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Abstract
We present a novel method for inferring tissue labels in atlas-based image segmentation using
Gaussian process regression. Atlas-based segmentation results in probabilistic label maps that
serve as input to our method. We introduce a contour-driven prior distribution over label maps to
incorporate image features of the input scan into the label inference problem. The mean function
of the Gaussian process posterior distribution yields the MAP estimate of the label map and is
used in the subsequent voting. We demonstrate improved segmentation accuracy when our
approach is combined with two different patch-based segmentation techniques. We focus on the
segmentation of parotid glands in CT scans of patients with head and neck cancer, which is
important for radiation therapy planning.

1 Introduction
Atlas-based segmentation extracts information from image collections with manually
labeled images to facilitate the automatic segmentation of new images. Methods that use
atlas information can be broadly classified into two groups. The first group employs
deformable registration to align atlas images to the novel scan [6,10]. The estimated
deformation fields propagate labels from the atlas to the new image. The second group
searches for image patches most similar to the voxel neighborhood [4,11]. Since similar
patches tend to share the segmentation label, weighted voting based on patch similarity
promises to produce accurate segmentation.

High anatomical variability presents a serious challenge for atlas-based segmentation.
Registration approaches often fail to warp structures that vary significantly in shape due to
regularization constraints. Such inaccuracies cause segmentation errors at the boundaries.
Patch-based approaches also experience difficulties in correctly segmenting regions close to
the boundaries. Fig. 1 illustrates this problem for a patch-based segmentation of the left
parotid gland. To further investigate the source of errors, we examine patches in the atlas
that are the most similar to the one example patch in the image. According to the manual
labeling, the selected patch belongs to the left parotid gland. However, all of the closest
patches vote for background, yielding a wrong result. Such errors are not surprising because
it is possible that patches have a very similar appearance overall but vary slightly in the
center. Such variations are especially problematic close to organ boundaries, where they can
cause segmentation errors.

We present a new probabilistic approach to atlas-based segmentation to incorporate image
contour information into the decision on segmentation labels. We achieve this by defining
an image-specific distribution over label maps based on Gaussian processes. We employ the
concept of intervening contours [1] to construct contour-driven covariance functions. A
robust contour estimation is obtained by calculating image and texture gradients on multiple
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scales. Conditioning the distribution over label maps on the atlas information results in label
maps that are consistent with image contours while also accommodating the label maps
proposed by the atlas. We experiment with two patch-based segmentation approaches to
obtain the initial label maps that serve as input to our algorithm.

We evaluate our approach by segmenting parotid glands in CT scans of patients with head
and neck cancer. Radiation therapy motivates our work. Radiation therapy planning aims to
maximize the dose in the target region while minimizing the radiation dose in the
surrounding tissue. Intensity modulated radiation therapy allows the more effective
administration of the radiation dose to reduce the damage to healthy cells. During the
planning phase, experts delineate most critical structures, also called organs at risk, to ensure
low radiation in these regions. The parotid glands are organs at risk for head and neck cancer
treatment because they are the most important salivary glands. Irradiation of the parotid
glands can lead to xerostomia, resulting in difficulties for mastication, deglutition, and
speech of the patients. Automatic segmentation is challenging due to low soft-tissue contrast
in CT images and high anatomical variability.

1.1 Related Work
Our work builds on previously mentioned atlas-based segmentation methods and is related
to algorithms for label refinement. Spectral label fusion [14] extracts superpixels from the
image to perform region-based voting. It further relates to an approach for the refinement of
atlas propagation with graph cuts [12]. Regression has been previously used to estimate
correlations of errors for atlas-based segmentation [15]. Our probabilistic approach uses
Gaussian processes, which arise in numerous fields of machine learning [9]. In [13],
Gaussian processes were applied for image segmentation of natural images. In contrast to
our work, the identity covariance function was used, samples from the process are
thresholded, and no atlas information is available.

Atlas-based segmentation of parotid glands with deformable registration was demonstrated
in [5,8]. In [3], the atlas images are used for training an active shape model of parotid
glands. The refinement of head and neck segmentations based on classification with features
was proposed in [7].

2 Method
Given a novel image I, we aim to infer segmentation S based on an atlas that contains
images  and segmentations . A probabilistic label map L =
{L1, …, Lm} specifies the likelihood for each label l ∈ {1, …, m}, i.e.,

 and serves as an intermediate segmentation result. The
estimated segmentation  at voxel x is obtained by choosing the label with highest
probability at voxel x. A perfect label map assigns probability one to the correct label for
each location. Atlas-based methods produce label map Lo, which might be susceptible to

errors, motivating the model , where Ll is the underlying true label map for label l.
Under the assumption of independent and identically distributed noise, we have

 for all locations x in the image, with . The assumption of
independent Gaussian noise may interfere with the normalization requirements

, which can be satisfied with a subsequent
normalization step. In our application, this is not necessary because we decide on the
segmentation based on the maximal value across label maps. We drop the label index l in the
following discussion, to simplify notation.
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2.1 Atlas-Based Segmentation
We briefly review two atlas-based segmentation methods we use to obtain the initial label
map Lo. We focus on patch-based approaches because they are well suited to handle the high
variability of parotid glands. Further, standardized intensity values of CT images make
patches comparable across subjects. Prior to segmentation, we define regions of interest
(ROI) that surround the parotid glands to restrict the search. Such regions could be obtained
from a coarse registration. We exploit the knowledge that the parotid glands are adjacent to
the mandible bone, which we detect with a simple template matching method.

The first baseline method is the non-local means (NLM) segmentation [4,11]. For each
location x within the ROI, we create the surrounding patch Px of size 7 × 7 × 3 and retrieve
the N = 10 closest patches  with corresponding labels  from the repository. The label
map is obtained as a weighted sum [4]:

(1)

The second approach uses a random forest classifier [2] to predict the segmentation label
Lo(x) for each location in the ROI. In contrast to NLM labeling, the classifier has to be
trained first. In our experiments, we randomly select six patients for training. We train
different classifiers for left and right parotid glands on patches selected from the ROI. We
choose 500 trees per random forest with 12 predictors sampled for splitting at each node.

2.2 Gaussian Process Regression for Label Inference
Our approach to inferring the latent label map L from Lo employs a distribution over label
maps p(L). In contrast to most atlas-based methods that make decisions at each voxel
separately and do not consider contour information, we choose a label distribution that
models the relationship between locations, exploiting the contour information in image I.
Stochastic processes offer a versatile framework to model interactions between possibly
infinite number of random variables. We view label maps as realizations from a Gaussian
process, , with mean m and covariance k. Gaussian processes are entirely
characterized by mean and covariance functions and have the property that every finite
subset is distributed according to a multivariate Gaussian distribution [9].

To obtain the posterior distribution over label maps, we condition the distribution of label
maps L on the labels Lo implied by the atlas:

(2)

with mean and covariance

(3)

(4)

where I is the identity matrix and σ2 is the noise variance. The mean vector m and the kernel
matrix K are constructed from the mean function m and kernel function k, respectively. We
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use the Cholesky factorization for the matrix inversion. The maximum a posteriori label map
coincides with the mean label map for Gaussian distributions,

. Performing this estimation for all
labels yields segmentation:

(5)

The mean function m causes a constant additive shift of all label maps μl and therefore does
not influence the segmentation result , motivating the choice of m = 0. Fig. 2 illustrates the
key steps of the segmentation process.

2.3 Contour-Driven Distributions over Label Maps
The distribution over label maps p(L) is determined by the covariance or kernel function k.
We seek label maps that are supported by intensity and texture features in the input image I.
In the first step, we estimate image and texture gradients per slice with the oriented gradient
signal, following closely the construction in [1]. This method calculates the χ2 distance
between the histograms of two half-discs at each location for various orientations and at
multiple scales. Textons are calculated to quantify the texture by convolving the image with
17 Gaussian derivative and center-surround filters and subsequently clustering with K-
means into 64 classes [1]. Image and texture gradients of multiple scales are added to yield
the multi-scale contour Γ. We use the contour information to calculate weights between in-
plane points x and x′, following the concept of intervening contours [1] by identifying the
maximum response along the line :

(6)

We set the scale parameter to ρ = 0.1 and only consider locations within the ROI that are at
most 20 pixels away from each other, giving rise to sparse kernel matrices. High weights are
assigned to pairs of points that are not separated by a contour and these points are
subsequently encouraged to share the same label.

Fig. 2 shows samples drawn from the prior distribution p(L), where we have overlaid the
manual segmentation for reference. We observe that the prior promotes label maps that
follow image structures. In this example, labels are propagated to the thin ends of the left
parotid gland, which improves the segmentation in comparison to the initial labeling.

3 Experiments
We evaluate the method on 16 CT scans of patients with head and neck cancer. Each image
was labeled by a trained anatomist for treatment planning. Images contain between 80 and
200 axial slices with a slice thickness of 2.5mm. The in-plane resolution is 0.9mm, slice size
is 512 × 512 pixels. All 16 images have the left parotid gland labeled. The right parotid
gland was consumed by a tumor in one patient. Experiments are performed on 10 datasets
for left parotid gland and 9 datasets for right parotid gland that have not been selected for
training the RF classifiers. We quantify the segmentation quality by calculating the Dice
volume overlap score and modified Hausdorff distance between the automatic and manual
segmentations. We compare our method to spectral label fusion (SLF) [14], which was
previously demonstrated to refine segmentations based on image contours.

Fig. 3 presents the results for both parotid glands for different algorithms and σ2 = 1. Non-
local means (NLM) and random forests (RF) serve as initial label maps. The segmentation
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with NLM leads to many false positives, causing worse performance than RF. Applying
spectral label fusion improves the segmentation results. The Gaussian process (GP)
segmentation achieves the significantly best results in our experiments. A reason for the
improvement of GP in comparison to SLF is that SLF votes on small image regions. If these
regions are not well defined or if the baseline segmentation algorithm cannot gather enough
votes in a region, this can cause large errors. The outlier of zero dice overlap for NLM+SLF
of the left parotid illustrates this case. Fig. 4 shows example results for all methods.

4 Conclusion
We proposed a novel probabilistic approach for improving atlas-based segmentation. The
key contribution is a contour-driven distribution over label maps that is supported by
features in the image. We employ Gaussian process regression to obtain MAP estimates of
label maps, on which the voting is performed. The initial label map is estimated with two
different patch-based segmentation approaches, non-local means segmentation and random
forest classification. Our experiments in segmentation of the parotid glands show improved
performance when the proposed method is used to refine the atlas-based label maps.
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Fig. 1.
Left: CT image with segmentation of left parotid (yellow: manual, red: patch-based). Right:
Magnification of the blue patch (top) with manual segmentation (bottom). The four most
similar patches in the repository vote for background (black at the center location), although
the patch belongs to the left parotid. Intensity values of patches are normalized for
visualization.
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Fig. 2.
Gaussian process segmentation of parotid gland. The initial label from the atlas-based
segmentation only partially agrees with the manual segmentation. We extract contours from
the image and use them in the kernel function k that allows us to sample label maps

, supported by the image. Conditioning these on the atlas labels results in an
improved segmentation.
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Fig. 3.
Dice volume overlap and modified Hausdorff distance for left and right parotid glands. Red
line indicates the median, the boxes extend to the 25th and 75th percentiles, and the whiskers
reach to the most extreme values not considered outliers (red crosses). *, **, and ***
indicate significance levels at 0.05, 0.01, and 0.001. For each baseline method (NLM, RF),
the performance of the basic method, the variant that employs spectral label fusion (SLF)
[14] and the variant based on Gaussian processes proposed here (GP) is reported.
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Fig. 4.
Examples of automatic segmentation results for different methods are shown in yellow.
Manual delineations are shown in red.
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