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Abstract
Many investigations have used panel methods to study the relationships between fluctuations in
economic activity and mortality. A broad consensus has emerged on the overall procyclical nature
of mortality: perhaps counter-intuitively, mortality typically rises above its trend during
expansions. This consensus has been tarnished by inconsistent reports on the specific age groups
and mortality causes involved. We show that these inconsistencies result, in part, from the trend
specifications used in previous panel models. Standard econometric panel analysis involves fitting
regression models using ordinary least squares, employing standard errors which are robust to
temporal autocorrelation. The model specifications include a fixed effect, and possibly a linear
trend, for each time series in the panel. We propose alternative methodology based on nonlinear
detrending. Applying our methodology on data for the 50 US states from 1980 to 2006, we obtain
more precise and consistent results than previous studies. We find procyclical mortality in all age
groups. We find clear procyclical mortality due to respiratory disease and traffic injuries.
Predominantly procyclical cardiovascular disease mortality and countercyclical suicide are subject
to substantial state-to-state variation. Neither cancer nor homicide have significant
macroeconomic association.

1 Introduction
The impact of fluctuations in economic activity on mortality has been a long-running debate.
Early evidence for procyclical mortality (i.e., increased mortality during economic booms)
was presented by Ogburn and Thomas (1922). Subsequently, Harvey Brenner made
determined efforts to support the hypothesis of counter-cyclical mortality (e.g., Brenner,
1979), although his controversial statistical methods were eventually discredited (Gravelle et
al., 1981; Wagstaff, 1985). There is now evidence for procyclical mortality in many
developed and developing countries (reviewed by Tapia Granados and Ionides, 2011).
Mortality is the most clear-cut measure of population health, but may be the tip of an iceberg
of procyclical morbidity. Indeed, corresponding patterns have been found for other health-
related outcomes (Ruhm, 2003, 2005b), though these are complicated both by the scope of
available data and by the possibility of macroeconomic influences on data collection.

Cyclical mortality is distinct from the debated relationship between long-term economic
development and long-term improvements in public health. Nevertheless, the two debates
are related: inasmuch as cyclical mortality is observed for macroeconomic fluctuations at all
time scales, it plays a role in determining the long time scale variations which are identified
as trends. Certainly, many factors other than macroeconomic considerations contribute to
population mortality levels (Cutler et al., 2006).

NIH Public Access
Author Manuscript
Ann Appl Stat. Author manuscript; available in PMC 2014 February 26.

Published in final edited form as:
Ann Appl Stat. 2013 October 3; 7(3): 1362–1385. doi:10.1214/12-AOAS624.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Population level associations are distinct from the health consequences of economic
fluctuations on specific vulnerable groups, such as those who become unemployed. Adverse
health outcomes are certainly associated with unemployment, with evidence for causation in
both directions (McDonough and Amick, 2001). The present investigation concerns
aggregate effects, which may include both beneficial and harmful consequences for different
subpopulations.

A landmark in the investigation of cyclical mortality was the application of panel methods
by Ruhm (2000), allowing the consideration of extensive spatiotemporal data. Ruhm (2000)
analyzed annual statistics for 50 US states over 20 years and found predominantly
procyclical mortality. This conclusion has been largely confirmed by subsequent panel
investigations (Ruhm, 2003, 2006, 2007; Neumayer, 2004; Tapia Granados, 2005b;
Gerdtham and Ruhm, 2006; Buchmueller et al., 2007; Miller et al., 2009; Gonzalez and
Quast, 2010, 2011). The spatial units in these studies vary (states, countries, regions, French
departments) but we will consistently refer to them as states. These panel studies were
typically carried out in the spirit of difference-in-difference analysis (Bertrand et al., 2004).
In this paradigm, temporal variations in mortality are controlled by taking a difference
between state mortality and national mortality, interpreted in regression models as a fixed
year effect; spatial variations in mortality are controlled by including state-specific mortality
effects. The resulting relationships identified between macroeconomic variables and
mortality are therefore resistant to bias from either strictly spatial or strictly temporal
additive omitted variables. By removing national mortality effects, difference-in-difference
panel analysis is complementary to time series analysis (Ruhm, 2005a), though the two
approaches have led to broadly consistent results (Tapia Granados, 2005a). Individual-level
data have also revealed predominantly procyclical effects (Edwards, 2008). Sample size
issues limit the scope of individual-level analyses; macroeconomic impact on mortality is an
effect of small size (for any given individual) which nevertheless has a considerable overall
effect on entire populations.

A critical question for the proper understanding of procyclical aggregate mortality is to what
extent different age groups and mortality causes are involved in the procyclical
phenomenon. Problematically, different analyses have previously led to different answers.
We argue that these inconsistencies can be explained by the use of misspecified state-
specific trend models. Previous analyses have typically employed linear or constant state-
specific trends, and have performed statistical regression techniques which are inefficient or
biased for the data under consideration. The methodological limitations of these analyses
have had severe consequences for investigating age and cause specific mortality, without
being large enough to interfere with the results for total mortality. To support our argument,
we will show how removal of nonlinear trends allows appropriate statistical analysis using
standard regression methods.

In this investigation, we study data from the US states in the years 1980–2006. Thus, our
data updates the 1972-1991 analysis of Ruhm (2000) and overlaps the 1978-2004 analysis of
Miller et al. (2009). Whereas Miller et al. (2009) extended Ruhm (2000) by breaking down
the data more extensively by age and mortality cause, here we focus instead on the
specification of the model and its consequences for the conclusions reached. We find that
some estimates of interest are fragile to changes in the specification. Results which are
sensitive to the model specification should be treated with additional caution, and also raise
the question of which specification is most appropriate. To resolve existing ambiguities, and
to make further progress, there is a need for objective evaluation of the strengths and
weaknesses of alternative analyses. Assessing the model specification via analysis of the
regression residuals can provide such a tool. The constant or linear state-specific trend
specifications used in previous work, including Ruhm (2000) and Miller et al. (2009), entail
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substantial violations of the standard assumptions that justify the use of ordinary least
squares (OLS). Combining OLS point estimates with state-clustered standard errors is a
standard econometric technique in this situation (Bertrand et al., 2004; Petersen, 2009),
however this only partially alleviates the adverse consequences of the model violations. Our
methodological remedy is to apply nonlinear detrending methods in this spatiotemporal
setting. We show that our method has many of the advantages of feasible generalized least
squares (FGLS) while avoiding some of the difficulties inherent in using data to estimate a
large covariance matrix (Hausman and Kuersteiner, 2008).

Our results confirm the finding of Ruhm (2000) that general mortality fluctuates
procyclically and this procylical phenomenon is stronger in young adults (ages 20-44)
though it is present also in mid-age adults (45-64) and individuals at retirement ages (65+).
The conclusion of Miller et al. (2009) that mid-age adults are not subject to procyclical
mortality may be a consequence of model misspecification. Since Miller et al. (2009) and
Ruhm (2000) used similar model formulations, it is fortuitous that many of the results of
Ruhm (2000) happen to agree with the conclusions from a more statistically principled
analysis of recent data. We find that the procyclical oscillation of general mortality is mainly
mediated by increases in respiratory disease mortality, cardiovascular disease mortality, and
traffic mortality, all of which oscillate procyclically. Suicide differs by being
countercyclical; we find cancer and homicide to be acyclical.

The remainder of this paper is organized as follows. Section 2 describes the data. Section 3
introduces the panel models under consideration. Section 4 discusses the methodological
issues involved in fitting these models. Section 5 carries out a data analysis, focusing on
issues of methodological relevance. Section 6 investigates goodness of fit for the models
under consideration. Section 7 discusses these results in the context of the current
understanding of cyclical mortality.

2 Data
We analyzed annual data from the 50 US states over the years 1980–2006. Crude, age-
specific, sex-specific, and cause-specific mortality rates were computed using data publicly
available from the US Centers for Disease Control and Prevention (wonder.cdc.gov). Data
on annual unemployment rates were obtained from the US Bureau of Labor Statistics
(www.bls.gov). Age-specific mortality rates were calculated for three age groups: 20–44,
45–64 and 65+. We analyzed cause-specific mortality rates for eight major causes of death,
defined via (ICD9; ICD10) codes as follows: cardiovascular disease (390–459; I00–I99),
ischemic heart disease (410–414; I20–I25), cancer (140–165, 170–175, 179–203; C00–C97),
respiratory disease (460–519; J00–J98), other infectious disease (001–139; A00–B99),
traffic injuries (E810–E819; V01–V79), suicide (E950–E959; X60–X84), homicide (E960–
E969; X85–Y09).

Inspection of the plotted series of mortality rates for the 50 states revealed a jump in the
series for ischemic heart disease and cancer mortality between the years 1998 and 1999
(results not shown) which corresponds to the transition in disease coding from the 9th to the
10th edition of the International Classification of Diseases (i.e., from ICD9 to ICD10). The
annual change in ischemic heart disease mortality took its largest value at this time for 48
states. For cancer, the largest annual change occurred at this time for 20 states, with the
times of the biggest jump being scattered for the other states. To correct for the potential
error introduced by a change in mortality codes for these two categories, we replaced the log
mortality increment for 1998-1999 by the average value of the remaining increments (a
simple way to remove the effect of the jump while keeping the temporal structure of the
time series intact). This data correction made no qualitative difference to our conclusions.
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3 Models
We consider panel model specifications extending the choices of Ruhm (2000). Our general
model is

(1)

where Mit is a measure of mortality for state i in year t; Uit is a measure of state-level
unemployment; Nt is a measure of national unemployment; Ait is a column vector
representing population age-structure,1 with γ being a row vector of corresponding size; δt
are year-specific state-invariant effects; ϕi are state-specific time-invariant effects; the term
Ψit corresponds to state-specific linear trends; εit is an error term. The mortality rate
measure, Mit may correspond to total mortality, age-specific mortality, or cause-specific
mortality. When Mit is an age-specific mortality measure, we do not include the term γAit.

To define our mortality and unemployment measures, we introduce notation for the raw
data. The mortality rate data are denoted by mit, state-specific unemployment rate by uit and
national unemployment rate by nt. A vector with population proportions of children under 5
and of persons over 65 is written as ait. We consider four types of model, corresponding to
four different ways to work with state-specific levels and trends.

(B) The Basic model is the foundation for the analysis of Ruhm (2000). It has
dependent variable Mit = log mit and fits a constant level effect for each state
(i.e., it has a constraint ψi = 0). The remaining variables are untransformed (Uit
= uit, Nt = nt, Ait = ait).

(L) The Linear model includes linear state-specific trends. The linear model differs
from the basic model only by the inclusion of the term ψit.

(D) The Differenced model includes all time-dependent variables in first temporal
differences. Specifically, Mit = Δ log mit = mit+1 − mit, Uit = Δuit, Nt = Δnt, and
Ait = Δait.

(HPλ) The Hodrick-Prescott model includes the time-dependent variables after
subtracting trends computed via a Hodrick-Prescott filter with smoothing
parameter λ. In this case, we write Mit = Hλ (log mit), Uit = Hλ(uit), Nt = Hλ(nt),
and Ait = Hλ(ait). Here, Hλ(xt) denotes the residual component of the time series
xt after removing a trend computed by the method of Hodrick and Prescott
(1997). As discussed in Section 4, and at greater length by Ionides et al. (2012),
λ can be chosen to approximately prewhiten the mortality measure rather than
aiming specifically to isolate business cycle fluctuations. The choice λ = 100
satisfies this requirement (Ionides et al., 2012, Figure S-2).

The model types are summarized in Table 1(a). All regression models were weighted by the
square root of the state population to account for heteroskedasticity; this has become a
standard formulation (Ruhm, 2000; Tapia Granados, 2005b; Miller et al., 2009; Gonzalez
and Quast, 2011). State-specific fixed effects and linear trends are removed by the Hodrick-
Prescott filter and so are not included in models of type HPλ. The linear trends in models of
type L correspond to fixed effects after temporal differencing; we therefore include state-
specific fixed effects in models of type D.

1Age-adjusted state mortality rates are available. However, Rosenbaum and Rubin (1984) have pointed out the potential biases
introduced by using age-adjusted rates. Following these authors, we prefer to regress crude rates on a set of covariates including age-
structure variables.
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We consider four subtypes of each model type, corresponding to the inclusion of differing
sets of covariates. The national economy covariate, Nt, can be expressed as a linear
combination of the year effects, {δt}, and so we never include both in the model
simultaneously. Model B1 has β = 0, excluding an explicit role for the national economy;
model B2 excludes both national unemployment and year effects (β = δt = 0); model B3
excludes state unemployment and year effects (α = δt = 0); model B4 excludes year effects
(δt = 0). These model subtypes were considered by Ruhm (2000), with the goal of
disentangling the effects of state-level unemployment and national-level unemployment on
mortality. Subtypes of the other model types are defined in an identical way, as summarized
in Table 1(b).

4 Methodology
In a panel study such as ours, many variables are measured at many geographical locations
across many time points. This wealth of data leads to challenges in building graphical
representations. Nevertheless, plotting the data or regression residuals in various ways can
play an important role in model development and diagnostics. We demonstrate this in
Sections 5 and 6. By contrast, previous panel studies relating mortality to macroeconomics
have not shown any graphical representations of the data below national levels of
aggregation.

A classical approach to regression analysis is to present estimates and standard errors based
on OLS methodology, after checking that thorough investigation of the residuals does not
reveal any major violations of the corresponding model assumptions. When serious
violations are discovered one seeks to remove them by respecifying the model, for example
by using transformations of variables or appropriately weighting the error terms. An
alternative approach to inference is to employ nonparametric error models which operate
under weaker assumptions, as discussed in the context of panel analysis by Bertrand et al.
(2004) and Petersen (2009). A hidden cost of nonparametric error models is that the finite-
sample properties can be undesirable despite demonstrably good asymptotic properties
(Kauermann and Carroll, 2001). In numerical experiments, a sample size of 50 independent
time series has sometimes been found sufficient to validate the asymptotic justification of
robust standard errors for panel models (Bertrand et al., 2004; Petersen, 2009). However, the
numerical validation is dependent on the data and models under consideration and so should
be rechecked on a case-by-case basis. If a relatively simple respecification justifies standard
OLS techniques, the additional complexities of employing and validating nonparametric
error models can be avoided.

In the context of time series analysis, regression with autocorrelated errors can be handled
by a procedure called prewhitening (Shumway and Stoffer, 2006). One looks for a
transformation which provides approximately uncorrelated residuals when the transformed
dependent time series is regressed on the transformed independent series. If the
transformation has a linearity property, then the resulting OLS estimates of the regression
coefficients remain unbiased. The linearity property of transformations is distinct from the
use of the word linear to describe the term βit in equation (1). Transformations having this
linearity property include temporal differencing, detrending by computing the residuals from
fitting an auto-regressive moving-average model, and detrending using the Hodrick-Prescott
filter. If application of the Hodrick-Prescott filter with a particular choice of smoothing
parameter leads to effective prewhitening, this gives a data-driven justification of the
resulting analysis. Thus, the extensive literature on the value of the smoothing parameter
appropriate to study business cycle fluctuations in annual data (Ravn and Uhlig, 2002) is not
directly relevant to our methodology. Additional material on the interpretation and
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consequences of the choice of smoothing parameter is given in the supplement (Ionides et
al., 2012).

Much of the development of econometric panel analysis (both in theory and practice) has
focused on the standard errors. OLS standard errors can considerably underestimate the
actual variability of the parameter estimates, leading to great potential for the “discovery” of
spurious effects (Bertrand et al., 2004). A variety of methods, including clustered error
estimates and bootstrap methodology, have been proposed to amend this problem (Petersen,
2009). Even once the standard errors are appropriately corrected, there is a remaining
difficulty that OLS point estimates can also be unreliable in these situations. Feasible
generalized least squares (FGLS) aims to improve OLS by using an estimated covariance
matrix for the error terms (Hansen, 2007). However, the use of FGLS in panel analysis is
rare, amounting to just 3% of the panel analyses surveyed by Petersen (2009) and 1% of
those surveyed by Bertrand et al. (2004). Applying FGLS using simple models for the
covariance structure can be ineffective (Bertrand et al., 2004). Difficulties arise in complex,
flexible models of the covariance structure due to the potentially large number of parameters
to be estimated (Hansen, 2007; Hausman and Kuersteiner, 2008). Our method of applying a
detrending linear transform to both sides of the regression equation (1) is formally similar to
the application of FGLS, with detrending playing the role of covariance estimation. From
this perspective, nonlinear detrending is a variant of FGLS which is readily interpretable and
has favorable numerical properties.

Granger and Newbold (1974) encouraged analyzing temporal differences as a practical
resolution to the difficulties of jointly estimating regression coefficients and autocovariance
structures in the presence of substantial long-range autocorrelation. However, a relationship
between differences does not readily imply a relationship between trends: in practice,
fluctuations around a trend can have entirely different relationships to those of the trends
themselves (Hodrick and Prescott, 1997). Temporal differencing was the only linear data
transformation explored by Bertrand et al. (2004). This transformation performed
excellently in their numerical experiment (Table IIA, line 8 of Bertrand et al., 2004).
However, the authors commented that differencing was seldom used in their survey of
current practice, and gave the method no further consideration. A concern with differencing
is that it can result in substantial negative autocorrelation of residuals (and it does so for our
data). In this case, differencing is not ideal as a prewhitening filter; it over-enthusiastically
removes the positive autocorrelation. The typical consequences of the negative
autocorrelation are inefficient OLS effect estimates and conservative standard errors.

If trends are considered as fixed effects, rather than zero mean random effects, then OLS and
FGLS models which fail to account for these trends incur bias. Panel model
implementations of FGLS typically assume that the error terms are independent between
states, so that only temporal autocorrelations are substantial. Nonlinear trends which show
similarities between states are not appropriately modeled under this assumption. By contrast,
inasmuch as these phenomena are effectively removed by a detrending operation, the
corresponding prewhitened regression is protected from bias. The statistical evidence in the
data (Sections 5 and 6) suggests that there are unmodeled sources of spatiotemporal
dependence which can largely be removed by employing national year effects in
combination with nonlinear detrending.

Interpreting the results of observational studies requires care because of the possible
consequences of omitted variables. Another hazard is the possibility that an association
between two variables which is interpreted as causal in one direction in fact has a causal
mechanism in the opposite direction. In the context of cyclical mortality, two
uncontroversial assertions can assist the causal interpretation of observed associations:
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(A1) It has been generally accepted that mortality fluctuations could not plausibly be
a substantial cause of recent US booms and busts.

(A2) There is a lack of plausible non-economic phenomena which could
simultaneously have substantial effects on civilian mortality and macroeconomic
fluctuations in recent years in the US. Perhaps the best candidates are wars,
natural disasters, climate variation, or epidemic diseases; none of these have
been previously considered as plausible omitted variables to explain procyclical
mortality.

An alternative to (A2) is to employ a broad definition of macroeconomic phenomena,
including macroeconomic effects of variables external to the economy as well as interacting
variables within the economy, by assuming the following:

(A3) Any phenomenon with macroeconomic consequences is itself a macroeconomic
phenomenon.

If there is adequate statistical evidence for an association, then either (A1,A2) or (A1,A3)
implies that the association can be interpreted as a causal effect of macroeconomic
fluctuations on mortality. This follows directly from a basic principle of inductive reasoning,
that an association between two variables must be explained by either a direct causal effect
or by each variable responding to some third variable (Mill, 1853). From (A2) or (A3) one
can deduce that any such third variable is itself a macroeconomic variable. This argument
does not allow us to infer a specific causal mechanism. In particular, we cannot infer that
unemployment operates causally to produce an observed association; its role in our analysis
is as a proxy for the multitude of economic variables (measurable and non-measurable)
which fluctuate synchronously.

5 Results
Figure 1 displays national annual series of total mortality rates and the unemployment rate.
The national death rate declined dramatically during the recessions of the early 1980s, and
then increased throughout much of the expansion of the mid 1980s. In general, the evolution
of mortality tends to mirror the evolution of the unemployment rate, suggesting an inverse
relation between unemployment and mortality. The long-run behavior of the crude mortality
rate (unadjusted for age, as shown in Figure 1) is affected by changes in the age-structure of
the population; it is much less likely, however, that changes in the age-structure cause short
term oscillations of the mortality rate. When attempting to interpret the data in Figure 1, the
strength of the statistical evidence for the association is more critical than the issues of
causal direction and omitted variable bias. Assumptions (A1–A3) can jusify interpreting
statistically significant associations as macroeconomic effects on mortality, without being
able to pin down specific mechanisms. Securing the statistical evidence in sub-categories,
broken down by demographic group and cause of mortality, then gives a foundation for the
discussion of causal mechanisms consistent with the resulting pattern of associations.
Unfortunately, the association at the 27 annual time points in Figure 1 does not give
statistically conclusive evidence. Disaggregating mortality and unemployment rates from the
national level to the state level has potential to reinforce the evidence, as long as the states
show sufficient variation from the national pattern. Figure 2 plots mortality rates and
unemployment rates for four states, revealing quite different patterns in different states.
Some of these time series, such as mortality in Alaska, are clearly not well modeled by
variation around a linear trend.

Table 2 summarizes our results in models that have been repeatedly used, following Ruhm
(2000), to estimate the effect of macroeconomic fluctuations on mortality. The models with
linear trends (L1–L4) give similar results to the corresponding results for 1972-1991 (Ruhm,
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2000, Table I). In addition, inspection of the Akaike information criterion (AIC) values in
Table 2 shows that L1–L4 provide a considerably superior statistical explanation of the data
over B1–B4. AIC is only one of many possible measures for quantitative model comparison
(Burnham and Anderson, 2002). However, the differences between the AIC values in Table
2 are entirely unambiguous. Differences of order 1 unit of AIC are considered small, and so
alternative methodologies might be expected to disagree; differences of order 100 or 1000
units of AIC are compelling evidence. The comparisons provided by these AIC values are
therefore, presumably, insensitive to the measure of model comparison used. Differences in
AIC are useful for detecting issues of model misspecification, but they cannot, by
themselves, explain how and why this misspecification manifests itself.

Ruhm (2000) found that B1–B4 provided qualitatively similar results to L1–L4 and
therefore proceeded to use the simpler basic specification for subsequent analysis. For our
analysis, B1 is qualitatively consistent with L1–L4, and indeed the effect estimate for this
model (-0.52) happens to be identical to the estimate of Ruhm (2000). Problematically, B2–
B4 suggest conclusions which are inconsistent both with Ruhm (2000) and with the other
specifications in Table 2. Since B2–B4 also provide poor fits to the data (as judged by AIC,
and diagnostic plots) this could be explained by model misspecification bias. Model
subtypes 2–4 aim to investigate the contextual role of unemployment, addressing whether
national macroeconomic conditions continue to play a role given state-level variables.
However, our objective here is not to interpret the results from fitting B2–B4 or L2–L4, but
to observe how standard methodology can lead to apparent contradictions. The AIC values
in Table 2 suggest that year effects play a statistically important role. We therefore focus
henceforth on models of subtype 1.

Table 3 shows that the results for age-specific mortality are also sensitive to model
specification. Model B1 demonstrates considerable consistency with the 1972-1991 results
of Ruhm (2000, Table III), indicating strong procyclical mortality in all age groups and
especially in young adults and middle age adults. Our model L1, which corresponds to a
supplementary model for Ruhm (2000) and the primary model structure for Miller et al.
(2009), is in close agreement with the 1978-2004 results of Miller et al. (2009). In particular,
L1 suggests that procyclical mortality is weak or nonexistent in young adults and middle age
adults, and is therefore in conflict with the conclusions suggested by B1. Model D1 suggests
effect estimates which are relatively small, while being broadly indicative of procyclical
mortality across age groups. Model HP1100 suggests consistent procyclical mortality across
age groups, with smaller effect sizes than B1. Ionides et al. (2012) show that a Hodrick-
Prescott smoothing parameter of λ = 100 has superior prewhitening properties to λ = 6.25,
and the corresponding regression therefore has more statistical power to identify cyclical
effects.

From a methodological perspective, the cause-specific mortality results in Table 3 tell a
similar story to the age category results. Traffic fatalities, typically the most clearly
procyclical mortality cause, are highly statistically significant in all analyses. Procyclical
cardiovascular mortality is identified by all models, but is insignificant for D1 and HP16.25.
Model D1 typically estimates small effect sizes, relative to the other models in Table 3 and
relative to previous reports in the literature: we propose an explanation for this later. For
cancer, models B1 and L1 detect a cyclical effect, with opposite signs! Model B1 also fails
to find a cyclical pattern for suicide, which has been considered countercyclical in the US
(Luo et al., 2011; Eyer, 1977; Ruhm, 2000; Tapia Granados, 2005a). When methodologies
disagree on detection of accepted relationships, they do not provide a firm foundation for
investigating new phenomena. For example, the cyclical behavior of respiratory disease
mortality has previously received relatively little attention, perhaps because it is somewhat
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unexpected. Table 3 agrees with other studies (such as Miller et al., 2009) in detecting a
clear procyclical pattern of mortality due to respiratory disease.

The state clustered standard errors in Table 3 generally produce similar conclusions to the
OLS standard errors, with some important exceptions. For models D1, HP16.25 and HP1100,
state clustered standard errors are generally similar in magnitude to OLS standard errors
(results not shown). This is to be expected when residual autocorrelation is small, and in this
case state clustered standard errors may be less reliable than the usual OLS standard errors
(Kauermann and Carroll, 2001). For models B1 and L1, many large effect sizes remain
significant despite substantially inflated clustered standard errors. Conclusions about the
effects on suicide and cardiovascular disease are noticeably sensitive to the use of state
clustered standard errors. These two mortality categories are also identified in Section 6 as
having inconsistent effects between states. Inconsistency between states leads to relatively
large state clustered standard errors, since these error estimates assess uncertainty by
quantifying variability between states rather than between time points.

The five models in Table 3 emphasize relationships at different ranges of frequencies. The
synchronous fluctuations of many macroeconomic variables around their trends, known as
business cycles, are of irregular duration and have a power spectrum spread broadly over a
wide range of frequencies (Canova, 1998). It need not be the case that all frequencies of
macroeconomic fluctuations are equally associated with population health. The range of
frequencies at which the statistical evidence for cyclical associations is greatest could,
potentially, differ from the range at which the public health consequences are greatest. One
way to study these issues is through spectral analysis (Tapia Granados and Ionides, 2008)
but here we simply interpret the frequency-domain behavior of the specified regression
models (Ionides et al., 2012, Section S3). Model B1 performs the least detrending and
therefore places the most emphasis on low frequency associations. This leads to some large
effect estimates, matched with increased uncertainty (which can be viewed as larger
standard errors, or unknown biases). Model HP16.25 emphasizes a range of frequencies
intermediate between D1 and HP1100, and the results for HP16.25 are generally intermediate
between these two analyses. Model D1 emphasizes the highest frequencies, to such an extent
that some cyclical relationship becomes obscured. Macroeconomic fluctuations involve
complex relationships between many variables (Canova, 1998) and so it may be
unreasonable to expect any single economic measure to capture reliably, at high frequencies,
the relationship to health outcomes. Traffic injuries might be expected to have a relatively
clean high-frequency relationship to economic activity (proxied by unemployment in our
models) as there is an obvious and immediate causal mechanism. However, even for traffic
mortality, the parameter estimates for models D1 and HP16.25 are smaller than for the other
models.

Inasmuch as equation (1) is valid, all the estimation methods result in unbiased effect
estimates: the weighting of frequencies in the estimation procedure affects the variability of
the OLS estimate but not its bias. However, in practice, one cannot expect any model to be
equally appropriate over all time scales. Investigating the time scales at which the model
applies is therefore an integral part of data analysis. Model HP1100 emphasizes an
intermediate range of frequencies, and is seen to provide the clearest statistical evidence for
cyclical mortality.

If cyclical mortality were to exist only in the context of fluctuations around a trend then it
would have no long term consequences, since above-trend and below-trend fluctuations
necessarily cancel out in the long run. Alternatively, if cyclical mortality were present in
macroeconomic fluctuations occurring over a decade or longer, one should consider the
cyclical effects at least partly responsible for observed health trends on these time scales.
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The indications from model B1 that procyclical mortality may be even stronger at low
frequencies support this second interpretation.

6 Diagnostic Analysis
The spatiotemporal dependence of the regression residuals affects the appropriate choice of
model specification, the suitability of parameter estimation methodologies, and the
evaluation of uncertainty in the resulting estimates. Figure 3 shows the temporal
autocorrelation of the residuals for each state at each lag. We see that there is strong positive
autocorrelation for model B1, at short lags. This positive autocorrelation is reduced, but still
substantial, for model L1. The autocorrelation for model D1 becomes significantly negative
at lag 1, as might be expected from applying a differencing operation. There is some
indication of mild negative autocorrelation after lag 1 for model HP1100, but this model
shows relatively minor deviation from the expected behavior of uncorrelated residuals.

Similar patterns emerge when investigating spatial correlation. Figure 4 shows the sample
correlations between the time series of residuals for all 1225(= 50 × 49/2) pairs of states.
Models B1 and L1 show considerably more variability in the sample correlation that is
consistent with spatiotemporally uncorrelated residuals. The sample autocorrelations of the
residuals are necessarily centered near zero, due to the inclusion of year effects. The lack of
a substantial spatial pattern suggests that dependence between neighboring states is not a
major concern. The increased spread is another indication of temporal correlation:
independent sequences which each have positive marginal temporal autocorrelation typically
have sample crosscorrelation with mean zero but greater variability than temporally
uncorrelated sequences. Models D1 and HP1100 have a spread of sample cross-correlations
which is approximately consistent with spatiotemporally uncorrelated residuals. The lower
variability for models D1 and HP1100 reveals a small pattern of positive correlations
between residuals of states in close proximity. It would be surprising if no such phenomenon
existed, but we see here that the effect is rather weak. Most of the crosscorrelation of
fluctuations in mortality between states is removed by the inclusion of the national year
effect δt. If these year effects are not included (i.e., in models of subtype 2, 3 or 4), a plot
analogous to Figure 4 shows consistently positive crosscorrelations across all geographic
distances (results not shown).

Residuals can also be investigated by examination of the time plots for each state. Some
representative time plots are shown in Figure 5. This figure reinforces the conclusion that
OLS estimation of the basic model is a questionable practice, since the underpinning model
assumptions are violated for almost all states. The linear trend model is sometimes adequate
(e.g., Hawaii and Oklahoma) and sometimes not (e.g., Maine and Ohio). Both differencing
and HP detrending remove systematic trends from the time series of residuals.

The conclusion from these diagnostic investigations is that, among these alternatives, model
HP1100 unambiguously comes closest to satisfying the model assumptions for a standard
linear model analysis. As another criterion to compare model specifications, we compared
the consistency of the estimated cyclical mortality effects between states. A robust
relationship between macroeconomic fluctuations and mortality might be expected to
demonstrate consistent results in separate state-by-state time series analyses. We explored
the stability of the panel model effect estimates across states by estimating the
unemployment effect on mortality using data for one state only, i.e., the model in equation
(1) for a single fixed value of the state label i. For a state-by-state analysis, one cannot
estimate fixed year effects but one can still estimate models of subtypes 2–4. The results for
subtype 2 are plotted in Figure 6, from which we observe that HP2100 provides the greatest
consistency between states, closely followed by D2. For example, the standard error of the
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50 state-specific estimates of 100α for total mortality is 0.53 for L2, 0.45 for D2, and 0.43
for HP2100. National fluctuations in mortality unrelated to the economy, perhaps due to
infectious disease or climate, are not controlled for in model subtype 2. Some mortality
categories nevertheless demonstrate consistent state-by-state effects, especially for the larger
states. As might be expected, there is typically greater variation in the estimated effects for
smaller states. From Figure 6, we see that the effects for total mortality, respiratory disease,
traffic injuries and ages 65+ have consistent signs in all (or almost all) of the larger states.
Perhaps surprisingly, suicide and cardiovascular disease show only weak patterns in the
state-by-state analysis despite the evidence for overall cyclical behavior from the full panel
analysis (Table 3, column HP1100).

7 Conclusions
We have seen that the choice of model can have considerable influence on panel analysis of
the associations between fluctuations in mortality and macroeconomic variables. These
influences are simultaneously a concern, a challenge and an opportunity. The concern is
that, unless a methodological consensus is found, scientific claims which are sensitive to
choice of methodology must remain unresolved. The challenge is to establish statistical
procedures which objectively assess the strengths and weaknesses of different analyses, and
so disambiguate the conclusions. Overcoming this challenge will give an opportunity to
improve understanding of the phenomenon of procyclical mortality. A historical precedent
for methodological introspection in this research area is the examination and eventual
rejection of the methods employed by Harvey Brenner. Indeed, panel analyses have played
an important role in clarifying the evidence for overall procyclical mortality. However, we
have shown that previous panel approaches have limited capability to identify more subtle
components of the cyclical effect.

It is well known that positive temporal autocorrelation (Bertrand et al., 2004) and positive
spatial crosscorrelation (Layne, 2007) typically cause OLS standard errors for panel models
to be anti-conservative (i.e., inappropriately small). Under-estimated standard errors lead to
overestimated statistical significance and hence the detection of spurious relationships.
Clustering standard errors by state helps to resolve this issue, but these robust standard
errors fail to correct for dependence between states. Clustering standard errors by state and
year gains additional robustness, with the cost being increased variability in the standard
error estimates. In addition, the OLS regression coefficient estimates remain inefficient (if
unmodeled trends are considered random variables) or biased (if unmodeled trends are
considered as fixed effects). We have shown that nonlinear detrending can be employed to
fix these methodological shortcomings in the context of investigating cyclical mortality.

The study of cyclical mortality fluctuations is sensitive to these methodological issues
because relatively small effects, which are hard to unravel from other background sources of
variability, can nevertheless have substantial consequences at the population level. The
larger and clearer the effect, the less sensitive its detection should be to the details of the
statistical methodology used to investigate it. However, understanding the overall pattern
requires investigating which subpopulations and mortality causes are involved. Inevitably,
one seeks to press to the limits of the available data and statistical methodology.

We have proposed a resolution to the differing accounts of age-dependency for procyclical
mortality. Our preferred specification (Table 3, column HP1100) suggests that the effect is
relatively uniform across ages, which has attractive conceptual simplicity. There may be no
reason a priori to expect age uniformity. In particular, individuals in the 65+ age category
are predominantly out of the workforce: they are therefore largely unaffected by some
potential mechanisms such as extra hours of work, or fewer hours of sleep, during economic
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expansions. The 20-44 age category has the largest estimated effect for model HP1100, yet,
according to the spatiotemporal clustered errors, this age group is the only one in which the
association is statistically insignificant. Other lines of reasoning, including the
spatiotemporal clustered errors for other choices of the Hodrick-Prescott smoothing
parameter, and other choices of standard error for model HP1100, suggest adequate statistical
evidence for this association.

Our results for cause-specific mortality (Table 3, column HP1100) give a single set of figures
consistent with previous analyses but without the occasional peculiarities that are a hallmark
of misspecified models. For example, the models B1 and L1 suggest macroeconomic
associations for cancer with differing signs. The statistical significance of cancer for model
B1 disappears when using clustered standard errors; for L1, the countercyclical association
remains significant. Miller et al. (2009) found a countercyclical association with cancer
(with unspecified statistical significance) consistent with the similarity of their model
specification to L1. Tapia Granados (2005a) found a procyclical association in the US for
1945-1970, but not in other time intervals. The long lag times involved in the chronic
development of cancer are hard to reconcile with an unlagged cyclical relationship.
However, it is entirely possible that external factors could be associated with acute
complications resulting in death of cancer patients. This possibility is self-evident for
cardiovascular disease, where acute cardiovascular failures are associated both with chronic
disease development and external stress.

Cardiovascular disease and cancer are the two foremost causes of death in developed
countries, and the cyclical behavior of cardiovascular mortality has therefore attracted
considerable attention (Ruhm, 2007). Cardiovascular disease mortality has a relatively small
procyclical signature over the 23 developed countries in the Organization for Economic
Cooperation and Development (OECD) studied by Gerdtham and Ruhm (2006). In some
countries, such as Japan (Tapia Granados, 2008), the procyclical signature of cardiovascular
disease mortality seems to be strong; in others, such as Germany (Neumayer, 2004), it seems
to be negligible. In Sweden there is some evidence for a countercyclical effect (Svensson,
2008; Tapia Granados and Ionides, 2011). In the US, Table 3 reconfirms the conclusions of
Ruhm (2000) and Miller et al. (2009) that the dominant behavior of cardiovascular disease is
procyclical. However, we found in Figure 6 that this result is not strongly consistent at the
level of individual states.

The unambiguous evidence for procyclical respiratory mortality requires further
investigation. This phenomenon has been noted in other studies of developed countries
(Eyer, 1977; Ruhm, 2000; Neumayer, 2004; Tapia Granados, 2005b; Gerdtham and Ruhm,
2006; Miller et al., 2009), but it has become further clarified by the statistical methods we
have employed. Specifically, we have shown the strong consistency between individual
states, and we have employed methods that minimize the risk of identifying spurious
relationships. Our data cannot readily reveal how mechanisms such as air quality (pollution)
and weakened immune status (increased infectious disease transmission) may combine to
produce this procyclical effect. Respiratory disease, as categorized in ICD9/10, is not
necessarily infectious but does include influenza and pneumonia which are responsible for
substantial mortality in old age. Infectious diseases provide a potential avenue by which
those outside the workforce suffer procylical mortality, since collective resistance plays a
substantial role in controlling disease spread (an effect known as herd immunity in
epidemiology; Bonita et al., 2006). Overwork and a reduction in healthy behaviors during
economic booms could lead to a population with weaker overall health and therefore greater
transmission of pathogens. Increased travel, associated with increased economic activity,
provides another potential mechanism for increased transmission of pathogens.
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Previous studies (Ruhm, 2000; Miller et al., 2009) have found that homicides oscillate pro-
cyclically. This result may appear counter-intuitive, and to our knowledge it has not been
fully explored. According to our specification HP1100 (and also D1 and HP16.25) in Table 3
there is no clear evidence that homicides are correlated with the business cycle. Inasmuch as
the data support procyclical homicide, this is based on the models B1 and L1 which place
more emphasis than HP1100 on longer-term variation.

Our analyses provide weak support for an overall countercyclical nature of suicide in the
US, consistent with the conclusions of Luo et al. (2011). A cyclical effect on suicide might
be intuitively unsurprising, but the direction of the effect is not consistent between countries.
For example, suicide in Japan is strongly countercyclical (Tapia Granados, 2008) whereas in
Germany and Finland there is evidence for procyclical suicide (Neumayer, 2004; Hintikka et
al., 1999). No dominant pattern was found in a study of OECD data (Gerdtham and Ruhm,
2006). Figure 6 suggests that the cyclical behavior of suicide is inconsistent between states.
This conclusion is supported by the the diminished significance of the overall
countercyclical effect once the standard errors are clustered by state.

Debate about individual components of cyclical mortality, and remaining uncertainty about
specific causal mechanisms, should not obscure the main achievement of recent research in
this area. There is now overwhelming evidence that downturns in economic activity have
not had overall adverse health consequences at the population level, in the recent past of
developed countries with market economies. Groups of individuals adversely affected by
phenomena associated with economic booms and busts deserve assistance. At earlier stages
of socioeconomic development, economic growth may have substantial health benefits
above and beyond other factors such as public health programs and education (Pritchett and
Summers, 1996). However, the government’s responsibility to consider the net public health
consequences of its actions (Childress et al., 2002) cannot be used as a moral argument for
pro-growth economic policies in the US and similar countries. Other moral obligations
relevant to macroeconomic policy include the protection of individual liberties,
environmental stewardship, and homeland security. Future public policies will require trade-
off between economic growth and other objectives, and evidence based assessment of the
positive and negative consequences of economic growth should inform this debate.
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Figure 1.
National mortality and unemployment. (a) Mortality per 1,000 per year, shown as a dashed
line corresponding to the left axis scale; unemployment rate, shown as a solid line
corresponding to the right axis scale. (b,c,d) The data in (a) detrended using a linear trend,
first difference and Hodrick-Prescott filter (λ = 100) respectively.
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Figure 2.
Mortality and unemployment for four states. Mortality per 1,000 per year is shown as a
dashed line corresponding to the lefts axis scale. The unemployment rate is shown as a solid
gray line corresponding to the right axis scale.
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Figure 3.
Autocorrelation of the residual in four models for total mortality. Points show the sample

autocorrelation for each state at each lag. The dashed lines are at 
where tn−2 is the 97.5 percentile of the t distribution on n − 2 degrees of freedom, and n is
the number of pairs of time points available to compute the sample autocorrelation at each
lag. If the residual series were temporally uncorrelated, approximately 95% of the points
should lie between the dashed lines (Moore and McCabe, 1999, Section 10.2). The gray
solid line graphs the mean sample autocorrelation at each lag.
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Figure 4.
The crosscorrelation between residuals for each pair of states, plotted against distance
between population-weighted state centers (from the 2000 census) in four models for total

mortality. The dashed lines are at  where tn−2 is the 97.5 percentile
of the t distribution on n − 2 degrees of freedom, and n = 27 (for B1, L1, HP1100) or n = 26
(for D1). If the residual series were spatiotemporally uncorrelated, approximately 95% of
the points should lie between the dashed lines (Moore and McCabe, 1999, Section 10.2).
The actual percentages for models B1, L1, D1 and HP1100 are 46.1%, 79.3%, 90.9% and
91.3% respectively. The gray solid line shows a local linear regression fit to these
crosscorrelations, implemented using the loess function in R2.15.0, with the default
parameter settings.

Ionides et al. Page 19

Ann Appl Stat. Author manuscript; available in PMC 2014 February 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Residual time plots for four states. The top row graphs total state mortality, and subsequent
rows graph residuals for each of four models.
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Figure 6.
State-specific effects of unemployment on mortality. Columns correspond to models, as
specified in Table 1 and equation (1). Rows correspond to mortality categories. The estimate
of 100α from fitting the model to a single state is plotted against the population of the state.
Each state is represented either by its two letter abbreviation or by an open circle.
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