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Abstract
Longitudinal healthcare claims databases are frequently used for studying the comparative safety
and effectiveness of medications, but results from these studies may be biased due to residual
confounding. It is unclear whether methods for confounding adjustment that have been shown to
perform well in small, simple nonrandomized studies are applicable to the large, complex
pharmacoepidemiologic studies created from secondary healthcare data. Ordinary simulation
approaches for evaluating the performance of statistical methods do not capture important features
of healthcare claims. A statistical framework for creating replicated simulation datasets from an
empirical cohort study in electronic healthcare claims data is developed and validated. The
approach relies on resampling from the observed covariate and exposure data without
modification in all simulated datasets to preserve the associations among these variables. Repeated
outcomes are simulated using a true treatment effect of the investigator's choice and the baseline
hazard function estimated from the empirical data. As an example, this framework is applied to a
study of high versus low-intensity statin use and cardiovascular outcomes. Simulated data is based
on real data drawn from Medicare Parts A and B linked with a prescription drug insurance claims
database maintained by Caremark. Properties of the data simulated using this framework are
compared with the empirical data on which the simulations were based. In addition, the simulated
datasets are used to compare variable selection strategies for confounder adjustmentvia the
propensity score, including high-dimensional approaches that could not be evaluated with ordinary
simulation methods. The simulated datasets are found to closely resemble the observed complex
data structure but have the advantage of an investigator-specified exposure effect.
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1 Introduction
Longitudinal healthcare claims databases are frequently used for studying the comparative
safety and effectiveness of medications. Administrative healthcare data generally provide a
longitudinal record of medical services, procedures, diagnoses, and medications for large
numbers of patients, and therefore provide a rich data source for conducting
pharmacoepidemiologic research. Compared with randomized trials, the data available in
healthcare claims better represent the full spectrum of patients that are exposed to a drug and
the processes of care in routine practice (Schneeweiss and Avorn, 2005; Strom and Carson,
1990). However, drug studies in claims data may suffer from bias due to residual
confounding (Brookhart et al., 2010), and it is unclear whether methods for confounding
adjustment that have been shown to perform well in small, simple nonrandomized studies
are applicable to the cohort studies created from complex healthcare claims data.

Monte Carlo simulation can be used to evaluate the performance of causal inference
methods, but ordinary simulation approaches do not capture important features of healthcare
claims. For example, healthcare claims databases often have hundreds, or even thousands, of
measured covariates with complex covariance structures. These covariates, either singly or
in combination, may serve as proxies for unmeasured confounders and be effectively used to
remove bias (Schneeweiss et al., 2009). Further, the complexity of real-world data extends
beyond confounding; patients’ follow-up time and censoring patterns are often associated
with exposure and outcome via a path of underlying characteristics. These complexities
cannot be replicated in fully synthetic simulated data, as they are generally not completely
understood and vary by data source.

As an alternative to simulation, Vaughan et al. (Vaughan et al., 2009) suggested creating
“plasmode” datasets. A plasmode is a real dataset that is created from natural processes but
has some aspect of the data-generating model known, for example, a “spike-in” experiment
in microarray analysis of gene expression where a known amount of genome transcript is
added to each sample. Merging this concept with simulation techniques has led to several
studies of methods performance that use real observed data augmented with simulated data
(Elobeid et al., 2009; Gadbury et al., 2008). Other approaches utilize fully simulated data,
but create associations among variables to match estimated associations from observed data
(Chao et al., 2010; Erenay et al., 2011; McClure et al., 2008; Rolka et al., 2005; Schmidt et
al., 2009), including one approach specifically designed for simulating an entire healthcare
claims database (Murray et al., 2011). However, due to the massive size and complexity of
the data in this approach, generally only one dataset is created for each set of simulation
parameters, and the relative contributions ofbias and variance to estimation error cannot be
judged. Furthermore, this data-generation process may produce spurious correlations among
variables that are not present in the underlying empirical dataset.

In this paper, we outline a statistical and computational framework for creating replicated
simulation datasets based on an empirical pharmacoepidemiologic cohort study in healthcare
claims data. The objective of this work is to enable the evaluation of approaches to
confounder adjustment in simulated data that preserve the complex features and information
content of claims data but also have a known true treatment effect. As an example, we
applied our framework to a study of high versus low-intensity statin use and cardiovascular
outcomes. Simulated data was based on real data drawn from Medicare Parts A and B and
eligibility files linked with Part D prescription drug insurance claims database maintained by
Caremark. We compared properties of the data simulated using this framework with the
empirical data on which the simulations were based. In addition, we used the simulated
datasets to compare variable selection strategies for confounder adjustmentvia the
propensity score (PS), including high-dimensional approaches that could not be evaluated
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with ordinary simulation methods since their performance depends on the information
richness and complexity of the underlying empirical data source.

2 Methods
Our simulation approach relies on resampling from the observed covariate and exposure
data without modification in all simulated datasets to preserve the empirical associations
among these variables. Repeated outcomes are simulated using a true treatment effect of the
investigator's choice and the baseline hazard function estimated from the empirical data
(Figure 1). R code and documentation for the simulation setup are available in the Web
Appendix.

2.1 Construct the cohort
The first task in creating simulated datasets is to create the cohort on which the simulations
will be based from the larger healthcare database. The specifics of the study design,
including inclusion and exclusion criteria for the cohort, definitions of exposures and
covariates, and determinations of follow-up and censoring for outcome events, are important
in determining the performance of any statistical methods subsequently applied to the data.
As these issues are not the focus of this paper, we refer the reader to the wide array of
literature on the subject for specific information on these determinations. In general, we
recommend a “new user design” with an active comparator (Ray, 2003; Schneeweiss, 2010),
where two treatments with similar clinical indications are compared in patients initiating one
treatment or the other with no history of use in the prior six months (or some other pre-
specified period). Covariates (diagnoses, procedures, medications, and health system service
use) are assessed in the period preceding initiation of treatment, and assessment of outcomes
begins on or after the date of treatment initiation.

The result of this design is a dataset where each patient has information on exposure (X = 1
indicates initiating one treatment, X = 0 indicates initiating the reference treatment),
presence of an outcome event (Y), and length of follow-up time (T). In addition, we assume
that there is a large pool of potential covariates, C, that contains potentially hundreds or
thousands of distinct codes for diagnoses, procedures, hospitalizations, medications and
other health system service use in the period preceding treatment initiation (Schneeweiss et
al., 2009). This dataset provides all of the information that we will use for constructingthe
simulated datasets.

2.2 Select covariates for simulation basis
Within the hundreds or thousands of potential covariates in C, we identify a subset to be
used for outcome generation. We recommend specifying a set of covariates that are believed
to be associated with the outcome, including important demographic information such as
age, gender, and race. We refer to this subset as C1, and we refer to the complement
(everything in C not included in C1) as C0. The variables in C1 are used for simulating
outcome variables. In general, including more covariates in C1 will result in more realistic
simulated outcomes, as any associations between covariates and outcome present in the
observed data will be lost if those covariates are not included in C1. However, including all
potential covariates in C1 will generally be infeasible due to the model estimation required
in subsequent steps. If any of the variables in C1 are associated with exposure, or if they are
associated with other measured covariates that are correlates of exposure, then confounding
will be present in the simulated datasets.
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2.3 Estimate associations with outcome and censoring
In order to produce outcome and censoring times that have realistic associations with
covariates, we estimate the empirical multivariate associations with two Cox proportional
hazards models. In the first model, we estimate the hazard of the outcome event in the
observed data. Investigators can specify this model as needed to capture important features
of the relationships of covariates and exposure with outcome. For example, interaction terms
beween covariates and exposure could be included to estimate (and in following steps,
simulate) treatment effect heterogeneity. The second model is identical except that we
estimate the hazard of censoring, represented in the model as the reverse of the outcome
variable (1 – Y).

2.4 Predict survival and censoring
To translate the empirical associations into the simulated outcome data, we use the fitted
models from the previous step to predict each patient's expected survival and censoring time
given his C1 values. We extractthe Breslow estimates (Breslow, 1975) ofthe baseline event-
free survival function, SY(t), and the baseline censor-free survival function, S1–Y(t). In

addition, we extract the vector of estimated coefficients from each model (  and  for
the event and censoring models, respectively). The desired true effects are specified by

selectively replacing the values in  with desired values at this step. For example, an
alternative true effect of exposure can be inserted by replacing the estimated coefficient on X
with another value. In addition, one may increase the overall amount of confounding by

replacing the covariate coefficients in  with larger values. We denote the coefficient

vector used for event time simulation as . This vector will define the true causal effects of
X and C1 on the simulated outcomes.

A predicted event-free survival curve for each individual is then calculated as:

where Di is the row for patient i in the design matrix from the estimated time to event model.

A predicted censor-free survival curve is calculated similarly using S1–Y(t) and  with the
exception that the predicted censor-free survival curve is set to zero on the date of
administrative censoring if present.

2.4.1 Adjust baseline survival—If any values in  are replaced in this step in , then
the overall event rate in the subsequent simulated data will be different from that observed in
the empirical data. In order to keep the overall event rate the same (or to specify another
preferred event rate) in the simulated data, we adjust the baseline event-free survival
function. Specifically, in order to guarantee that the probability ofhaving an event in the
period defined by T=t is approximately p, we find the value of δ such that

This value of δ is then applied to the predicted survival function for each individual so that
the adjusted survival curve is given by SY*(t|Xi, C1i) = SY(t|Xi, C1i)δ.
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2.5 Resample and simulate
We now construct J simulated datasets of size n ≤ N, where N is the size of the full cohort.
We describe the process for creating one simulated dataset, and the entire process is repeated
J times. We first take a bootstrap resample of size n (sampled with replacement) from the
complete set of covariate-exposure vectors (Ci, Xi). Because we do not modify or permute
these variables, the systematic relationships among covariates and exposure remain intact in
each sample. To simulate survival and censoring times for individuals in the sample, we use
the fact that for any arbitrary distribution defined by the cumulative distribution function F,
the distribution of F–1(R) is given by F, where R is a random uniform variable in (0,1)
(Casella and Berger, 2001). Therefore, in order to simulate an event time from the patient-
specific survival function SY(t|Xi, C1i), we simulate a random variate R~Unif(0,1). We then
calculate the corresponding event times by inverting the patient-specific survival step
function, Ei = mint{SY(t|Xi, C1i) < R}. Similarly, to simulate a censoring time for patient i,
we generate another random uniform variate and calculate the corresponding censoring time,
Fi = mint{S1–Y(t|Xi, C1i) < R}. For each patient in the sample, the simulated follow-up time
is taken to be the minimum of the event and censoring times and outcome variables are
created to reflect the simulated event status

2.6 Analyze simulated data
We now have J datasets of size n, each of which contains an exposure vector X, a large
matrix of potential covariates C, and vectors containing event indicators, Y*, and follow-up
times, T*, for all patients in the sample. Furthermore, we have created the outcomes in such
a way that the complete data generating mechanism for the outcome is known, including the
effect sizes for exposure and all covariates. The data generating mechanism for X and C
remain unknown, as these data remain unaltered from their observed values, and any
associations that exist among these variables in the observed data remain intact.

If desired, unobserved confounding can be created at this step by setting aside a subset of the
predictors of outcome C1 to be the unobserved confounders U, so that the variables available
for analysis are . By hiding the variables in U from the confounder
adjustment methods applied to the simulated data, we may observe the performance of
methods under unobserved confounding. By varying which covariates are set aside and their
strength of association with outcome, we can vary the strength of the unobserved
confounding in the simulations.

Analyzing these data, we return an estimate of exposure effect for each of the J simulated
datasets, . Using these estimates, we may calculate features of the estimation
procedure as in ordinary simulation studies, for example bias and variance.

3 Application
3.1 Source cohort and simulation

We applied our framework to a cohort study of high-intensity versus low-intensity statin
medications for the prevention of cardiovascular events. These data come from a cohort of
Medicare beneficiaries 65 years of age and older with prescription drug coverage through a
Medicare Part D or employer-sponsored plan maintained by Caremark, a pharmacy benefits
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manager. Diagnostic, healthcare utilization, and demographic data from Medicare Parts A,
B, and enrollment files were linked to prescription drug claims.

There were 236,314 eligible patients that initiated a statin between July 1, 2005 and
December 31, 2008 and had continuous Medicare eligibility and demonstrated Medicare
Parts A, B and prescription drug benefit use in the 6 months prior to statin initiation. The
initiation date was defined as the first date a patient filled a prescription for a statin without a
fill of any statin or statin combination drug in the prior 180 days. Exposure was classified
according to the daily dose of statin dispensed as high-intensity or low-intensity therapy, as
shown in the Web Appendix. We followed for outcomes for 180 days after treatment start,
including hospitalization for myocardial infarction (MI) or acute coronary syndrome (ACS)
with revascularization. Patients were censored before 180 days ifthey had an outcome event,
died, lost eligibility in either Caremark or Medicare, or were hospitalized for more than 14
days.

We considered the full pool of covariates, C, to include all claims submitted through either
Medicare or Caremark in the 180 days prior to statin initiation, including claims for
diagnoses, procedures, hospitalizations, and medications. For simulating the outcome, we
defined 61 covariates representing demographic information (age, sex, race), history of
vascular conditions, history of other comorbid conditions, and overall use of the healthcare
system, including use of preventive services, ordering of lipid tests, and frequency of
physician visits. A complete list of the covariates in C1 with claims definitions is available
in the Web Appendix.

In the survival and censoring model estimation step, we used penalized splines (Eilers and
Marx, 1996; Hurvich et al., 1998) with a modest 2 degrees of freedom for estimating an
independent effect for each continuous covariate (e.g., age, number of comorbid conditions)
as a smooth nonlinear function. We also used ridge regression for estimating the effect of
binary variables (including the exposure), so that extreme and imprecise parameter estimates
on covariates with low prevalence are shrunk toward a more reasonable null value (Gray,
1992; Therneau and Grambsch, 2000; Therneau et al., 2003). We chose a penalty parameter
of θ=1 (so that the penalty is one half the sum of squared coefficients). Each of these
estimation techniques is implemented in the survival package in R (Therneau, 2011) and
allow for precise estimation even when many predictors are included in the model.

Using these models, we simulated 500 datasets, each with 100,000 patients, a true high
versus low-intensity treatment effect hazard ratio of 1.0, and the effects of all other
predictors set at their estimated values (scenario 1). In order to keep the proportion of
patients with an event approximately the same as in the observed data (1.7%), we adjusted
the baseline hazard function as described in Section 2.4.1. We simulated a second set of 500
datasets with the same study size (100,000), but the true exposure hazard ratio set to 1.5 and
the coefficients on all other predictors set at 2 times their estimated value (scenario 2). In
this case, we adjusted the baseline hazard to ensure approximately 5% of patients would
have an event within 180 days.

3.2 Comparison of simulated and observed data
To ensure that our simulation strategy was producing realistic data that closely matched the
observed data, we compared the observed and simulated data. Each simulated dataset
contained data for 100,000 patients with an average prevalence of high-intensity therapy of
30.4%, matching the prevalence in the observed data. In Figure 2, we present density plots
for censoring times (top panel) and event times (bottom panel). The densities from the
observed data are plotted in black and the densities from each of the 500 simulated datasets
are plotted in gray and red for scenarios 1 and 2, respectively. These plots show that the
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distribution of event times and censoring times were very similar for observed and simulated
data, particularly in scenario 1. In scenario 2, the number of events was increased, causing a
larger proportion of patients to have an event early during follow-up.

Figure 3 shows the proportion of patients with an event in each of five patient subgroups: 1)
females, 2) males, 3) patients with a history of MI or ACS in the pre-exposure period (post-
coronary), 4) patients with a history of diabetes mellitus (DM) in the preexposure period,
and 5) patients with a history of rheumatoid arthritis (RA) in the preexposure period. These
subgroups were chosen to show patient outcomes in the general population (males and
females) as well as in subgroups with risk factors for cardiovascular events (post-coronary,
DM, RA). The proportions in the observed data are shown with a solid green point and the
distributions of proportions across the 500 simulated datasets are shown with black and red
boxplots, separately for scenario 1 and scenario 2, respectively. Again, the data from
scenario 1 closely resembled the observed data with some random variation. The proportions
in scenario 2 were higher than the observed proportions as expected, but followed similar
patterns.

3.3 Evaluating variable selection strategies in simulated data
To demonstrate the value of the proposed simulation framework, we used the simulated data
from both scenarios to compare strategies for selecting variables to include in the PS. This
example study is designed to evaluate the performance of the high-dimensional PS (hdPS)
variable selection approaches frequently used in pharmacoepidemiology for identifying
important confounders among the thousands of potential covariates in longitudinal claims
data with little investigator input (Rassen et al., 2011; Schneeweiss et al., 2009). In
“exposure-based hdPS,” variables are selected based on their association with exposure
only. In “bias-based hdPS,” variables are selected based on their associations with both
exposure and outcome. See the references above for additional details. In empirical studies
with at least 100 outcome events in each group, hdPS algorithms have been shown to
perform well by reproducing results observed in randomized trials, but they have not been
studied via simulation. There were on average 573 and 2,136 outcome events in the high-
intensity group in scenarios 1 and 2, respectively.

We compared hdPS algorithms with the correctly-specified outcome model and correctly-
specified PS approach. Specifically, in each simulated dataset we estimated the effect of
high versus low-intensity statins using several Cox proportional hazards models. We
estimated 1) a “crude” model that only included a term for the exposure, 2) a model with
terms for exposure, patient age, sex, and year of statin initiation (the A/S/Y model), and 3) a
model that included exposure and linear terms for all covariates in C1 (the “all variables”
model). In addition, we estimated 3 PS-adjusted models, including the PS models: 1) a PS
model that included linear terms for all covariates in C1 (the all variables PS model), 2)
exposure-based hdPS, and 3) bias-based hdPS. To estimate each PS-adjusted treatment
effect, we used a Cox model with terms for exposure, age, sex, year, and indicators of PS
decile. Therefore, we estimated 6 exposure effects in each dataset.

The results from this study are plotted in Figure 4. This figure displays boxplots for the
distributions of exposure effect estimates across 500 simulated datasets from each of the 6
estimation approaches and 2 scenarios. As expected, the estimates from the crude model that
did not adjust for confounding were positively biased for the true hazard ratio. Adjusting for
age, sex, and year had little effect, but adjusting for all variables in the outcome model
yielded a median hazard ratio estimate nearly identical to the truth in both simulation
scenarios.
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When adjusting for deciles of the all-variables PS, the exposure effect estimator was
unbiased for the null treatment effect in scenario 1 (median OR [95% quantile interval]: 1.00
[0.90—1.11]) but negatively biased for the non-null effect in scenario 2 (1.40 [1.33—1.48]).
This bias may be due to the non-collapsability of the hazard ratio; in the case of a non-null
treatment effect, the conditional hazard ratio, as specified in the conditional proportional
hazards data-generating model, will not match the marginal hazard ratio, even in the case of
zero confounding (Austin et al., 2007). Furthermore, the hazard ratio conditional on PS
deciles will not be equivalent to the hazard ratio conditional on covariates directly.
Therefore, the PS approaches have a slightly different estimand from the specified
conditional treatment effect. However, even with potential non-collapsability problems, the
PS-adjusted hazard ratio resulted in a 62% reduction in bias over the crude estimate on the
log scale.

The exposure effect estimates from both the bias-based and exposure-based hdPS algorithms
were nearly identical and were slightly biased in both scenarios. These approaches resulted
in a median reduction in bias from the crude analysis of 88% in scenariol and 70% in
scenario 2. The variability of treatment effect estimates from the hdPS approaches was not
increased over that of other methods considered, despite the fact that the hdPS algorithms
selected covariates for inclusion in the PS in a data-driven way that resulted in a different set
of variables selected in each simulation iteration.

These results indicate that in these scenarios hdPS algorithms, without any investigator
input, performed nearly as well as an investigator-specified PS model that included all
covariates used to generate the outcome. However, the hdPS algorithms were completely
automated and required effectively no investigator input into the choice of covariates. By
contrast, the correctly-specified PS model required detailed knowledge and investigator
specification of all 61 covariates included. Given that complete knowledge of prognostic
covariates for outcome is rarely (if ever) available, hdPS algorithms may be very useful for
identifying covariates to include in the PS model in longitudinal claims data.

4 Discussion
In this paper, we have outlined steps for creating simulated cohort studies based on observed
data from healthcare claims to evaluate the performance of analytic strategies in the specific
data environment of interest to the researcher. We applied our simulation framework to a
typical pharmacoepidemiologic study and compared the simulated and observed data. In
addition, we provided an example of how this simulation framework can be used to evaluate
statistical methods that were previously not able to be evaluated in simulated data. We found
that our simulation framework created datasets that closely resembled the observed complex
data structure, but had the advantage of an investigator-specified event rate, confounding
strength, and exposure effect.

Although our framework was ideal for evaluating the hdPS algorithms, which rely on a large
pool of pre-exposure healthcare claims from which to select covariates, the simulation
procedure has some limitations that may lessen its utility in evaluating other methods. In our
simulation framework, outcomes are generated based on a limited number of investigator-
defined covariates, while in observed data, outcomes may be influenced by a much larger set
of factors, both measured and unmeasured. However, because the covariate data and
associations among covariates remain intact in our simulation framework, many covariates
may influence outcome indirectly via their association with variables in C1, in addition to
the variables that are used for directly generating outcome. Our simulation framework also
provides the ability to set aside some covariates from C1 to be “unmeasured,” thereby
mimicking this aspect of real-world claims data.
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As with all simulation studies, the conclusions that may be drawn from a given simulation
are limited to the specific data-generating scenarios explored. In particular, the performance
of methods observed in simulations based on one observed cohort will likely not extend to
all comparative studies in claims data. However, the approach introduced here greatly
extends the types of data-generating scenarios that can be explored over ordinary simulation
techniques. Therefore, despite these limitations, the simulation framework presented in this
paper can be useful for evaluating methods for confounder adjustment in comparative safety
and effectiveness analyses in data that mimic the complex structure of observed healthcare
claims. The fact that this framework is data-based and cohort-specific will support those
investigators who want to evaluate the performance of analytic strategies in data that is
based on a specific motivating dataset.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Diagram showing the steps in the simulation framework. Dashed lines represent reusing or
resampling a data element without modification. Solid arrows represent using a data element
to create new data structures. The end result is a sequence of exposure effect estimates (one
for each of J simulated datasets) given by .
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Figure 2.
Densities ofcensoringtimes (top) and eventtimes (bottom) for observed data (solid black
curve) and simulated data (Scenario 1 is in gray; Scenario 2 is in red).
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Figure 3.
Proportion of patients with an event in observed data (green point) and simulated data,
separately in patient subgroups. Black boxplots show the distribution of proportions across
Scenario 1 datasets; red boxplots show Scenario 2.
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Figure 4.
Boxplots of exposure effect estimates across 500 simulated datasets. The true treatment
effect is plotted with a dotted line, and the x-axis is plotted on the log-scale with axis values
unlogged.
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