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Abstract
High resolution microarrays and second-generation sequencing platforms are powerful tools to
investigate genome-wide alterations in DNA copy number, methylation, and gene expression
associated with a disease. An integrated genomic profiling approach measuring multiple omics
data types simultaneously in the same set of biological samples would render an integrated data
resolution that would not be available with any single data type. In this study, we use penalized
latent variable regression methods for joint modeling of multiple omics data types to identify
common latent variables that can be used to cluster patient samples into biologically and clinically
relevant disease subtypes. We consider lasso (Tibshirani, 1996), elastic net (Zou and Hastie,
2005), and fused lasso (Tibshirani et al., 2005) methods to induce sparsity in the coefficient
vectors, revealing important genomic features that have significant contributions to the latent
variables. An iterative ridge regression is used to compute the sparse coefficient vectors. In model
selection, a uniform design (Fang and Wang, 1994) is used to seek “experimental” points that
scattered uniformly across the search domain for efficient sampling of tuning parameter
combinations. We compared our method to sparse singular value decomposition (SVD) and
penalized Gaussian mixture model (GMM) using both real and simulated data sets. The proposed
method is applied to integrate genomic, epigenomic, and transcriptomic data for subtype analysis
in breast and lung cancer data sets.

1. Introduction
Clustering analysis is an unsupervised learning method that aims to group data into distinct
clusters based on a certain measure of similarity among the data points. Clustering analysis
has many applications in a wide variety of fields including pattern recognition, image
processing and bioinformatics. In gene expression microarray studies, clustering cancer
samples based on their gene expression profile has revealed molecular subgroups associated
with histopathological categories, drug response, and patient survival differences (Perou et
al., 1999; Alizadeh et al., 2000; Sorlie et al., 2001; Lapointe et al., 2003; Hoshida et al.,
2003).
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In the past few years, integrative genomic studies are emerging at a fast pace where in
addition to gene expression data, genome-wide data sets capturing somatic mutation
patterns, DNA copy number alterations, DNA methylation changes are simultaneously
obtained in the same biological samples. A fundamental challenge in translating cancer
genomic findings into clinical application lies in the ability to find “driver” genetic and
genomic alterations that contribute to tumor initiation, progression, and metastasis (Chin and
Gray, 2008; Simon, 2010). As integrated genomic studies have emerged, it has become
increasingly clear that true oncogenic mechanisms are more visible when combining
evidence across patterns of alterations in DNA copy number, methylation, gene expression
and mutational profiles (TCGA Network, 2008, 2011). Integrative analysis of multiple
“omic” data types can help the search for potential “drivers” by uncovering genomic
features that tend to be dysregulated by multiple mechanisms (Chin and Gray, 2008). A
well-known example is the HER2 oncogene which can be activated through DNA
amplification and mRNA over-expression. We will discuss the HER2 example further in our
motivating example.

In this paper, we focus on class discovery problem given multiple omics data sets
(multidimensional data) for tumor subtype discovery. A major challenge in subtype
discovery based on gene expression microarray data is that the clinical and therapeutic
implications for most existing molecular subtypes of cancer are largely unknown. A
confounding factor is that expression changes may be related to cellular activities
independent of tumorigenesis, and therefore leading to subtypes that may not be directly
relevant for diagnostic and prognostic purposes. By contrast, as we have shown in our
previous work (Shen, Olshen and Ladanyi, 2009), a joint analysis of multiple omics data
types offer a new paradigm to gain additional insights. Individually, none of the genomic-
wide data type alone can completely capture the complexity of the cancer genome or fully
explain the underlying disease mechanism. Collectively, however, true oncogenic
mechanisms may emerge as a result of joint analysis of multiple genomic data types.

Somatic DNA copy number alterations are key characteristics of cancer (Beroukhim et al.,
2010). Copy number gain or amplification may lead to activation of oncogenes (e.g., HER2
in Figure 1). Tumor suppressor genes can be inactivated by copy number loss. High-
resolution array-based comparative genomic hybridization (aCGH) and SNP arrays have
become dominant platforms for generating genome-wide copy number profiles. The
measurement typical of aCGH platforms is a log-ratio of normalized intensities of genomic
DNA in experimental versus control samples. For SNP arrays, copy number measures are
represented by log of total copy number (logR) and parent-specific copy number as captured
by a B-allele frequency (BAF) (Chen, Xing and Zhang, 2011; Olshen et al., 2011). Both
platforms generate contiguous copy number measures along ordered chromosomal locations
(an example is given in Figure 6). Spatial smoothing methods are desirable for modeling
copy number data.

In addition to copy number aberrations, there are widespread DNA methylation changes at
CpG dinucleotide sites (regions of DNA where a Cytocine nucleotide occurs next to a
Guanine nucleotide) in the cancer genome. DNA methylation is the most studied epigenetic
event in cancer (Holliday, 1979; Feinberg and Vogelstein, 1983; Laird, 2003, 2010). Tumor
suppressor genes are frequently inactivated by hypermethylation (increased methylation of
CpG sites in the promoter region of the gene), and oncogenes can be activated through
promoter hypomethylation. DNA methylation arrays measure the intensities of methylated
probes relative to unmethylated probes for tens of thousands of CpG sites located at
promoter regions of protein coding genes. M-values are calculated by taking log ratios of
methylated and un-methylated probe intensities (Irizarry et al., 2008), similar to the M-
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values used for gene expression microarrays which quantify the relative expression level
(abundance of a gene’s mRNA transcript) in cancer samples compared to a normal control.

In this paper, we focus on class discovery problem given multiple omics data sets for tumor
subtype discovery. Suppose t = 1, ···, T different genome-scale data types (DNA copy
number, methylation, mRNA expression, etc.) are obtained in j = 1, ···, n tumor samples. Let
Xt be the pt × n data matrix where xit denote the ith row and xjt the jth column of Xt. Rows
are genomic features and columns are samples. Here we use the term genomic feature and
the corresponding feature index i in the equations throughout the paper to refer to either a
protein-coding gene (typically for expression and methylation data) or ordered genomic
elements that does not necessarily have a one-to-one mapping to a specific gene (copy
number measure along chromosomal positions) depending on the data type.

Let Z be a g × n matrix where rows are latent variables and columns are samples, and g is
the number of latent variables. Latent variables can be interpreted as “fundamental”
variables that determine the values of the original p variables (Jolliffe, 2002). In our context,
we use latent variables to represent disease driving factors (underlying the wide spectrum of
genomic alterations of various types) that determine biologically and clinically relevant
subtypes of the disease. Typically, g ≪ Σt pt, providing a low-dimension latent subspace to
the original genomic feature space. Following a similar argument for reduced-rank linear
discriminant analysis in (Hastie, Tibshirani and Friedman, 2009), a rank-g approximation
where g ≤ K − 1 is sufficient for separating K clusters among the n data points. For the rest
of the paper, we assume the dimension of Z is (K − 1) × n with mean zero and identity
covariance matrix. A joint latent variable model expressed in matrix form is:

(1)

In the above, Wt is a pt × (K − 1) coefficient (or loading) matrix relating Xt and Z with wjt
being the jth row and wkt the kth column of Wt, and Et is a pt × n matrix where the column
vectors ej, j= 1, ···, n represent uncorrelated error terms that follow a multivariate

distribution with mean zero and a diagonal covariance matrix . Each data
matrix is row-centered so no intercept term is presented in equation (1).

Equation (1) provides an effective integration framework in which the latent variables Z =
(z1, ···, zK − 1) are common for all data types, representing a probabilistic low-rank
approximation simultaneously to the T original data matrices. In Section 3.2, we point out its
connection and differences from singular value decomposition (SVD). In Sections 6 and 7,
we illustrate that applying SVD to combined data matrix broadly fails to achieve an
effective integration of various data types.

Equation (1) is the basis of our initial work (Shen, Olshen and Ladanyi, 2009) in which we
introduced an integrative model called iCluster. We considered a soft-thresholding estimate
of Wt that continuously shrink the coefficients for noninformative features toward zero. The
motivation for sparse coefficient vectors is clearly indicated by Figure 1 panels D and E. A
basic sparsity-inducing approach is to use a lasso penalty (Tibshirani, 1996). Nevertheless,
different data types call for appropriate penalty terms such that each Wt is sparse with a
specific sparsity structure. In particular, copy number aberrations tend to occur in
contiguous regions along chromosomal positions (Figure 6), for which the fused lasso
penalty (Tibshirani et al., 2005) is appropriate. In gene expression data where groups of
genes involved in the same biological pathway are co-regulated and thus highly correlated in
their expression levels, the elastic net penalty (Zou and Hastie, 2005) is useful to encourage
a grouping effect by selecting strongly correlated features together. In this paper, we present
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a sparse iCluster framework that employs different penalty terms for the estimation of Wt
associated with different data types.

In Section 3, we present the methodological details of the latent variable regression
combined with lasso, elastic net and fused lasso penalty terms. To determine the optimal
combination of the penalty parameter values, a very large search space needs to be covered
which presents a computational challenge. An exhaustive grid search is ineffective. We use
a uniform design by Fang and Wang (1994) that seeks “experimental” points that scattered
uniformly across the search domain which has superior convergence rates than the
conventional grid search (Section 3.3). Section 4 presents an EM algorithm for maximizing
the penalized data log-likelihood. The number of clusters K is unknown and must be
estimated. Section 5 discuss the estimation of K based on a cross-validation approach.
Section 6 presents results from simulation studies. Section 7 presents results from real data
applications. In particular, Section 7.1 presents an integrative analysis of epigenomic and
transcriptomic profiling data using a breast cancer data set (Holm et al., 2010). In Section
7.2, we illustrate our proposed method to construct a genome-wide portrait of copy number
induced gene expression changes using a lung cancer data set (Chitale et al., 2009). We
conclude the paper with a brief summary in Section 8.

2. Motivating example
In this section, we show an example where an integrated analysis of multiple omics data sets
is far more insightful than separate analyses. Pollack et al. (2002) used customized
microarrays to generate measurements of DNA copy number and mRNA expression in
parallel for 37 primary breast cancer and 4 breast cancer cell line samples. Here the number
of data types T = 2. In the mRNA expression data matrix X1, the individual element xij1
refers to the observed expression of the ith gene in the jth tumor. In the DNA copy number
data matrix X2, the individual element xij2 refers to the observed log-ratio of tumor versus
normal copy number of the ith gene in the jth tumor. In this example, both data types have
gene-centric measurement by design.

A heatmap of the genomic features on chromosome 17 is plotted in Figure 1. In the
heatmap, rows are genes ordered by their genomic position and columns are samples
ordered by hierarchical clustering (panels A) or by the lasso iCluster method (panels B).
There are two main subclasses in the 41 samples: the cell line subclass (samples labeled in
red) and the HER2 tumor subclass (samples labeled in green). It is clear in Figure 1A that
these subclasses cannot be distinguished well from separate hierarchical clustering analyses.

Separate clustering followed by manual integration as depicted in Figure 1A remains the
most frequently applied approach to analyze multiple omics data sets in the current literature
due to its simplicity and the lack of a truly integrative approach. However, Figure 1A clearly
shows its lack of a unified system for cluster assignment and poor correlation of the outcome
with biological and clinical annotation. As we will illustrate in the simulation study in
Section 7, separate clustering can fail drastically in estimating the true number of clusters,
classifying samples to the correct clusters, and selecting cluster-associated features. Several
limitations of this common approach are responsible for its poor performance:

• Correlation between data sets is not utilized to inform the clustering analysis,
ignoring an important piece of information that plays a key role for identifying
“driver” features of biological importance.

• Separate analysis of paired genomic data sets is an inefficient use of the available
information.
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• It is not straightforward to integrate the multiple sets of cluster assignments that are
data-type dependent without extensive prior biological information.

• The standard clustering method includes all genomic features regardless of their
relevance to clustering.

Our method aims to overcome these obstacles by formulating a joint analysis across multiple
omics data sets. The heatmap in Figure 1B demonstrates the superiority of our working
model in correctly identifying the subgroups (vertically divided by solid black lines). From
left to right, cluster 1 (samples labeled in red) corresponds to the breast cancer cell line
subgroup, distinguishing cell line samples from tumor samples. Cluster 2 corresponds to the
HER2 tumor subtype (samples labeled in green), showing concordant amplification in the
DNA and overexpression in mRNA at the HER2 locus (chr 17q12). This subtype is
associated with poor survival as shown in Figure 1C. Cluster 3 (samples labeled in black)
did not show any distinct patterns, though a pattern may have emerged if there were
additional data types such as DNA methylation.

The motivation for sparseness in the coefficient estimates is illustrated by Figure 1E. It
clearly reveals the HER2-subtype specific genes (including HER2, GRB7, TOP2A). By
contrast, the standard cluster centroid estimation is flooded with noise (Figure 1D),
revealing an inherent problem with clustering methods without regularization.

The copy number data example in Figure 1 depicts a narrow (focal) DNA amplification
event on a single chromosome involving only a few genes (including HER2). Nevertheless,
copy number is more frequently altered across long contiguous regions. In the lung cancer
data example we will discuss in Section 6.2, chromosome arm-level copy number gains
(log-ratio> 0) and losses (log-ratio<0) as illustrated in Figure 6 are frequently observed,
motivating the use of a fused lasso penalty to account for such structural dependencies. In
the next Section, we discuss methodological details on lasso, fused lasso and elastic net in
the latent variable regression.

3. Method
Assuming Gaussian error terms, equation (1) implies the following conditional distribution

(2)

Further assuming Z ~ (0, I), the marginal distribution for the observed data is then

(3)

where . Direct maximization of the marginal data log-likelihood is difficult.
We consider an expectation-maximization (EM) algorithm (Dempster, Laird and Rubin,
1977). In the EM framework, the latent variables are considered “missing data”. Therefore
the “complete” data log-likelihood that consists of these latent variables is

(4)

The constant term in ℓc has been omitted. In the next section, we discuss a penalized
complete data log-likelihood to induce sparsity in Wt.
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3.1. Penalized Likelihood Approach
As mentioned earlier, sparsity in Wt directly impacts the interpretability of the latent
variables. A zero entry in the ith row and kth column (wikt = 0) means that the ith genomic
feature has no weight on the kth latent variable in data type t. If the entire row wit = 0, then
this genomic feature has no contribution to the latent variables and is considered
noninformative. We use a penalized complete-data log-likelihood as follows to enforce
desired sparsity in the estimated Wt:

(5)

where ℓc is the complete-data log-likelihood function defined in (4) which controls the
fitness of the model; Jλt (Wt) is a penalty function which controls the complexity of the
model; and λt is a non-negative tuning parameter that determines the balance between the
two. The subscript p in ℓc,p stands for penalized.

Different data types call for different penalty functions. We introduce three types of
penalties in the iCluster model: lasso, elastic net, and fused lasso. Both lasso and elastic net
regression methods have been applied to gene expression data (Zhao and Simon, 2010;
Barretina et al., 2012). For feature selection, elastic net may have additional advantage by
shrinking coefficients of correlated features toward each other, and thus encourage a
grouping effect toward selecting highly correlated features together. Copy number
aberrations tend to occur in contiguous regions along chromosomal positions, motivating the
use of fused lasso.

3.1.1. The lasso penalty—The lasso penalty is a basic sparsity-inducing that takes the
form

(6)

where wikt is the element in the ith row and kth column of Wt. The ℓ1-penalty continuously
shrinks the coefficients toward zero and thereby yields a substantial decrease in the variance
of the coefficient estimates. Owing to the singularity of ℓ1-penalty at the origin (wikt = 0),
some estimated ŵikt will be exactly zero. The degree of sparseness is controlled by the
tuning parameter λt.

3.1.2. The fused lasso penalty—To account for the strong spatial dependence along
genomic ordering typical in DNA copy number data, we consider the fused lasso penalty
(Tibshirani et al., 2005), which takes the following form

(7)

where λ1t and λ2t are two non-negative tuning parameters. The first penalty encourages
sparseness while the second encourages smoothness along index i. The Fused Lasso penalty
is particularly suitable for DNA copy number data where contiguous regions of a
chromosome tend to be altered in the same fashion (Tibshirani and Wang, 2008).
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3.1.3. The elastic net penalty—The elastic net penalty (Zou and Hastie, 2005), which
takes the form

(8)

where λ1t and λ2t are two non-negative tuning parameters. Zou and Hastie (2005) showed
that the elastic net penalty tends to select or remove highly correlated predictors together in
linear regression setting by enforcing their estimated coefficients to be similar. In our
experience, the elastic net penalty tends to be more numerically stable than the lasso penalty
in our model.

Figure 2 shows the effectiveness of sparse iCluster using a simulated pair of data sets (T =
2). We simulated a single length-n latent variable z ~ N(0, I) where n = 100. The coefficient
matrix W1 consists of a single column w1 of length p1 = 200 with the first 20 elements set to
1.5 and the remaining elements set to 0, i.e., wi1 = 1.5 for i = 1, ···, 20 and 0 elsewhere. The
coefficient matrix W2 consists of a single column w2 of length p2 = 200 and set to have wi2 =
1.5 for i = 101, ···, 120 and 0 elsewhere. The lasso, elastic net, and fused lasso coefficient
estimates are plotted to contrast the noisy cluster centroids estimated separately in data type
1 (left) and in data type 2 (right) in the top panel of Figure 2. The algorithm for computing
these sparse estimates will be discussed in Section 4.

3.2. Relationship to Singular Value Decomposition (SVD)

An SVD/PCA on the concatenated data matrix  is a special case of
equation (1) that requires a common covariance matrix across data types. Specifically, it can
be shown that when Ψ1 = ···= ΨT = σ2I, equation (1) reduces to a “probabilistic SVD/PCA”
on the concatenated data matrix X. Following similar derivation in Tipping and Bishop

(1999), the maximum likelihood estimates of W, where  is the
concatenated coefficient matrix, coincide with the first K − 1 eigenvectors of the sample
covariance matrix XX′ or the right singular vector of the concatenated data matrix X. The
MLE of σ2 is the average of the remaining n − K + 1 eigenvalues, capturing the residual
variation averaged over the “lost” dimensions.

The major assumption is the requirement that all features have the same variance. The
genomic data types, however, are fundamentally different and the method we propose
primarily aims to deal with heteroscedasticity among genomic features of various types. The
common covariance assumption that leads to SVD is therefore not suitable for integrating
omics data types. It is worth mentioning that feature scaling may not necessarily yield

. In our modeling framework,  is the conditional variance of xij given zj.
Standardization on xij will yield the same marginal variance across features, but the
conditional variances of features are not necessarily the same after standardization.

Our method aims to identify common influences across data types through the latent
component Z. The independent error terms Et, t = 1, ···, T capture the remaining variances
unique to each data type after accounting for the common variance. In SVD, however, the
unique variances are absorbed in the term W Z by enforcing Ψ1 = ···= ΨT = σ2I. As a result,
common and unique variations are no longer separable. This is in fact one of the
fundamental differences between factor analysis model and PCA, which has practical
importance in integrative modeling.
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In Sections 6 and 7, we illustrate that SVD on concatenated data matrix broadly fails to
achieve an effective integration in both simulated and real data sets. By contrast, our method
can more effectively deal with heteroscedasticity among genomic features of various types.
The contrast with a sparse SVD method lies in the fact that our framework allows a block-
wise sparse constraints to the coefficient matrix.

3.3. Uniform Sampling
An exhaustive grid search for the optimal combination of the penalty parameters that
maximizes a certain criterion (the optimization criterion will be discussed in Section 5) is
inefficient and computationally prohibitive. We use the uniform design (UD) of Fang and
Wang (1994) to generate good lattice points from the search domain, a similar strategy
adopted by Wang et al. (2008). A key theoretical advantage of UD over the traditional grid
search is the uniform space filling property that avoids wasteful computation at close-by
points. Let D be the search region. Using the concept of discrepancy that measures
uniformity on D ⊂ Rd with arbitrary dimension d, which is basically the Kolmogorov
statistic for a uniform distribution on D, Fang and Wang (1994) point out that the
discrepancy of the good lattice point set from a uniform design converges to zero with a rate
of O(n−1(log n)d), where n (a prime number) denotes the number of generated points on D.
They also point out that the sequence of equilattice points on D has a rate of O(n−1/d) and the
sequence of uniformly distributed random numbers on D has a rate of O(n−1/2(log log n)1/2).
Thus the uniform design has an optimal rate for d ≥ 2.

4. Algorithm
We now discuss the details of our algorithm for parameter estimation in sparse iCluster. The
latent variables (columns of Z) are considered to be “missing” data. The algorithm therefore
iterates between an E-step for imputing Z and a penalized maximization step (M-step) that
updates the estimates of Wt and Ψt for all t. Given the latent variables, the data types are
conditionally independent and thus the integrative omics problem can be decomposed into
solving T independent subproblems with suitable penalty terms. The penalized estimation
procedures are therefore “decoupled” for each data type given the latent variables Z. When
convergence is reached, cluster membership will be assigned for each tumor based on the
posterior mean of the latent variable Z.

E-step
In the E-step, we take the expectation of the penalized complete-data log-likelihood ℓc,p as
defined in equations (4) and (5), which primarily involves computing two conditional
expectations given the current parameter estimates:

(9)

(10)

where Σ = WW′+Ψ and Ψ = diag(Ψ1, ···, ΨT). Here, the posterior mean in (9) effectively
provides a simultaneous rank-(K − 1) approximation to the original data matrices X.

M-step
In the M-step, given the quantities in equations (9) and (10), we maximize the penalized
complete-data log-likelihood to update the estimates of Wt and Ψt.

1. Sparse estimates of Wt—For t = 1, ···, T, we obtain the penalized estimates by
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(11)

where Ŵt and Ψ̂t denote the parameter estimates in the last EM iteration. We apply a local
quadratic approximation (Fan and Li, 2001) to the ℓ1 term involved in the penalty function
J λt (Wt). Using the fact |α| = α2/|α| when α ≠ 0, we consider the following quadratic
approximation to the ℓ1 term:

(12)

Due to the uncorrelated error terms (diagonal Ψt) and “non-coupling” structure of the lasso
and elastic net penalty terms, the estimation of Wt can then be computed feature-by-feature
by taking derivatives with respect to each row wit for i = 1, ···, pt. The solution for (11) under
various penalty terms can then be obtained by iteratively computing the following ridge
regression estimates:

1a. Lasso estimates—For i = 1, ···, pt,

(13)

where . Computing (13) only requires the
inversion of a (K − 1) × (K − 1) matrix in the latent subspace.

1b. Elastic net estimates—Similarly we consider a quadratic approximation to the ℓ1
term in the elastic net penalty and obtain the solution for (11) by iteratively computing a
ridge regression estimate similar to (13) but with

.

1c. Fused lasso estimates—For fused lasso penalty terms, we consider the following
approximation:

(14)

In the fused lasso scenario, the parameters are coupled together, and the estimation of wi are
no longer separable. However, we circumvent the problem by expressing the estimating

equation in terms of a vectorized form , a column vector of
dimension s = pt ·(K − 1) by concatenating the columns of Wt. Then (14) can be expressed in
the following form

where
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A = diag{1/|ŵ1|,…, 1/|ŵs|},

L = D − M,

,

D = diag{d1,…, ds} where dj is the summation of the j th row of M.

Let C = XtE[Z′|Xt, Ŵt, Ψ̂t], and Q = E[ZZ′|Xt, Ŵt, Ψ̂t], the corresponding estimating
equation is then

(15)

where

(16)

where cj is the jth row of C. The solution for (11) under the Fused Lasso penalty is then
computed by iteratively computing

(17)

2. Estimates of Ψt—Finally for t = 1, ···, T, we update Ψt in the M-step as follows

(18)

The algorithm iterates between the E-step and the M-step as described above until
convergence. Cluster membership will then be assigned by applying a standard K-means
clustering on the posterior mean E[Z|X]. In other words, cluster partition in the final step is
performed in the integrated latent variable subspace of dimension n × (K − 1). Applying k-
means on latent variables to obtain discrete cluster assignment is commonly used in spectral
clustering methods (Ng, Jordan and Weiss, 2002; Rohe, Chatterjee and Yu, 2010).

5. Choice of Tuning Parameters
We use a resampling-based criterion for selecting the penalty parameters and the number of
clusters. The procedure entails repeatedly partitioning the data set into a learning and a test
set. In each iteration, sparse iCluster (for a given K and tuning parameter values) will be
applied to the learning set to obtain a classifier and subsequently predict the cluster
membership for the test set samples. In particular, we first obtain parameter estimates from
the learning set. For new observations in the test data X*, we then compute the posterior

mean of the latent variables  where Ŵℓ,  denote parameter
estimates from the learning set. A K-means clustering is then applied to E[Z|X*] to partition
the test set samples into K clusters. Denote this as partition C1. In parallel, the procedure
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applies an independent sparse iCluster with the same penalty parameter values to the test set
to obtain a second partition C2, giving the “observed” test sample cluster labels. Under the
true model, the predicted C1 and the “observed” C2 (regarded as the “truth”) would have
good agreement by measures such as the adjusted Rand index. We therefore define a
reproducibility index (RI) as the median adjusted Rand index across all repetitions. Values
of RI close to 1 indicate perfect cluster reproducibility and values of RI close to 0 indicate
poor cluster reproducibility. In this framework, the concepts of bias, variance, and prediction
error that typically applies to classification analysis where the true cluster labels are known
now become relevant for clustering. The idea is similar to the “Clest” method proposed by
Dudoit and Fridlyand (2002), the prediction strength measure proposed by Tibshirani and
Walther (2005), and the in-group proportion (IGP) proposed by Kapp and Tibshirani (2007).

6. Simulation
In this section, we present results from two simulation studies. In the first simulation setup,
we simulate a single length-n latent variable z ~ N(0, 1) where n = 100. Subject j, j = 1, ···, n
belongs to cluster 1 if zj > 0 and cluster 2 otherwise. For simplicity, the pair of coefficient
matrices (W1, W2) are of the same dimension 200 × 1 (p1 = p2 = 200), with wit = 3 for i = 1,
···, 20 for both data types (t = 1, 2) and zero elsewhere. Next we obtain the data matrices (X1,
X2) with each element generated according to equation (1) with standard normal error terms.
This simulation represents a scenario where an effective joint analysis of two data sets
should be expected to enhance the signal strength and thus improve clustering performance.

Table 1 summarizes the performances of each method in terms of the ability to choose the
correct number of clusters, cross-validated error rates, cluster reproducibility. In Table 1,
separate K-means methods perform poorly in terms of the ability to choose the correct
number of clusters, cluster reproducibility, and the cross-validation error rates (with respect
to the true simulated cluster membership). K-means on concatenated data performs even
worse, likely due to noise accumulation. For sparse SVD, a cluster assignment step is
needed. We took a similar approach of applying K-means on the first K − 1 right singular
vectors of the data matrix. Sparse SVD performs better than simple K-means, though data
concatenation does not seem to offer much advantage. In this simulation scenario, AHP-
GMM models show good performance in feature selection (Table 2), but appear to have a
low frequency of choosing the correct K = 2. A common theme in this simulation is that a
data concatenation approach is generally ineffective regardless of the clustering methods
used. By contrast, sparse iCluster methods achieved an effective integrative outcome across
all performance criteria.

Table 2 summarizes the associated feature selection performance. No numbers are shown for
the standard K-means methods as they do not have an inherent feature selection method.
Among the methods, sparse iCluster methods perform the best in identifying the true
positive features while keeping the number of false positives close to 0.

In the second simulation, we vary the setup as follows. We simulate 150 subjects belonging
to three clusters (K = 3). Subjects j = 1, ···, 50 belong to cluster 1, subjects j = 51, ···, 100
belong to cluster 2, and subjects j = 101, ···, 150 belong to cluster 3. A total of T = 2 data
types (X1, X2) are simulated. Each has p1 = p2 = 500 features. Here each data type alone
only defines two clusters out of the three. In data set 1, xij1 ~ N (2,1) for i =1, ···, 10 and j =
1, ···, 50, xij1 ~ N (1.5, 1) for i = 491, ···, 500 and j =51, ···, 100, and xij1 ~ N (0,1) for the rest.
In data set 2, xij2 = 0.5*xij1 +e where e ~ N(0,1) for i = 1, ···, 10 and j = 1, ···, 50, xij2 ~ N (2,
1) for i = 491, ···, 500 and j = 101, ···, 150, and xij2 ~ N (0,1) for the rest. The first 10 features
are correlated between the two data types. In Table 3 and 4, the sparse iCluster methods
consistently outperform the other methods in clustering and feature selection.
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The core iCluster EM iterations are implemented in C. Table 5 shows some typical
computation times for problems of various dimensions on a 3.2 GHz Xeon Linux computer.

7. Results
In this section, we present details of two real data applications.

7.1. Integration of Epigenomic and Transcriptomic Profiling Data in the Holm Breast
Cancer Study

In Section 2, we discussed a motivating example using the Pollack et al. (2002) dataset. In
this section, we present our first real data application which involves integrative analysis of
DNA methylation and gene expression data from the Holm et al. (2010) study. In this
dataset, methylation profiling in 189 breast cancer samples using Illumina methylation
arrays for 1,452 CpG sites (corresponding to 803 cancer-related genes) is available. The
original study performed a hierarchical clustering on the methylation data alone. Through
manual integration, the authors then correlated the methylation status with gene expression
levels for 511 oligonucleotide probes for genes with CpG sites on the methylation assays in
the same sample set. Here we compare clustering of individual data types to various
integration approaches. We included the most variable 288 CpG sites (following a similar
procedure taken in the Holm study) in the methylation data.

We applied sparse iCluster for a joint analysis of the methylation (p1 = 288) and gene
expression (p2 = 511) data using different penalty combinations. In Figure 3A, the first two
latent variables separated the samples into three distinct clusters. By associating the cluster
membership with clinical variables, it becomes clear that tumors in cluster 1 are
predominantly estrogen receptor (ER)-negative and associated with the basal-like breast
cancer subtype (Figure 4). Among the rest of the samples, sparse iCluster further identifies a
subclass (cluster 3) that highly expresses platelet-derived growth factor receptors (PDGFRA/
B), which have been associated with breast cancer progression (Carvalho et al., 2005).

In Section 3.2, we discussed an SVD approach on a combined data matrix as a special case
of our model. Here we present results from SVD and a sparse SVD algorithm proposed by
Witten, Tibshirani and Hastie (2009) on the concatenated data matrix. Figures 3B and 3C
indicate that SVD applied to each data type alone can only separate one out of the three
clusters. Figures 3D and 3E indicate that data concatenation does not perform any better in
this analysis than separate analyses of each data type alone.

In Table 6, the results from sparse iCluster with two different sets of penalty combinations
are presented: the combination of (lasso, lasso), and the combination of (lasso, elastic net)
for methylation and gene expression data respectively (Table 6 top panel). The
reproducibility index (RI) is computed for various Ks and penalty parameters are sampled
based on a uniform design described in Section 3.3. As described in Section 5, RI (ranges
between 0 and 1) measures the agreement between the predicted cluster membership and the
“observed” cluster membership using a 10-fold cross-validation.

Both methods identified a 2-cluster solution with an RI around 0.70, distinguishing the ER-
negative, Basal-like subtype from the rest of the tumor samples (Figures 3 and 4, samples
labeled in red). The iCluster(lasso, elastic net) method adds an ℓ2 penalty term to encourage
grouped selection of highly correlated genes in the expression data. This approach further
identified a 3-cluster solution with high reproducibility (RI=0.70). The additional division
finds a subgroup that highly expresses platelet-derived growth factor receptors (Figure 4).

Shen et al. Page 12

Ann Appl Stat. Author manuscript; available in PMC 2014 February 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5 displays heatmaps of the methylation and expression data. Columns are samples
ordered by the integrated cluster assignment. Rows are cluster-discriminating genes (with
nonzero coefficient estimates) grouped into gene clusters by hierarchical clustering. In total,
there are 273 differentially methylated genes and 182 differentially expressed genes. Several
cancer genes including MUC1, SERPINA5, RARA, MECP2, RAD50, are hypermethylated
and show concordant underexpression in cluster 1. On the other hand, hypomethylation of
cancer genes including ETS1, HDAC1, FANCE, RAB32, JAK3 are observed and
correspondingly these genes show increased expression levels.

To compare with other methods, we implemented the sparse SVD method by Witten,
Tibshirani and Hastie (2009) and an adaptive hierarchical penalized Gaussian mixture model
(AHP-GMM) by Wang and Zhu (2008) on the concatenated data matrix. None of these
methods generated additional insights beyond separating the ER-negative and basal-like
tumors from the others (Figure 3 and Table 6). Feature selection is predominantly “biased”
toward gene expression features when directly applying sparse SVD on the combined data
matrix (bottom panel of Table 6), likely due to the larger between-cluster variances observed
in the gene expression data.

7.2. Constructing a Genome-wide Portrait of Concordant Copy-number and Gene
Expression Pattern in a Lung Cancer Data Set

We applied the proposed method to integrate DNA copy number (aCGH data) and mRNA
expression data in a set of 193 lung adenocarcinoma samples (Chitale et al., 2009). Figure 6
displays an example of the probe-level data (log-ratios of tumor versus normal copy
number) on chromosomes 3 and 8 in one tumor sample. Many samples in this data set
display similar chr 3p whole-arm loss and chr 3q whole-arm gain.

Arm-length copy number aberrations are surprisingly common in cancer (Beroukhim et al.,
2010), affecting up to thousands of genes within the region of alteration. A broader
challenge is thus to pinpoint the “driver” genes that have functional roles in tumor
development from those that are functionally neutral (“passengers”). To that end, an
integrative analysis with gene expression data could provide additional insights. Genes that
show concordant copy number and transcriptional activities are more likely to have
functional roles.

In search for copy number-associated gene expression patterns, we fit a sparse iCluster
model for each of the 22 chromosomes using (fused lasso, lasso) penalty combination for
joint analysis of copy number and gene expression data. To facilitate comparison, we
compute a 2-cluster solution with a single latent variable vector z (instead of estimating K)
to extract the major pattern for each chromosome. Penalty parameter tuning is performed as
described before. In Figure 7, we plot the 22 pairs of the sparse coefficient vectors ordered
by chromosomal position. The coefficients can be interpreted as the difference between the
two cluster means. Positive and negative coefficient values in Figure 7A thus indicate copy
number gains and losses in one cluster relative to the other. Similarly, in Figure 7B,
coefficient signs indicate over- or under-expression in one cluster relative to the other.
Concordant copy number and gene expression changes can thus be directly visualized from
Figure 7.

Several chromosomes (1, 3, 8, 10, 15 and 16) show contiguous regions of gains or losses
spanning whole chromosome arms. As discussed before arm-length aberrations can affect up
to thousands of genes within the region of alteration. A great challenge is thus to pinpoint
the “driver” genes that have important roles in tumor development from those that are
functionally neutral (“passengers”). To that end, an integrative analysis could provide
additional insights for identifying potential drivers by revealing genes with concordant copy
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number and transcriptional activities. Figure 7 shows that the application of the proposed
method can unveil a genome-wide pattern of such concordant changes, providing a rapid
way for identifying candidates genes of biological significance. Several arm-level copy
number alterations (chromosomes 3, 8, 10, 16) exhibit concerted influence on the expression
of a small subset of the genes within the broad regions of gains and losses.

8. Discussion
Integrative genomics is a new area of research accelerated by large-scale cancer genome
efforts including the Cancer Genome Atlas Project. New integrative analysis methods are
emerging in this field. Van Wieringen and Van de Wiel (2009) proposed a nonparametric
testing procedure for DNA copy number induced differential mRNA gene expression. Peng
et al. (2010) and Vaske et al. (2010) considered pathway and network analysis using
multiple genomic data sources. A number of others (Waaijenborg, Verselewel de Witt
Hamer and Zwinderman, 2008; Parkhomenko, Tritchler and Beyene, 2009; Le Cao, Martin
and Robert-Granie, 2009; Witten, Tibshirani and Hastie, 2009; Witten and Tibshirani, 2009;
Soneson et al., 2010) suggested using canonical correlation analysis (CCA) to quantify the
correlation between two data sets (e.g., gene expression and copy number data). Most of
these previous work focused on integrating copy number and gene expression data, and none
of these methods were specifically designed for tumor subtype analysis.

We have formulated a penalized latent variable model for integrating multiple genomic data
sources. The latent variables can be interpreted as a set of distinct underlying cancer driving
factors that explain the molecular phenotype manifested in the vast landscape of alterations
in the cancer genome, epigenome, and transcriptome. Lasso, elastic net, and fused lasso
penalty terms are used to induce sparsity in the feature space. We derived an efficient and
unified algorithm. The implementation scales well for increasing data dimension.

A future extension on group-structured penalty terms is to incorporate a grouping structure
defined a priori. Two types of group structures are relevant for our application. One is to
treat the wi1, ···, wi(K−1) as a group since they are associated with the same feature. Yuan and
Lin’s group lasso penalty (Yuan and Lin, 2006) can be applied directly. Similar to our
current algorithm, by using Fan and Li’s local quadratic approximation, the problem reduces
to a ridge-type regression in each iteration. The other extension is to incorporate the
grouping structure among features to boost the signal to noise ratio, for example, to treat the
genes within a pathway as a group. We can consider a hierarchical lasso penalty (Wang et
al., 2009) to achieve sparsity at both the group level and the individual variable level.
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Fig 1.
A motivating example using the Pollack data set to demonstrate that a joint analysis using
the lasso iCluster method outperforms the separate clustering approach in subtype analysis
given DNA copy number and mRNA expression data. (A) Heatmap with samples ordered
by separate hierarchical clustering. Rows are genes and samples are columns. Samples
labeled in red are breast cancer cell line samples. Samples labeled in green are HER2 breast
tumors. (B) Heatmap with samples ordered by integrative clustering using the lasso iCluster
method. (C) Kaplan-Meier plot indicates the HER2 subtype has poor survival outcome. (D)
Standard cluster centroid estimates. (E) Sparse coefficient estimates under the lasso iCluster
model.
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Fig 2.
A simulated pair of data sets each with 100 subjects (n = 100) and 200 features (pt = 200, t
= 1, 2), and 2 subgroups (K = 2). Top panel plots the cluster centroids in data set 1 (left) and
in data set 2 (right). Estimated sparse iCluster coefficients are plotted below.
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Fig 3.
Separation of the data points by A. latent variables from sparse iCluster, B. right singular
vectors from SVD of the methylation data alone, C. right singular vectors from SVD of the
expression data alone, D. SVD on the concatenated data matrix, and E. sparse SVD on the
concatenated data matrix. Red dots indicate samples belonging to cluster 1, blue open
triangles indicate samples belonging to cluster 2, and orange pluses indicate samples
belonging to cluster 3.
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Fig 4.
Integrative clustering of the Holm study DNA methylation and gene expression data
revealed three clusters with a cross-validated reproducibility of 0.7, and distinct clinical and
molecular characteristics.
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Fig 5.
Integrative clustering of the Holm study DNA methylation and gene expression data
revealed three clusters with a cross-validated reproducibility of 0.7. Selected genes with
negatively correlated methylation and expression changes are indicated to the left of the
heatmap.
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Fig 6.
Illustration of copy number probe-level data from a lung tumor sample (Chitale et al., 2009).
Log-ratios of copy number (tumor versus normal) on chromosome 3 and 8 are displayed.
Log-ratio great than zero indicates copy number gain and log-ratio below zero indicates loss.
Black line indicates the segmented value using the circular binary segmentation method
(Olshen et al., 2004; Venkatraman and Olshen, 2007).
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Fig 7.
Penalized coefficient vector estimates arranged by chromosome 1 to 22 derived by
iCluster(fused lasso, lasso) applied to the Chitale et al. lung cancer data set. A single latent
variable vector is used to identify the major pattern of each chromosome.
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Table 1

Clustering performance summarized over 50 simulated data sets under setup 1 (K=2). Separate clustering
methods have two sets of numbers associated with model fit to each individual data type. Numbers in
parentheses are the standard deviations over 50 simulations.

Method Percent of times choosing the correct K Cross-validation error rate Cluster Reproducibility

Separate K-means 58 0.08 (0.04) 0.67 (0.17)

62 0.08 (0.04) 0.70 (0.19)

Concatenated K-means 50 0.06 (0.04) 0.66 (0.19)

Separate sparse SVD 74 0.07 (0.06) 0.71 (0.13)

76 0.07 (0.07) 0.72 (0.12)

Concatenated Sparse SVD 78 0.07 (0.08) 0.70 (0.12)

Separate AHP-GMM 38 0.06 (0.04) 0.72 (0.15)

40 0.05 (0.04) 0.74 (0.14)

Concatenated AHP-GMM 46 0.06 (0.04) 0.75 (0.13)

Lasso iCluster 90 0.04 (0.02) 0.81 (0.08)

Enet iCluster 94 0.03 (0.02) 0.85 (0.07)

Fused Lasso iCluster 94 0.03 (0.02) 0.83 (0.08)
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Table 2

Feature selection performance summarized over 50 simulated data sets for K = 2. There are a total of 20 true
features simulated to distinguish the two sample clusters.

Method

Data 1 Data 2

True positives False positives True positives False positives

Separate K-means – – – –

Concatenated K-means – – – –

Separate Sparse SVD 18.7 (3.2) 21.5 (37.7) 18.8 (2.9) 27.4 (43.6)

Concatenated Sparse SVD 14.0 (5.3) 22.5 (16.1) 13.7 (5.2) 22.8 (16.4)

Separate AHP-GMM 19.6 (2.1) 0.02 (0.16) 19.1 (3.1) 0 (0)

Concatenated AHP-GMM 18.8 (3.6) 0.02 (0.15) 18.6 (4.0) 0.02 (0.15)

Lasso iCluster 20 (0) 0.07 (0.3) 20 (0) 0.07 (0.3)

Enet iCluster 20 (0) 0.1 (0.3) 20 (0) 0.02 (0.1)

Fused Lasso iCluster 20 (0) 0 (0) 20 (0) 0 (0)
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Table 3

Clustering performance summarized over 50 simulated data sets under setup 2 (K=3).

Method Frequency of choosing the correct K Cross-validation error rate Cluster Reproducibility

Separate K-means 2 0.33 (0.001) 0.54 (0.07)

0 0.33 (0.002) 0.47 (0.04)

Concatenated K-means 100 0.01 (0.07) 0.96 (0.03)

Separate sparse SVD 0 0.28 (0.10) 0.45 (0.03)

0 0.31 (0.07) 0.44 (0.04)

Concatenated Sparse SVD 16 0.01 (0.002) 0.59 (0.05)

Separate AHP-GMM 0 0.07 (0.13) 0.63 (0.05)

0 0.32 (0.02) 0.54 (0.06)

Concatenated AHP-GMM 100 0.01 (0.07) 0.98 (0.03)

Lasso iCluster 100 0.0003 (0.001) 0.98 (0.01)

Enet iCluster 100 0.0003 (0.001) 0.97 (0.02)

Fused Lasso iCluster 100 0 (0) 0.94 (0.05)
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Table 4

Feature selection performance summarized over 50 simulated data sets under K = 3.

Method

Data 1 Data 2

True positives False positives True positives False positives

Separate K-means – – – –

Concatenated K-means – – – –

Separate Sparse SVD 19.8 (0.7) 349.6 (167.1) 19.9 (0.3) 347.5 (142.5)

Concatenated Sparse SVD 20 (0) 396.6 (128.7) 19.6 (1.6) 395.4 (128.3)

Separate AHP-GMM 15.8 (5.0) 239.9 (245.5) 15.5 (5.5) 269.9 (246)

Concatenated AHP-GMM 19.2 (1.7) 0.33 (0.64) 14.4 (4.0) 0.21 (0.66)

Lasso iCluster 20 (0) 1.5 (1.4) 19.9 (0.2) 1.9 (1.5)

Enet iCluster 20 (0) 0.5 (0.6) 19.8 (0.5) 0.7 (1.0)

Fused Lasso iCluster 20 (0) 0 (0) 20 (0) 0 (0)

Ann Appl Stat. Author manuscript; available in PMC 2014 February 26.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Shen et al. Page 29

Table 5

Computing time (in seconds) for typical runs of sparse iCluster under various dimension.

Time (in seconds)

p N Lasso iCluster Elasticnet iCluster Fused Lasso iCluster

200 100 0.10 0.11 0.37

500 100 0.50 0.36 3.56

1000 100 1.40 1.45 25.05

2000 100 6.49 5.90 76.40

5000 100 18.93 18.94 33 (min)
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