporating past exposure history, or a constructed summary measure of
cumulative exposure derived from the past exposure history, when available, may lead to more
precise and clinically meaningful estimates of the disease risk. In this paper, we propose a flexible
Bayesian semiparametric approach to model the longitudinal exposure profiles of the cases and
controls and then use measures of cumulative exposure based on a weighted integral of this
trajectory in the final disease risk model. The estimation is done via a joint likelihood. In the
construction of the cumulative exposure summary, we introduce an influence function, a smooth
function of time to characterize the association pattern of the exposure profile on the disease status
with different time windows potentially having differential influence/weights. This enables us to
analyze how the present disease status of a subject is influenced by his/her past exposure history
conditional on the current ones. The joint likelihood formulation allows us to properly account for
uncertainties associated with both stages of the estimation process in an integrated manner.
Analysis is carried out in a hierarchical Bayesian framework using Reversible jump Markov chain
Monte Carlo (RJMCMC) algorithms. The proposed methodology is motivated by, and applied to a
case-control study of prostate cancer where longitudinal biomarker information is available for the
cases and controls.
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1 Introduction
In a typical case-control study, subjects are sampled conditional on disease status and then
exposure history is retrospectively retrieved and assessed. Case-control studies are often
embedded in large cohorts where repeated/single measures on past exposure information can
be obtained for all the study subjects, and thus for the selected case-control sample. Many
cohort studies store serum, tissue and other bio-specimen samples for all enrolled subjects
and a case-control design can be used to assay selected case-control samples instead of
assaying the entire cohort. This retrospective design thus leads to cost and resource saving
when expensive assays are not feasible for a large cohort (Ernster, 1994; Breslow, 1996). In
particular, we consider the setting of a large cohort study where repeated measures on
biological samples (like blood) have been archived for all study subjects. A case-control
design is then employed to select samples for which a biomarker or a potential risk factor
will be assayed/measured, after the study period is over. Thus case-control status is
determined at the conclusion of the follow-up period. The scientific/statistical question is
whether we can/should use all of the past measures and assay all available archived samples
for selected cases and controls to infer about disease risk. Thus our goal is to construct
measures of cumulative exposure to characterize disease-exposure association using
available longitudinal exposure data (Thomas, 1983, 1988) and to provide odds ratios that
are able to compare different types of exposure time-trajectories.

Some recent medical studies have indicated that incorporating the entire exposure history,
when available, may lead to more precise and clinically meaningful estimation of disease
risk. For example, Lewis et al (1996) report that by integrating the lifetime history of oral
contraceptive (OC) use, they obtain scientifically more plausible inference on the odds ratio
corresponding to the use of OC for risk of venous thromboembolism than that provided by
measuring current use of OC in a matched case-control study. Such an analysis may also
provide insight on how the present disease status of a subject is being influenced by past
exposure conditional on the current exposure. In this paper, we present a Bayesian
semiparametric approach for utilizing past longitudinal exposure history in case-control
studies. The Bayesian joint model we propose estimates the time-varying exposure
trajectories as well as the function that captures their influence on disease risk (which we
call the influence function) in a flexible non-parametric way. The cumulative exposure
effect is then aggregated over time, by integrating the exposure trajectory weighted by the
influence function over a given time interval. We are then able to compare the odds of
disease corresponding to different shapes of exposure profiles as well as the relative
contribution of different time windows using the disease risk model.

Statistical analysis of case-control data was pioneered by Cornfield (1951, 1961) and Mantel
and Haenszel (1959) and many important contributions followed over the next half century
(Breslow et al, 1978; Prentice and Pyke, 1979; Zelen and Parker, 1986; Seaman and
Richardson, 2001, 2004, to name a few). However, rigorous statistical methods for
incorporating longitudinally varying exposure information under case-control sampling have
not yet been adequately developed. Moulton and Monique (1991) consider a similar problem
with time varying binary/categorical exposure and carry out a time-stratified analysis, then
combine the regression coefficients across time to create time-specific summary quantities
of interest. Park and Kim (2004) consider a serial case-control study where subjects could be
cases at one predetermined sampling time and controls at another sampling window, leading
to time-varying case-control status and exposure information. They illustrate that a naive
generalized estimating equation (GEE) approach with compound symmetry correlation
structure, that is commonly used under a prospective design does not work under case-
control sampling design. Freedman et al (2009) incorporate smoking history as a time-
varying exposure in a case-control study using a survival analysis framework.
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In the present paper we do not treat the exposure trajectories as a time varying exposure in
our final disease risk model, but create a cumulative measure that reflects the varying
contribution of the different time intervals through the influence function. In analyzing the
effect of a longitudinally varying exposure profile on a binary outcome variable (like disease
status), some of the well-recognized challenges are: (1) The longitudinal exposure
observations may be unbalanced in nature, i.e., the number of observations and also the
observation times may differ from subject to subject; (2) The exposure trajectory may be
highly nonlinear; (3) The exposure observations may be subject to considerable
measurement error and (4) The effect of the exposure profile on the disease outcome may
itself be complex and can even change over time. In view of the above challenges, we
propose to use functional data analytic techniques, specially nonparametric regression
methodology to model both the time varying exposure profile and also the influence pattern
of the exposure profile on the binary outcome to account for any smooth time varying
patterns of influence. Specifically, we model the underlying exposure trajectory and the
effect pattern of the exposures on the current disease state using free knot regression splines
(Lindstrom, 1999; DiMatteo et al). We have implemented a fully data-driven, adaptive knot
selection scheme that identifies the optimal number and location of the knots in both the
trajectory and influence functions via Reversible jump MCMC (RJMCMC) algorithms
(Green, 1995; Botts and Daniels, 2008). Analysis is carried out in a hierarchical Bayesian
framework. Our modeling framework can accommodate any possible non-linear time
varying pattern in the exposure and influence profiles, and thus offers additional flexibility
over a fully parametric formulation. Moreover, the joint Bayesian model ensures proper
propagation of uncertainty via an integrated computational scheme. An additional aspect of
our paper is to carry out model checking and assessment using various functions of the risk
scores that we define in Section 5.

Remark 1: A natural question that may arise in this context is the issue of prospective and
retrospective equivalence under such a framework. We show that the equivalence results of
Seaman and Richardson (2004) applies to the proposed semiparametric framework thus
enabling us to perform the analysis based on a prospective likelihood even though a case
control study is retrospective in nature.

The remaining sections are organized as follows. In Section 2, we describe the Beta
Carotene Retinol Efficacy trial and the related prostate cancer dataset which motivated our
study. In Section 3, we introduce the details of our semiparametric modelling approach.
Section 4 describes posterior inference and introduces the adaptive knot selection scheme.
Section 5 outlines the model comparison and assessment procedures. We describe the data
analysis results based on the prostate cancer data set in Section 6 and end with a discussion
in Section 7. Details regarding the adaptive knot selection algorithms and the Bayesian
equivalence results are included in the supplementary materials(web appendix).

2 Example: Prostate Cancer Study from the CARET Trial
We illustrate our methodology using a dataset from the Beta Carotene and Retinol Efficacy
Trial (CARET), a randomized trial conducted by the Fred Hutchinson Cancer Research
Center. The current dataset is designed to study the association between prostate cancer and
prostate-specific antigen (PSA) and has previously been used to assess the predictiveness of
PSA as a biomarker-based screening procedure for prostate cancer (Etzioni et al, 1999).

Participants in this study included men aged 50 to 65 at high risk of lung cancer. They were
randomized to receive either placebo or Beta Carotene and Retinol. From the initial CARET
cohort of 12,025 men, 354 men were diagnosed as having prostate cancer. The intervention
had no noticeable effect on the incidence of prostate cancer, with similar number of cases

Bhadra et al. Page 3

Biometrics. Author manuscript; available in PMC 2014 February 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



observed in the intervention and control arms. Of the 354 prostate cancer cases, 75 had 3–8
blood samples taken as far back as ten years prior to diagnosis. The individuals deemed
“controls” were selected among individuals not yet diagnosed as having either prostate or
lung cancer by the time of analysis. The levels of free and total PSA were retrospectively
assayed in the sera of 71 prostate cancer cases and 70 age-matched controls with similar
duration in the study as the cases. These 71 prostate cancer cases were diagnosed between
September 1988 and September 1995 inclusive. Since the cases and the controls were
selected at the time of analysis, after the completion of the follow-up period of the trial, and
the blood samples retrospectively assayed, this perfectly fits the setup of a case-control
study that is embedded within a large cohort study with longitudinal exposure history
available on cases and controls.

As the exposure variable, we use the natural logarithm of the total PSA (Ptotal) (secondary
analyses with the negative logarithm of the ratio of free to total PSA (Pratio) reveal similar
findings). Etzioni et al (1999) analyzed this data set by modeling the receiver operating
characteristic (ROC) curves associated with both the biomarkers (Ptotal and Pratio) as a
function of the time with respect to diagnosis. They observed that although the two markers
performed similarly eight years prior to diagnosis, Ptotal was superior to Pratio in terms of
its predictive performance at times closer to diagnosis. Thus, throughout the paper the term
PSA is used to denote Ptotal as the exposure of interest.

Remark 2: Note that though the sampling scheme appears to be closely related to a nested
case-control design (Lubin and Gail, 1984), there is a fundamental technical difference. In a
nested case-control study, incidence density sampling is used, where at a failure time, say, t,
at which the case occurs, a control is selected from the disease-free risk set i.e a set of
individuals who are disease-free at time t. Thus a control at time t can become a case at a
future time point. The usual analysis for a nested case-control design will thus use the
partial/conditional likelihood framework, where the controls are selected from the disease-
free risk sets at time t at which the case occurs (Prentice and Breslow, 1978). For time
varying exposures (Samuelson, 1997; Essebag et al, 2005), one may need more than one
control corresponding to each case under a nested case-control design for better finite
sample performances. However, we are simply adopting an unmatched case-control design
after the conclusion of the study and trying to create a measure of cumulative exposure when
longitudinal exposure history is available for cases and controls. We are not using PSA
measures directly as a time varying covariate in the disease risk model. If cases and controls
are individually matched, say in terms of age and duration in the study, the unconditional
logistic model can be extended to a stratified logistic regression model and similar Bayesian
estimation can proceed with a prior distribution corresponding to the matched set specific
nuisance parameters (Rice, 2008). We adjusted for age in our unconditional logistic
regression model as the data set did not include enough information to identify the
individually matched case-control pairs. Etzioni et al (1999) also adopted this unmatched
analytic strategy by adjusting for matching covariates, instead of a conditional likelihood
approach.

3 Model Specification
3.1 Notation

Let Yij be the jth exposure (PSA) observation recorded for the ith subject, aij the age of the ith

subject when the jth PSA observation is collected, tij denotes the time (in years) of the jth

PSA measurement relative to the time of diagnosis for the ith subject (i = 1, …, N; j = 1, …,
ni). For cases, time of diagnosis is the time when cancer was detected and no PSA
measurement at or after that time is used for our modeling purposes. For controls, time of
diagnosis is synonymous to the last available observation time or the time of normal digital
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rectal examination (DRE). Denoting the age at diagnosis of the ith subject by , we have,

. This relationship will be used below to simplify notation.

3.2 Model Framework
Our framework is composed of two models - (1) A Trajectory model for the longitudinal
exposure profile and (2) a Disease Risk model for the effect of the exposure trajectory on the
binary disease outcome. Inference on these two models will be done simultaneously, and is
described in Section 4.

Our modeling framework resembles that of Zhang, Lin and Sowers (2007) who used a two-
stage functional mixed model approach for modeling the effect of a longitudinal exposure
profile on a continuous outcome. They proposed a linear functional mixed effects model for
modeling the repeated measurements on the exposure values. The effect of the exposure
profile on the continuous outcome was modeled via a partial functional linear model. They
treated the unobserved, true subject-specific exposure trajectory as a functional covariate.
For fitting purposes, they developed a two-stage nonparametric regression calibration
method using smoothing splines. By using the relation between smoothing splines and
mixed models, estimation at both stages was conveniently cast into a unified mixed model
framework. The key difference between their framework and ours is that we use Bayesian
inferential techniques to simultaneously estimate the parameters of the exposure and disease
risk models. The adaptive knot selection allows for the smoothness to vary over the domain
on which the function is defined. In addition, instead of a linear modeling framework, we
use a combination of linear and logistic models since our exposure is continuous and the
response is binary.

3.2.1 Exposure Trajectory Model—For the exposure trajectory model, we assume

(1)

where  is the true (error-free) unobserved subject-specific exposure profile

modeled as  is the population mean function of the overall PSA
trend as a function of age for all the subjects, gi(․) is the subject-specific deviation function
reflecting the deviation of the ith subject specific profile from the mean population profile,

and .

The reason for modeling exposure as a function of age is that, for a randomly chosen subject
with unknown disease status, the PSA value at a certain time point should depend on the
subject’s age at that time point, not their time with respect to diagnosis. In other words, the
same exposure observation recorded at the same time relative to diagnosis for two subjects
with different age values should not be treated as same.

We represent both f(aij) and gi(aij) using regression splines as follows:

(2)

where  and

 are truncated polynomial basis
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functions of degrees p and q with knots (τ1, …, τK) and (κ1, …, κM) respectively. Typically,
M ≤ K.

3.2.2 Disease Risk Model—The prospective disease risk model is assumed to be of the
form

(3)

where L(․) is the logistic link function (L(u) = {1+exp(−u)}−1) and γ(t) is an unknown
smooth function of time (with respect to diagnosis). We have treated age-at-diagnosis as a
separate covariate in the disease model to account for the confounding effect of age on the
association between PSA profile and the probability of disease. Lastly, c1 and c2 demarcate
the length of the exposure history for the ith subject; e.g. c1 = 8 and c2 = 2 would imply that,
for the ith subject, exposure observations recorded between 8 years to 2 years prior to
diagnosis are being considered for analysis.

Remark 3: The function of interest in disease model (3) is γ(t): the influence function. This
function provides the ability to capture a temporally varying relationship of a longitudinal
trajectory on the current disease status of a subject. This is particularly important for studies
dealing with the association of a longitudinal covariate/exposure and a continuous or
discrete outcome. In our application, γ(t) captures the underlying association pattern
between the PSA exposure trajectory and the probability of prostate cancer as a function of
the time with respect to diagnosis. Another point to note is that by varying c1 and c2, we can
select different lengths of PSA trajectories (across subjects) and can examine their effect on
the current disease status. Similarly, as discussed in Section 6.3, using the disease risk model
in (3), we can create odds-ratios comparing the effects of certain typical exposure
trajectories, like a flat versus an exponential trajectory.

In the most general case, γ(t) can also be represented by a regression spline i.e.,

(4)

where  and (ξ1, …,
ξK*) are the knots.

Replacing (2) and (4) in the R.H.S of (3), we have

(5)

where  and

.

For pre-chosen degrees of the basis functions and a given set of knot locations and numbers,
both Mi and Qi are matrices and are available in closed form. As will be explained in Section
4.3, adaptive knot selection techniques will be used to identify the optimal number and
location of knots for Xi(․) and γ(․) respectively.

Remark 4: Since we had a relatively small data set, we have used the following simplified
version of the trajectory model to analyze the prostate cancer dataset.
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(6)

where . Consequently, the disease model simplifies to

(7)

The posterior calculations will be based on the above parametrization.

4 Posterior Inference
4.1 Likelihood Function

Let Yi = (Yi1, …, Yini)′ and Di denote the exposure vector and disease status while ai = (ai1,
…, aini)′ and ti = (ti1, …, tini)′ be the observed values of age and time with respect to
diagnosis for the ith subject respectively. So, the response vector for the ith subject is the pair

(Yi, Di). Let  be the set of unknown parameters corresponding to the
exposure and disease models in (6) and (7). Since the optimal number and location of knots
will be chosen in a data-driven manner, they will also be regarded as unknown parameters
and will be simultaneously estimated through a fully Bayesian mechanism. Let k1 and k2 be
the number of knots for the exposure and disease risk models respectively where 0 ≤ k1 ≤ K1
and 0 ≤ k2 ≤ K2, K1 and K2 being fixed. Let (τ1, …, τk1) and (ξ1, …, ξk2) denote the
corresponding knot locations such that

The likelihood function is given by

(8)

where p(Yij|․) denotes the normal probability distribution corresponding to the trajectory

model,  is the normal distribution for the random subject specific slope coefficients
while p(Di|․) is the Bernoulli distribution with success probability given by the logistic link
function for the disease risk model in (7).

4.2 Priors
To complete the specification of our model, we assign prior distributions on the unknown
parameters. We assume normal and inverse gamma priors for the parameters i.e

and , where IG stands for inverse gamma density and (ai, bi)(i = 0, 1, 2, 3) are

fixed hyperparameters. We use , a0 = 0.1, b0 = 0.1, a1 = 0.1, b1 = 0.1, a2 = 3, b2 = 3,
a3 = 3 and b3 = 3. We also considered other values for (a2, b2) and (a3, b3) such as (0.1, 0.1),
(1, 1), (2, 2), and (4, 4). However, inferences were not very sensitive to the choice of
hyperparameters.
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For the knot numbers k1 and k2, we put Poisson priors with means μ1 and μ2 such that μ1 =
μ2 = 1. Since there is no reason a priori to favor knots at any particular locations on the
domain of Xi(․) and γ(․), we put flat priors on both τ and ξ i.e

Since the knot locations and numbers are assumed to be independent, the joint prior
distribution is given by π(k1, k2, τ, ξ) = π(k1)π(τ|k1)π(k2)π(ξ|k2).

4.3 Posterior Inference
Since the trajectory model in (1) has a linear form while the disease risk model (3) has a
logistic structure, the resulting likelihood and posterior do not have a tractable closed form.
To facilitate computations, we approximate the logistic distribution as a mixture of normals,
using a well known data augmentation algorithm proposed by Albert and Chib (1993) for
posterior sampling. For details, see the supplementary web appendix.

The joint posterior distribution of the parameters and the knots location/numbers is given by

where L(Ω, k1, k2, τ, ξ|y, D) is given in (8) and the other terms are the prior distributions on
the parameters. Our main parameter of interest is ϕ, the effect of integrated exposure history
on disease risk, as shown in (4). Since, the marginal posterior distribution of ϕ is analytically
intractable, we have used a Reversible Jump MCMC (RJMCMC) algorithm (Green, 1995)
to simultaneously sample the parameters, knot locations and positions in an integrated
manner from their respective full conditionals (the details are given in the supplementary
materials).

5 Model Comparison and Assessment
To compare models and determine their discriminative ability, we calculated the risk scores
from the fitted “regression part” for the cases and controls ignoring the intercept. The reason
for ignoring the intercept is that it is not meaningful given that we are using a prospective
likelihood for a retrospective study. At iteration m of the MCMC sampler, the risk score for
the ith individual is given by

where δ(m) is the sampled observation of δ at iteration m while  and γ(m)(․) are the
same for the exposure trajectory and the influence function. So, at the mth iteration, we have
a vector of posterior estimates of risk scores for all the subjects,

. We calculate the Spearman rank correlation coefficient
between R(m) and the vector of original disease status vectors D = (D1, D2, …, DN) given by
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(9)

where  are the ranks and R ̄(m)* is the mean of the ranks for the risk scores, 
and D̄* are defined similarly for the disease indicators, Di. Posterior summaries of ρ(m) can
be taken as a measure of the model’s discriminative ability since these do not involve the
intercept in the disease model unlike related approaches (e.g., posterior predictive loss and
area under the curve (AUC)). Clearly, we want ρ to be close to one (and far from zero). As a
tool for comparison, we compute posterior summaries of ρ for simpler and complex models
and also for varying trajectory lengths as will be shown in Section 6.

For the mth iteration, we also compute the quantities

(10)

which are the averages of the posterior estimates of risk scores for the cases and controls (N0
and N1 being the number of controls and cases respectively). We can examine the posterior

distribution of  and  and their difference. These quantities would give us a measure
of the degree of separation between the cases and controls provided by our model and thus
would inform on how well we can distinguish between the two groups.

6 Analysis of Prostate Cancer and PSA History
We use the semiparametric framework explained in Section 3 to analyze the prostate cancer
dataset described in Section 2. Multiple observations on free and total PSA were obtained
for 71 prostate cancer cases and 70 controls. For some subjects, observations were collected
as far back as 10 years prior to diagnosis. We use the natural logarithm of total PSA (Ptotal)
as our exposure of interest. Our principal aim is to examine whether past exposure
observations can contribute significantly towards predicting the current disease status of a
subject given his/her current exposure information. In doing so, we will also test how
differential lengths of the PSA trajectories affect the current probability of disease for a
particular individual.

As mentioned in Remark 4 in Section 3, we have used a simplified version of the trajectory
and disease risk models given in (6) and (7) to analyze our dataset. In doing so, we
examined the effect of varying lengths of exposure trajectories on the current disease state
by choosing different values of c1 and c2 in the disease model.

We did a small sensitivity analysis by changing the hyper parameters of the inverse-Gamma

priors on  and . The results were not very sensitive to the choice of these parameters
(results not shown).

6.1 Overall Model Comparison
We calculated the posterior means and 95% confidence intervals of the risk measures
mentioned in (9) and (10) for the different exposure intervals. These are denoted by (a) ρ:
Spearman’s rank correlation coefficient between the risk scores and disease status for all the
subjects; (b) R1: Mean of the risk scores for cases; (c) R0: Mean of the risk scores for
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controls and (d) Rd = R0 − R1: difference between the mean risk scores for the controls and
cases. The results are shown in Table 1. Based on these measures, we conclude that the
disease risk model fitted to the exposure interval I = [−10, 0] had the best performance. In
particular, the model with this interval had the highest negative values of the difference
Rd(−2.33) (the greatest separation of the risk scores between the cases and controls) and the
largest value for Spearman’s correlation, ρ(0.68); in an absolute sense, a correlation of 0.68
is quite large. In the next section, we fit some simpler models to illustrate the increased
information that can be gained from our approach.

6.1.1 Comparison with Simpler Models—The disease risk model as given in (7) is
quite general in that it takes into account age (at diagnosis) and the PSA trajectory of a
subject into account and also incorporates the influence pattern of the trajectory on the
disease probability. Clearly, simpler versions of this framework are possible. As such, we fit
the following three models:

1. M0 : .

2. M1 : .

3.
M2 : ,

where  is the last observed PSA value for subject i. The models correspond to,
respectively, ignoring any PSA information and only using age at diagnosis, using the last
observed PSA value and age at diagnosis, and using the area under the PSA curve as a
covariate with age at diagnosis. For each of these three models, Table 1 shows the posterior
estimates of the risk measures. Model M0 that just included age at diagnosis was unable to
separate the cases and controls at all. Models M1 and M2 did well but provided less
separation of the risk scores and a lower correlation. In addition, Model M1 provided a
similar correlation and separation to the general model with the interval (−3, 0) which is not
surprising as this interval typically contained the last observed PSA value. Overall, these
results support the notion that the semiparametric modeling implemented here for
incorporating the exposure (or PSA) trajectory/history was worthwhile for this data, though
the strength of evidence for the complex model was limited to some extent by the small
sample size and the ‘noisy’ observed PSA trajectories.

6.2 Shapes of the trajectory and influence functions
Figures 1(a) and (b) show the plots of the population mean exposure trajectory and the
influence function and the corresponding 95% confidence bands as obtained from the
posterior samples of the parameters and knots. The former is plotted against age while the
latter is plotted against the time with respect to diagnosis. The posterior distribution of the
number of knots for both functions placed most of their mass at one knot (0.93 for the
exposure model and 0.70 for the disease model) with the non-linearity evident a little after
age 75 for the exposure trajectory and a slight nonlinearity in the influence function (though
it is close to linear). The posterior mean of the exposure trajectory confirms the fact that the
PSA observations tend to increase steadily with age. The pattern is more or less linear for
the entire age-range. However, there is a sharp upward turn near about age 77 (as mentioned
above) when the PSA values increases further. On the other hand, the influence of the PSA
profile on the current disease status has an increasing pattern as we move closer to the point
of diagnosis. This is intuitive since the effects of exposure observations collected closer to
the point of diagnosis would be expected to have a higher influence (weight) on the current
disease status than those collected further back in time. In addition, the sign of γ(t) (see
Figure 1(b) with positive values for the first five years before diagnosis, and negative values
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for second five years) indicates that the function, γ(t) captures the differential direction of
the effect of PSA values closer to diagnosis versus those farther back in time.

6.3 Inference on odds ratios
To better understand the relationship between PSA trajectory and the probability of prostate
cancer, we compute several odds ratios. In particular, we compute the posterior distribution
of the log-odds of prostate cancer corresponding to some reasonable shapes of exposure
trajectories (in what follows, comparing a trajectory Xi to a trajectory Zi) based on our data.

In the following, we denote the different comparisons by C1, C2, C3 and C4. For each of
these comparisons, we denote by l and u, the lower and upper limits of the trajectories. For
C1–C3, the level of the baseline (flat) trajectory Xi is the average of the lower and upper
limits of the increasing trajectory, Zi i.e (l + u)/2. Based on our data, we choose l = 0.1 and u
= 0.9 (these are the lowest and highest values of PSA for one of the subjects in the dataset)
and l = .039 and u = 1.37 (these are the 25th and 75th percentiles of the observed PSA
values, respectively).

C1 : .

Here we compare the log-odds of disease corresponding to a flat trajectory to an
exponentially increasing one. The values of ν and ζ that yield l and u are given by

The log-odds ratio for this comparison is given by

C2 : .

Here we compare the log-odds of disease corresponding to a flat trajectory to a linearly
increasing one. The values of ν and ζ that yield l and u are given by

The log-odds ratio for this comparison is given by

C3 : .

Here we compare the log-odds of disease corresponding to a flat trajectory to one which is
linear in the logarithmic scale. The values of ν and ζ that yield l and u are given by
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The log-odds ratio for this comparison is given by

C4 : .

Here we compare the log-odds of disease corresponding to a exponentially increasing
trajectory to a linearly increasing one. The values of ν and ζ that yield l and u are given by

The log-odds ratio for this comparison is given by

Table 2 reports the posterior means and 95% credible intervals of the log-odds ratios for the
above four comparisons and the two choices of upper and lower limits. The log-odds ratios
for the first three comparisons (horizontal-exponential, horizontal-linear and horizontal-
logarithmic) are marginally significant (with credible intervals barely covering zero) and
fairly similar. The similarity between these three is not surprising since the form of the
influence function γ(t) captures a contrast between early and late PSA values and the
comparison of each is with respect to a stable (flat) PSA trajectory at the mid point of the
increasing ones (in fact, if the level of the flat trajectory is set at the lower limit of the
increasing ones, i.e at l, all the log-odds are more extreme and significant). The log odds
ratios for both choices of the lower and upper limits, (l, u) are quite large and indicate a
much higher odds of prostate cancer for an increasing PSA trajectory versus one that is
stable. These odds ratio measures are not comparable with a simple logistic regression
model that is linear in the last available PSA observation (estimated log OR of 1.2) since
here we are using the entire longitudinal trajectory and an influence function which greatly
affects the magnitude and interpretation of the point estimates obtained. The odds ratio for
the fourth comparison, a linear trajectory versus an exponentially increasing one (that both
start and end at the same values), is also marginally significant for both cases and shows the
power of this modeling approach with the ability to utilize the actual shape of the trajectories
to better estimate the odds of prostate cancer.

Overall, our results indicate that for future retrospective assays of stored serum samples for
individuals at risk for prostate cancer, it would be informative to go back up to 10 years
prior to diagnosis.

7 Discussion
Using longitudinal exposure trajectories in a case-control design is a relatively unexplored
area. Recent developments in the area of semiparametric and nonparametric regression
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analysis have provided techniques to capture exposure trajectories that have complicated and
unknown functional forms. We have used free knot regression splines in modeling the
exposure trajectories for the cases and the controls. However, the trajectory model in our
application lacks a random (subject specific) intercept due to the small sample size and lack
of heterogeneity. Our framework can be used even when exposure observations are collected
at different time points across subjects i.e when the study design is unbalanced in nature.
The exposure trajectory is used as the predictor in a prospective logistic model for the binary
disease outcome. We have additionally modeled the slope parameter of the disease risk
model as a regression spline to account for any time varying influence pattern of the
exposure trajectory on the current disease status. We have integrated an adaptive knot
selection mechanism by which the optimal position and locations of the knots for both the
exposure trajectory and influence functions are simultaneously selected in a data-driven
manner. Overall, the proposed method appropriately accounts for the generated uncertainty
of this multi-level approach.

In order to simplify the analysis, we used the logit-mixture of normal approximation (Albert
and Chib, 1993). We also established that the Bayesian equivalence results of Seaman and
Richardson (2004) holds for our framework, thus allowing us to use a prospective logistic
model having fewer nuisance parameters although the data set was collected retrospectively.

We analyzed our data using different lengths of exposure trajectories. In doing so, we have
concluded that past exposure observations do provide significant information towards
predicting the current disease status of a subject. We performed model comparison and
assessment by calculating risk scores corresponding to the cases and controls and computing
correlations which are not influenced by using the prospective likelihood (as opposed to the
retrospective one). These criteria indicated that models with longer exposure trajectories
tend to perform better than those with shorter trajectories and that the relationship between
the PSA trajectory and disease is complex. In fact, we concluded that the model
incorporating exposure observations recorded 10 years prior to diagnosis results in the best
fit to the dataset. Based on the model comparison tools we used, it seemed that PSA
observations collected prior to 10 years before diagnosis provide minimal additional
information in explaining the current disease status above and beyond those collected up to
10 years prior to diagnosis (although the available exposure data beyond 10 years was quite
sparse). We have also confirmed that conditional on age at diagnosis, the exposure trajectory
contains significant amount of information on the current disease status of a subject and thus
should be included in the disease risk model. We showed that by doing so, the model
performance improves significantly compared to last observation carried forward analysis.

Some interesting extensions remain under consideration for future research. For richer
datasets, it will be interesting to implement the completely flexible formulation with the
subject-specific deviation functions also represented as regression splines. Extending the
analytic approaches to the set-up of a serial case-control study as in Park and Kim (2004),
which has the additional complexity of correlated time varying response variable, is also an
open problem.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Plot of the exposure trajectory against age and the influence profile against the time with
respect to diagnosis for the PSA data
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Table 1

Values of the risk score measures corresponding to different intervals. The 95% credible intervals are also
given for the optimal model based on I = (−10, 0) and the simpler alternative models Mj : j = 0, 1, 2.

Risk Score Measures

Intervals Rd ρ

(−3, 0) −2.06 0.66

(−5, 0) −2.12 0.67

(−8, 0) −2.27 0.67

(−10, 0) −2.33 (−3.26, −1.55) 0.68 (0.64, 0.71)

(−10, −5) −1.98 0.65

(−12, 0) −2.23 0.67

M0 −0.28 (−0.74, 0.18) 0.08 (−0.11, 0.11)

M1 −2.04 (−2.76, −1.42) 0.66 (0.65, 0.67)

M2 −1.95 (−2.73, −1.30) 0.65 (0.62, 0.69)
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Table 2

Posterior means and corresponding 95% credible intervals of the log-odds ratios for comparing different
shapes of the exposure trajectories. Here C1: horizontal-exponential, C2: horizontal-linear, C3: horizontal-
logarithmic and C4: linear-exponential exposure profiles under two different specifications of the odds ratios
(a,b).

Comparisons

(a,b) C1 C2 C3 C4

(.1,.9) 4.51 (−0.25, 11.04) 4.80 (−0.08, 11.64) 4.79 (−0.06, 11.61) 0.29 (−0.22, 0.74)

(.039,1.37) 6.83 (−0.55, 16.84) 8.00 (−0.13, 19.42) 8.00 (−0.11, 19.36) 1.2 (−0.12, 2.8)
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