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Abstract
Partitioning Magnetic-Resonance-Imaging (MRI) data into salient anatomic structures is a
problem in medical imaging that has continued to elude fully automated solutions. Implicit
functions are a common way to model the boundaries between structures and are amenable to
control-theoretic methods. In this paper, the goal of enabling a human to obtain accurate
segmentations in a short amount of time and with little effort is transformed into a control
synthesis problem. Perturbing the state and dynamics of an implicit function’s driving partial
differential equation via the accumulated user inputs and an observer-like system leads to
desirable closed-loop behavior.

Using a Lyapunov control design, a balance is established between the influence of a data-driven
gradient flow and the human’s input over time. Automatic segmentation is thus smoothly coupled
with interactivity. An application of the mathematical methods to orthopedic segmentation is
shown, demonstrating the expected transient and steady state behavior of the implicit
segmentation function and auxiliary observer.

I. Introduction
A ubiquitious problem in medical image processing is segmentation, where salient objects
are to be marked within an image. Scanning technologies such as Magnetic-Resonance
(MRI) and X-Ray Computed Tomography (CT) yield three-dimensional volumetric images
which are then viewed by a doctor for diagnosis or treatment planning. Typically, only a
particular anatomic region or organ is of interest; segmentation refers to the process of
labeling individual voxels according to tissue type. Performing this classification relies on
both the observed intensities and some prior anatomical knowledge on the part of either a
human expert or automated algorithm.

Due to the hazardous effects of x-ray radiation in CT scans, it is often desirable to use MRI
scanning, even for bone injuries. Unlike CT scans, which give a high reflection from bone
and penetrate through soft-tissue, MRI volumes contain return signals from essentially all of
the soft-tissue and fluids. While the information needed for segmentation is embedded in the
resulting voxels, there is not, in general, a simple set of thresholds to extract a structure in all
slices. The distribution of intensity values arising from a particular structure may vary
signficantly within the structure, and additionally overlap the distributions of other
structures.

High-quality segmentation can certaintly be accomplished by an expert human user
manually tracing each slice in the volume. This is usually impractical due to time constraints
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and discourages high-resolution scanning to keep the number of volume slices manageable.
Automated techniques for segmenting such data has been the subject of much recent medical
computing literature, with particular emphasis on brain and heart segmentation [1]–[3].

A. Automatic Segmentation: Methods and Limitations
Automatic techniques for segmentation generally incoporate one or both of the following
concepts. First, the notion of a salient structure is often quantifiable in terms of a functional
that evaluates how different (in terms of image and gradient statistics) a region is its
surroundings. This leads, for example, to iterative schemes for separating of regions based
on different mean intensities [4] or more generally differences in distributions [5]. Second,
there are often plenty of examples of a segmentation result done by an expert user, enabling
the user of shape-priors and related knowledge-based techniques [6]–[8].

Consider the problem of segmenting a knee joint for the clinical goal of diagnosing an
anterior-cruciate ligament (ACL) tear and determining optimal surgical insertion points. The
difficulty in separating regions based on intensity statistics is illustrated in Fig. 1. For a large
structure in MRI, an intensity value arising within will almost certainly also exist in the
exterior. Complex distribution models that incorporate a joint distribution of textures,
gradients, and other higher order data can improve the result for most of the bone surface.
However, the most relevant sites for surgical repair are growth-plate junctions and ligament
insertion points; these are also the most statistically complex and patient-specific. Thus, it is
quite difficult in practice to formulate a useful higher-order model.

B. Background: Interactive Segmentation
While statistical descriptors of anatomic regions and prior shape knowledge are powerful
concepts towards increased automation of segmentation, they have not significantly
displaced the expert human as the primary generator of volume segmentations. In addition to
reasons of insufficient data for unique juvenile and trauma cases, there is a great deal of
mistrust both from patients and doctors towards fully automatic medical analysis. Instead,
there has been a recent drive towards semiautomatic image processing. Ideally, such an
interactive system should be designed as to enable a user to create excellent segmentation
results with a minimal amount of time and effort.

Interactive segmentation as presented here is motivated by experiences with existing
software tools, such as 3D-SLICER [9], [10] and SEG3D [11]. Typically, a user will first attempt
to use automatic segmentation with partial success. They will then find a combination of
manual editing and re-processing one small subdomain at a time to get a satisfactory result.
The novel contribution in this paper is a modeling formulation that represents interactive
segmentation as a feedback system, thus enabling a principled merging of automated
methods and user input. Having this framework in place allows the tools of control theory to
be invoked for system analysis and design.

C. Notation and Organization
The remainder of this paper is as follows: a general model of an interactive segmentation
system is presented in Section II. An approach for designing specific control signals and
interaction structure are presented in Section III, with the sample application to
segmentation of orthopedic MRI data in Section IV. To conclude, final remarks and some
interesting directions for future work are given in Section V.

Imaging-Specific Definitions—Due to the multidisciplinary nature of the present work,
several clarifications and definitions are in order. The term finesse refers to the level of
attentiveness and care with which a user applies input, e.g. with a computer mouse, while
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manually tracing boundaries in the image. MRI volume imagery is acquired as a sequence of
planar slices, with each discrete spatial grid point called a voxel. During segmentation and
diagnostics, visualization is the mapping of image intensities in each voxel, current labelling
assignments, and a geometric transformation to the user’s screen.

Mathematical Notation—Define Ω to be the three-dimensional volume domain and x a
coordinate in Ω. Labeling assignments are represented with an implicit function ϕ(x, t) : ℝ3

× [0, t) → ℝ. As illustrated in Fig. 3, boundaries between regions of interest are represented
as level sets where ϕ(x, t) = C. Differentiating with respect to time, ϕt = −∇ϕ · f, where f is a
data-driven vector field controlling how ϕ changes over time. Since the normal vector N to a

level set is given by , we have that ϕt = ‖∇ϕ‖N · f.

II. System Structure
In the following subsections, consituent parts of an interactive medical volume segmentation
system are presented. Gradient flows corresponding to functional minimization in image
processing are reviewed in Section II-A. Methods by which these flows can be perturbed
and controlled via interaction are described in Section II-B, The next Section III uses the
model to synthesize a useful set of control signals.

A. Image Segmentation with Gradient Flows
Dynamics that we seek to control result from gradient flows of image-dependent functionals
in image segmentation. Data enters via the time-independent but spatially-varying image
I(x). At each point in the image domain, a function g(ϕ, I) assigns the data-driven cost while
regularity and smoothness are imposed on ϕ and ∇ϕ. The class of functionals considered in
this paper lead to nominal, or fully-automatic, dynamics of ϕ denoted as ϕt = G(ϕ, I). A
central theme in image analysis with partial differential equations is the design of G(ϕ, I) to
either minimize a meaningful energy or simply exhibit some desirable properties as ϕ goes
towards steady-state; see for example [12], [13] and the references therein.

Example Consider the following, where g(·) and ‖∇ϕ‖ encode data and smoothness,
respectively:

(1)

An expression for ϕt comes from differentiating under the integral and integrating by parts1:

(2)

(3)

Defining  and , the gradient flow for ϕt is

(4)

1more details can be found in the APPENDIX
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Functions of this form are popular in algorithms for segmentation, denoising, and pose
estimation [13].

Remark Since ϕt = G(ϕ, I) arises from a functional of choice ℰ, it is straighforward to
ensure that mild conditions are satisfied by G(·) through modifications of ℰ. In Section II-B,
it shall be assumed that G and its gradient are bounded in absolute value to establish the
negativity of a Lyapunov functional.

B. Interaction: State and Dynamics Perturbation
A general overview of the interactive image segmentation model is shown in Section II and
Fig. II. From a user’s perspective, it is necessary to be able to apply sudden changes to the
implicit segmentation function ϕ(x, t). This is modelled by ϕ transitioning from ϕ(x, t−) to
ϕ(x, t+) driven by a step function. Such a jump occurs at a countably finite number of times,
denoted tk. U(x, t) is a time integral of the user’s input,

(5)

and it sets the impulse-driven changes in ϕ at input times tk:

(6)

Direct labeling alone is unsatisfactory. First, there is no margin of error for careless mouse
input from the user; great finesse is required. Second, simply switching between direct
assignments of ϕ and evolution of the gradient flow ϕt = G(ϕ, I) will tend to override the
user’s input during the automated phase. Rather than only directly affecting the state ϕ, input
sent from the human expert can be incorporated into ϕ′s dynamics as a control input to ϕt.

If given infinite time, the human user would generate a particular ϕ(x, ∞). As the purpose of
the proposed model is avoidance of tedious manual segmentation, it must be assumed that
this quantity is not available. Rather, its estimate is denoted by ϕ*(x, t) and driven by a fast
observer-like system that reacts to ϕ and the accumulated U:

(7)

Incorporating both the nominal data-driven dynamics and influence of user inputs over time,
the closed-loop system driving ϕ is

(8)

Implementing the closed-loop dynamics of Section II-B requires particular choices for
control signals F(ϕ, ϕ*, U) and H(ϕ, ϕ*) that should provide both stability and the desired
dynamic response. Update laws for ϕ* and ϕ use the error signals

(9)

and are derived in Section III next.
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III. Control Signal Design
We now synthesize control functions by establishing negative definiteness of several
Lyapunov functions. This approach is motivated by existing literature in PDE systems.
Boundary-control and stabilization of open-loop unstable systems [14]–[17] considers
methods for establishing stability throughout a domain while actuating only a boundary. In
contrast, precise actuation in the entirety of a domain is assumed in several methods for
adaptive control under spatially varying uncertain functions [18], [19].

Image segmentation with PDEs requires a slightly different view of the actuation domain’s
role. Both user input and ϕ(x, t) can be actuated anywhere in the domain, but the goal of
reducing human effort motivates us to seek control strategies that minimize the domain in
which U(x, t) is actuated. It is assumed that the user is satisfied with ϕ as an approximation
for ϕ* when they are not generating input (|U| is small). In this case,  should cause ϕ* to
follow ϕ. As U grows due to persistent human input, ϕ* becomes driven by U and ϕ by ϕ*
instead of its nominal dynamics.

Proposition III.1 A control law for ϕ’s slow dynamics that drive it towards ϕ* can be found

by augmenting the Lagrangian that led to ϕt = G(ϕ, I). Adding a penalty on  gives
the functional

(10)

whose gradient flow smoothly blends the action of image-dependent potential g(ϕ, I) and
estimate error ϕ. Corresponding to ℋ is the gradient flow

(11)

Furthermore, suppose that in the slow time-scale, the observer update signal  quickly

settles to zero relative to ϕ̂. That is, for an ε > 0, 0 <  < ε|ϕ̂(ϕ̂ − Δϕ̂)| after some finite time

t*. Then a sufficient condition for  is Kϕ > ε > 0.

Proof:

(12)

and for t > t*,

(13)

and the gradient flow for ϕt above is

The uncontrollable  term’s effect can be analyzed by substituting ϕt and integrating by
parts, leading to the inequality
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(14)

Expanding the (ϕ̂ − Δϕ̂)2 term leads to

(15)

giving a conservative sufficient condition for  of Kϕ > ε > 0.

Proposition III.2 To obtain an update law for ϕ*’s fast dynamics, consider the functional

(16)

The first two terms above suggest that ϕ* will follow ϕ or U, depending on their relative

magnitude. Regularization of ϕ* arises from the  portion. A gradient flow that
shrinks ℱ fastest is given by

(17)

Proof: Define P(ϕ, ϕ*, Δϕ*, U) as the portion of the integrand’s derivative with a  factor:

(18)

The time derivative of functional Eq. 16 is then

(19)

The controllable term  shrinks fastest when  is proportional to −P(·) as
proposed above in Eq. 17. However, it remains to establish that the integral term not
controllable by  is stable.

Proposition III.3 Negativity  is guaranteed when

where GM is a known pointwise bound on the nominal dynamics term and |Ω| is the
domain’s Lebesgue measure.

Proof: Substituting ϕt = G(·) + Kϕ(ϕ̂ − Δϕ̂), the second integral in  is

(20)

From integration by parts,
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The uncontrolled integral Eq. 20 then is the negative H1 Sobolev norm of ϕ̂ squared plus a
term due to G:

(21)

(22)

which shall be abbreviated as Q(ϕ̂). Since the nominal dynamics G(ϕ, I) are known and
arose from our choice of image-based cost function, it can be assumed that by construction |
G| < GM in the entire domain. Let |Ω| be the Lebesgue measure of domain Ω. From the
Cauchy-Schwarz inequality, a conservative upper bound on Eq. 20 is given by

(23)

(24)

Thus, we can guarantee the strict negativity

(25)

when ϕ-observer gain KF is sufficently high as to make

(26)

Together with the update law  of Eq. 17, satisfying the negativity condition of

Eq. 25 renders the entire .

IV. Results
A numerical implementation of the gradient flow equations with user input from the
preceding sections is used to segment an MRI dataset of a juvenile patient’s knee. First, as
shown in Section IV, the final segmentations are consistent; this is vital if various clinicians
are to use a fixed set of procedures with the software. Second, the system as whole indeed
converges to a steady-state as predicted, and this steady-state ϕ(x, t) can be tuned with
excellent precision by repeated user inputs.

For this example, the dark patch on the cartilage-bone junction is where the nominal
dynamics ϕt = G(ϕ, I) lead to an undesirable segmentation. After a brief period of user-input
in painting this patch as inside, the steady-state shifts and captures this region. Notice that as
the U reaches a final value (when the user stops editing), the observer error ‖ϕ̂‖L2 decreases

to a steady state value corresponding to  from Theorem III.3. In this mode, the
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nominal dynamics and control of ϕt are balanced. In three dimensions, the example’s final
output is shown in Fig. IV, having taken 8 minutes to run the system.

V. Conclusions and Future Work
The preceding sections have presented an approach that connects interactive medical image
segmentation and control-theoretic analysis and design. Using the implicit function and level
set evolution approach, accumulated user inputs interact with both instantaneous state and
dynamic response of the PDE system. Lyapunov control design enables a balance to be
established between the influence of a data-driven gradient flow and the human’s input over
time, with persistent input in a region of space leading to ϕt gradually deviating from its
nominal gradient flow.

Control design in this paper has focused on the basic additive model ϕt = G(ϕ, I) + H(ϕ, ϕ*).
As the inequalities of Section III are rather conservative, there is future work in determining
more relaxed criteria. Given that even this simple additive model leads to some desirable
closed-loop behavior, a more involved control strategy could potentially yield large
improvements in interactive segmentation. Novel extensions include directly incorporating
functions of the image data in control and determining optimal methods for providing
display feedback to the user.
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Appendix

Image Processing with Gradient Flows
Preceding sections make use of integration by parts in ℝN several times, which we
compactly review below in the context of differentiation of a functional. Γ is a piecewise
smooth boundary, and Ω is a closed and bounded subset of ℝN. Integration by parts states
that

To apply this to the derivative of a functional, let F(x, u(x, t), ∇u(x, t)) be a point-wise cost
whose integral is to be minimized. The gradient here is with respect to spatial variables x.
Computing the time-derivative,

(27)

(28)

Using the general form of integration by parts with v ≐ Fx and ψ ≐ ut = 0 on the boundary
Γ,
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(29)

Applying Cauchy-Schwarz in L2,

so that a gradient flow direction for u(x, t) is

(30)
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Fig. 1.
Bone tissues within one MRI slice have overlapping intensity histograms. Inhomogeneity of
a particular bone tissue across MRI slices is also signficant. There is not, in general, a
function to map intensity values to anatomical regions.
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Fig. 2.
Segmentation by minimizing a meaningful image-dependent functional is not sufficient
when the desired anatomic boundary is not actually a minimizer (left). By incorporating a
control input to the gradient flow, sequential human inputs steer the dynamics so as to
correctly segment the structure (right).
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Fig. 3.
From the initial implicit curve ϕ(x, 0) = 0, ϕ follows a gradient flow that minimizes an
image-driven functional.
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Fig. 4.
Explicitly modelling the visualization feedback to the user as a source of expert input
provides insight into how to design both the automated portion of segmentation and the user
interaction structure. Feedback compensates for deficiencies in automatic segmentation by
exploiting the human expert’s interpretation of complex imagery.
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Fig. 5.
TIMELINE: after initialization, the inner loop of Section II updates ϕ and ϕ*. Input from a
human user applies impulses at times tk to ϕ and accumulates as U(x, t). Between times tk,
the inner loop changes steady-state in response to updated U(x, t). The user stops applying
input when the visualization of ϕ(x, t) is satisfactory.
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Fig. 6.
Consistent segmentations and convergent observer error are attained after user input stops.
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Fig. 7.
Moving into 3D, a user’s time to segment high quality surfaces is cut dramatically over
manual segmentation. Accuracy follows that of an underlying automatic method, except
where user input as a correction has been applies.
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