
Unraveling R0: Considerations for Public Health Applications
We assessed public health

use of R0, the basic repro-

ductionnumber,which esti-

mates the speed at which a

disease is capable of spread-

ing in a population. These

estimates are of great pub-

lic health interest, as evi-

denced during the 2009

influenza A (H1N1) virus

pandemic.

We reviewed methods

commonly used to estimate

R0, examined their practical

utility, and assessed how

estimates of this epidemi-

ological parameter can in-

form mitigation strategy

decisions.

In isolation, R0 is a subop-

timal gauge of infectious

disease dynamics across

populations; other disease

parameters may provide

more useful information.

Nonetheless, estimation of

R0 for a particular population

is useful for understanding

transmission in the study

population. Considered in

the context of other epide-

miologically important pa-

rameters, the value of R0

may lie in better under-

standing an outbreak and

in preparing a public health

response. (Am J Public

Health. 2014;104:e32–e41.

doi:10.2105/AJPH.2013.
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DURING THE SPRING OF 2009,

the 2009 H1N1 influenza pan-
demic began in North America
and quickly spread around the
world, sparking great interest in
potential mitigation strategies for
the first influenza pandemic in
more than 40 years. Research
focused on interventions such as
social distancing that could be
applied before a specific monova-
lent H1N1 vaccine became avail-
able in the fall of 2009. During the
initial wave of the 2009 H1N1
outbreak, teams of modelers from
around the world gathered avail-
able data from Mexico to estimate
several of the novel virus’s char-
acteristics.1,2 Efforts focused on
the rapid estimation of the basic
reproduction number, or R0, of
this virus. R0 is a theoretical pa-
rameter that provides some infor-
mation regarding the speed at
which a disease is capable of
spreading in a specific population.
First estimates were published
online by early May 2009.1,2 Es-
timates of R0 continue to be pub-
lished from other countries and as
more data become available.3---11

As an indicator of the interest in
publications concerning R0, an
early publication on the pandemic
potential of the 2009 H1N1 strain
by Fraser et al.1 has garnered 654
citations as of February 7, 2013.
Although the influenza pandemic
explains much of the recent in-
terest in the basic reproduction
number, this interest is not limited
to the field of influenza. Web of
Science searches on the terms
“reproduction number” or “repro-
ductive number” revealed that
there have been 710 publications
on this topic from 2009 through
February 7, 2013, across various

disciplines, with most articles being
published in journals covering in-
fectious diseases and mathematical
modeling. Table A (available as a
supplement to this article at http://
www.ajph.org) shows breakdown by
journal. If the search is expanded to
include data from previous years, it
is clear that there has been expo-
nential growth by calendar year in
the number of publications on this
topic (Figure 1). Why is there such
growing interest in R0 among the
disciplines interested in the dynam-
ics of infectious diseases? To help
better understand the interest in the
basic reproduction number among
public health officials, infectious dis-
ease researchers, and theoretical
modelers, we reviewed the deriva-
tion of R0 and its history.
We present a basic epidemiologi-

cal compartmental model (a suscep-
tible---infected---recovered or SIR
model with S, I, and R representing
the 3 compartments) described by
Kermack and McKendrick.12 In this
relatively simple model designed to
describe epidemics, individuals start
as susceptible to a particular patho-
gen and then progress to the other 2
compartments if infected. Themodel
is defined by a system of 3 ordinary
differential equations (ODEs):

ð1Þ dS

dt
¼ � bI

N
S

ð2Þ dI

dt
¼ bI

N
S� c�I

ð3Þ dR

dt
¼ c�I

in which b is the transmission rate,
c is the recovery rate (or the inverse
of the infectious period), and N is
the total population size such that
N=S + I + R. The standard model
in equation 1 assumes no births or

deaths. At the beginning of the
outbreak or epidemic (t=0) we
assume the population is composed
entirely of susceptible individuals
and a single infectious individual.
With this model, if the transmission
rate exceeds the recovery rate (i.e.,
b/c >1), the disease will spread
(dI/dt >0). Alternatively, b/c is the
number of new infections per unit
time multiplied by the time period
of infectiousness, and describes the
number of new infections resulting
from the initially infected individual.
In the presented case of the simple
SIR model, the basic reproduction
number (or ratio) equals b/c.

The scientific community largely
underappreciated the implications
of the Kermack---McKendrick model
until the late 1970s, when Ander-
son and May13 used the model to
study strategies for controlling in-
fectious diseases. R0 is a parameter
of importance for gauging the dis-
ease dynamics because it indicates
when an outbreak might happen
based on the threshold value of 1.0.
More generally, if the effective re-
production number Re=R0 · (S/N )
is greater than 1.0, we predict that
the disease continues its spread; the
effective reproduction reflects the
fact that, as proportion of suscepti-
ble individuals decreases (S/N ), dis-
ease transmission slows. From this
simple mathematical perspective,
epidemiologists frequently consider
the basic reproductive number one
of the most vital parameters in de-
termining whether an epidemic is
“controllable.”14,15 The objective of
any public health response during
an influenza pandemic, for example,
is to slow or stop the spread of
the virus by employing mitigation
strategies that either (1) reduce R0

by changing the transmission rate
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(e.g., via school closure) or the
duration of infectiousness (e.g.,
through antiviral use) or (2) reduce
Re by reducing the number of
susceptible individuals (e.g., by vac-
cination).

R0 IN SIMPLE MODELS

First we considered the infor-
mation available by estimating R0

in simple models such as the one
described by equation 1. Modelers
can alter the SIR model by adding
or removing additional “compart-
ments.” For example, we can
remove the recovered class (R) for
diseases in which recovered indi-
viduals return to the susceptible
class, thus converting it to an SIS
model that can be used for dis-
eases such as the common cold.16

We could also add other

compartments, such as an “ex-
posed” class (E) if the disease has
a significant latent period relative
to the infectious period, yielding
the SEIR model, which is often
used for influenza.17 With addi-
tional modifications to the base
model, compartmental models can
rapidly become complex. We re-
strict our discussion to SIR or SEIR
models because they are useful for
demonstrating essential character-
istics of R0, and, importantly, for
each of these models, R0 = b/c.

The difference between the
equations for SIR and SEIR
models is simply the addition of
a fourth ODE to those presented
in equation 1 that describes the
dynamics of the exposed (or la-
tent) class of individuals.17 This
ODE adds an additional parame-
ter, m, that represents the rate at

which individuals move from the
latent class to the infected class; it
is helpful to note that that m is
inversely proportional to the latent
period of a disease (i.e., for disease
with a long latent period, m is
small). Examples of the disease
dynamics produced by SIR and
SEIR models with an R0 =1.5 are
shown in Figure 2, illustrating that,
even for simple models, the model
chosen drives the predicted dis-
ease dynamics even when the
same basic reproductive number
is used. This illustrates that we
must understand the compart-
ments in use, the time spent in
each compartment, and whether
each of these compartments is
relevant for the disease in ques-
tion. Furthermore, another disease
characteristic, called the genera-
tion time, needs to be known

before we can utilize R0 to predict
the resulting time dynamics of an
outbreak.

R0 AND PARAMETERS OF
INTEREST FOR PUBLIC
HEALTH

A number of characteristics of
an epidemic may be of interest to
public health officials and policy-
makers in formulating possible
responses. The overall dynamics
of the epidemic is only one set of
characteristics. Others may in-
clude attack rate, illness duration,
generation time, time to peak in-
cidence, and even properties in-
cluding the phase of an influenza
pandemic, as defined by the
World Health Organization or
a national government.18 There-
fore, we asked how much
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Note. The figure was produced by searching Web of Science on the terms “reproduction number” or “reproductive number” and limiting the results to the fields of infectious diseases, mathematical

computational biology, and applied mathematics. Clearly, interest in research regarding the basic reproductive number has risen dramatically since the 1990s. The number of publications in this

area currently appears to be growing exponentially.

FIGURE 1—The number of publications regarding infectious disease and mathematical modeling as reported by Web of Science.
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estimates of the basic reproductive
number assist public health re-
sponse initiatives by providing in-
formation about timing and se-
verity of a disease outbreak.

To assess the utility of estimates
of R0 in controlling influenza
pandemics, we solved SIR and

SEIR models over a broad range
of input parameters. The key pa-
rameters in these models were the
population size, N; the transmis-
sion rate, b; the latency period,
� 1/m; the recovery rate, c; and
the basic reproductive number,
R0 = b/c. Our strategy in these

analyses was to fix R0 at some
value and analyze how the system
dynamics changed when altering
the other parameters, providing an
opportunity to determine if the
information gained from R0 esti-
mates was relevant. We chose
R0 = 1.5 as a baseline because it is

a value that has been applied to
previous influenza pandemics and
is also near the mean estimate for
the 2009 H1N1 pandemic.

The overall attack rate, the
percentage of individuals who will
get sick during an outbreak in
a given population, may be the
one disease characteristic of most
interest to public health authori-
ties, and the attack rate is the
characteristic that appears to be
most plausibly predicted by using
estimates of R0. Figure 3 shows
attack rates for a given basic re-
productive number using SIR and
SEIR models; the plotted curve
has been formally derived and
shown to be a transcendental
equation.19 In more complex epi-
demiological models, however, it
is unclear how to estimate R0; and
predicting attack rates may no
longer be possible using R0 alone.

To predict the duration of an
epidemic, R0 may also be applied
successfully (Figure 4a), as the epi-
demic duration (measured here as
the time between the occurrence of
5% and 95% cumulative incidence)
is not dependent on N. However,
this relationship does not hold for
SEIR models (Figure 4b), as the
latency period has dramatic effects
on the persistence of the epidemic.
As the latency period increases, the
generation time increases, protract-
ing the duration of the epidemic.
Conversely, as the latency period
decreases, the model behaves in-
creasingly like an SIR model.

Moreover, even if the overall
generation time, defined here as
the sum of the infectious and
latent periods (1/c + 1/m), is
known, the individual values of
c and m may still be unknown.
Without specific values for these
individual parameters, it is fair to
question the validity of the gener-
ation time, which subsequently
affects the utility of a given model.
A review of the generation times
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Note. SEIR = susceptible–exposed–infected–recovered; SIR = susceptible–infected–recovered. These 2 models have identical values of R0
(specifically R0 = 1.5). Obviously, the SIR model and the SEIR model produce dramatically different dynamics. The epidemic predicted by the

SIR model peaks earlier and has a higher peak incidence as well as shorter duration than the epidemic predicted by the SEIR model. These

differences in dynamics simply reflect whether modelers (or other researchers) believe there is a latent period for a virus. The parameters used

for these plots were N = 1000; b = 0.1; c = 0.0667; m = 0.1.

FIGURE 2—A comparison of the dynamics of (a) an SIR model and (b) an SEIR model.
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and reproductive number esti-
mates for the 2009 H1N1 pan-
demic concluded that, when the
individual components of the
generation time were assessed,
researchers underestimated gen-
eration time in outbreaks in
Canada and Mexico.20 These
findings suggest that estimation
of these individual parameters is
needed before epidemic speed
can be accurately calculated.

Likewise, the speed with which
an epidemic reaches certain
benchmarks is critically depen-
dent on N, b, and c (Figure 5),
not simply on R0. As population
size N increases, the time it takes
to reach a cumulative incidence
rate of, for example, 5%, in-
creases concomitantly. An intui-
tive explanation is that it takes
longer for 5% of a large popula-
tion to become infected than
the same percentage of a small
population.

In a similar way, the transmis-
sion rate and recovery rate play
a crucial role in the overall speed
of the epidemic (Figure 5). As the
transmission rate increases, the
pace of epidemic spread increases
dramatically, while the recovery
rate decreases to maintain a fixed
R0; decreasing the recovery rate
corresponds to a decrease in gen-
eration time and an increase in
wave speed (as long a latency pe-
riod is held constant). Focusing on
the time to peak incidence, we
examined the effect of allowing R0 to
change by varying the transmission
and recovery rates (Figure 6). We
found that, regardless of the value of
R0, the time to peak incidence
depended on the individual values
of b and c; however, these effects
are minimized for small reproduc-
tive numbers and maximized for
large reproductive numbers.

In the discussed framework of
simple SIR and SEIR models, we

concluded that the basic repro-
ductive number alone provides
little information regarding the
duration, generation time, speed
of epidemic, and overall timing of
an infectious disease such as in-
fluenza. Rather, we propose that
the values of individual parame-
ters are more critical to under-
standing the disease dynamics and
may be more valuable to policy
officials in mounting an effective
public health response.

MORE COMPLEX MODELS
AND R0

Numerous modifications can be
made to the basic SIR and SEIR
models discussed thus far. These
models assume that all individuals
belong to 1 large panmictic
(well-mixed) population in which
all individuals are equally likely
to come into contact with each
other.21 Typically, this

assumption is not reasonable for
most human populations, which
are often highly structured, with
subgroups of individuals more
likely to interact with one another
than with those in other sub-
groups. Thus, epidemiological
models often use age-structured
populations (for example, see
Inaba and Nishiura22). Such
models require equations similar
to those in equation 1 for each age
group describing disease trans-
mission within that age group and
among other age groups. Another
common method for incorporat-
ing population structure is to in-
clude variables such as household,
workplace, school, and community
groups in a model.15

Many models may also in-
clude a metapopulation struc-
ture (a collection of connected
populations)3 to describe the
dynamics of a disease in multiple
cities, where the metapopulation
dynamics explain the transmis-
sion of disease from one city to
the next. Demographic factors
are also frequently added to
compartment models to make
models more realistic. Typical
demographic terms included
are birth, death, immigration,
and emigration (which obviously
occur in nearly every popula-
tion).

Beyond just mimicking more
realistic populations, modelers can
introduce additional complexities
into these dynamic models. Nota-
bly, public health interventions are
often included in models to judge
the potential impact of a particular
intervention or combination of
interventions.23,24 Compartmen-
tal models can encompass a vari-
ety of interventions, including use
of antivirals, vaccines, masks, hand
washing, school closure, social dis-
tancing, isolation, and quarantine.
Each of these interventions requires
tailoring the sometimes numerous
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Note. At least for simple models—such as the susceptible–infected–recovered (SIR) and susceptible–exposed–infected–recovered (SEIR) models

discussed in this article—the basic reproductive number of an epidemic offers insight into the overall attack rate. However, estimation of R0
often results in broad confidence intervals. Shown are the ranges for the 1918 Spanish influenza pandemic as well as the 2009 H1N1

pandemic; these ranges provide little confidence for the predicted attack rate. This problem is exacerbated at lower values of R0 because of the

asymptotic dependence of attack rate on R0 near the y-axis (R0 = 1).

FIGURE 3—Attack rate as predicted by R0 based on simple models.
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ODEs to incorporate new com-
partments and parameters. It is
also noteworthy that many com-
partmental models also include
multiple virus strains.25 A given
pathogen often has many differ-
ent genetic variants (often re-
ferred to as strains) circulating in
populations. Compartmental
models can be modified to in-
clude various strains and conse-
quences thereof such as strain
facilitation or interference. Vir-
tually any of the aforementioned
modifications will change the
predicted disease dynamics.

As illustrated previously for sim-
ple disease models, estimating R0

does not necessarily allow for useful
inference. With increasing complex-
ity, estimating all of the parameters
of a model can become overwhelm-
ing. Often it is difficult to firmly
establish the few parameters that are
vital for a basic SEIR model. In

practice, parameter values fre-
quently originate from a handful of
studies that may not be broadly
applicable.26 In light of the difficulty
of simply measuring the broad,
population-level parameters of a dis-
ease, we find it unlikely that age,
population, intervention, or
strain-specific parameters could be
estimated quickly enough to be of
use for tailoring specific public
health responses. Even in the case of
the 2009 H1N1 pandemic, the
rapid availability of R0 estimates1---8

was unlikely to have greatly influ-
enced public health response plan-
ning, particularly given the variabil-
ity of these estimates.

Finally, for complex ODEmodels,
and in particular for stochastic sim-
ulation models that follow individ-
uals over time, it is not always clear
exactly how to calculate the basic
reproduction number and how it
should be interpreted. For example,

a model that includes age structure,
population structure, and vaccina-
tion status could easily have more
than 100 parameters.What doesR0

represent in such a model? This
issue is an active area of research,
with several methods having re-
cently been proposed to address the
question (see Heffernan et al.27 for
a review of this topic). The salient
point is that there are different
methods, and that each method can
potentially produce a different esti-
mate of R0. As a consequence, using
the basic reproduction number to
predict an attack rate is dependent
on the model employed (Figure 2).

ERROR IN R0 ESTIMATES
AND PUBLIC HEALTH
IMPLICATIONS

After considering these issues,
we believe that the estimation of
the basic reproductive number,

R0, for a particular disease epi-
demic has limited practical value
outside the population from which
the disease data originated. For
example, epidemiologists have
employed R0 in understanding the
1918 influenza pandemic, making
myriad estimates by applying
various models, resulting in a
broad range of published values.28

This variability highlights the dif-
ficulties associated with measuring
the basic reproductive number
of an epidemic, even when work-
ing with a considerable body of
epidemiological data from a pan-
demic that occurred well in the
past. These difficulties are ampli-
fied in situations such as the 2009
H1N1 pandemic in which data are
continually updated and are highly
dependent upon the surveillance
system implemented. Each surveil-
lance system has unique strengths
and weaknesses that must be
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Note. SEIR = susceptible–exposed–infected–recovered; SIR = susceptible–infected–recovered. The duration of the epidemic was measured as the time period between a 5% cumulative disease

incidence and a 95% cumulative disease incidence. The duration of the epidemic does not depend on the population size (not shown) for either an SIR model or an SEIR model. For the SIR model,

as the transmission rate and recovery rate (not shown: c = b/1.5 for R0 = 1.5) increase, the duration of the epidemic decreases. For the SEIR model (R0 = 1.5), the latency period changes the
expected duration of an epidemic; as the latency period decreases, the duration of the epidemic also decreases and converges on the SIR model. Note also that as the transmission rate declines,

the dependence on the latency period diminishes.

FIGURE 4—The dependence of epidemic duration on (a) transmission rate in an SIR model and (b) latency period in an SEIR model.
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accounted for, particularly the
context of the country in which
the system is employed.

To be more specific, substantial
heterogeneity has been observed
in R0 values across different re-
gions of the world. There is little
evidence to suggest that a repro-
ductive number for one geo-
graphic area is applicable to
another, and many studies con-
ducted within the same region
have yielded a wide range of re-
sults, with an even wider range
among early estimates. For exam-
ple, among individual states in
India, the reproductive number
for 2009 H1N1 ranged from 1.03
to 1.7529; likewise, estimates in
Peru spanned from 1.2 to 2.2
depending on the specific region
studied.8,9 Even close geographic
neighbors had disparate R0 esti-
mates; China estimated a mean R0

of 1.68,10 whereas Japan initially
approximated a mean R0 of 2.3,

which was later reduced to 1.21 to
1.35.11 Correspondingly, in Can-
ada the mean estimate was 1.31,5

whereas public health officials in
the United States initially esti-
mated R0 between 2.2 and 2.3,
which was subsequently refined to
1.7 to 1.8 with additional data
collection.6 On the other hand, not
all subsequent estimates of R0

were downwardly biased. Fraser
et al. were among the first to
estimate the R0 in Mexico, propos-
ing a basic reproductive number
of 1.4 to 1.6.1 Just several months
later, another team estimated the
R0 was between 2.3 and 2.9.7

Statistical realities also hinder
the ability to infer overall attack
rates with R0 estimates. For ex-
ample, one widely cited study
estimated that the 1918---1919
influenza pandemic had an R0 of
approximately 2.0.30 However,
after incorporating estimates of
variance, the 95% confidence

interval ranged from 1.4 to 2.8.
Figure 6 shows that this range of
R0 predicts attack rates between
approximately 51% and 92%.
Error around lower estimates of
the basic reproductive number
produce even more dramatic
ranges in attack rates because of
the asymptotic behavior of attack
as R0 approaches 1.0 (Figure 3).
As previously discussed, current
estimates of the 2009 H1N1 have
ranged from as low as 1.03 to
more than 2.9,1---11 which roughly
corresponds to a range of attack
rates between approximately 6%
and 93%. Such a broad range of
possible attack rates complicates
policy decisions and hinders ef-
fective public health interventions.

Overreliance on early estimates
of R0 made in one country can
lead to policy decisions in another
country that may be suboptimal
for that country. Moreover, dispa-
rate estimations of R0 may drive

inadequately informed policies.
For example, the Mexican Ministry
of Health implemented a manda-
tory 18-day school closure in
Mexico City on April 24, 2009,
which was extended to the re-
mainder of the country on April
27, 2009, with schools reopening
on May 11, 2009. Chowell et al.
analyzed the effect of this brief but
intensive public health interven-
tion, calculating an R0 of 1.8 to
2.1, 1.6 to 1.9, and 1.2 to 1.3 for
the spring, summer, and fall waves
of the epidemic, respectively.
Chowell et al. concluded that the
Mexico City intervention may
have been responsible for a 29%
to 37% decrease in transmission
during the closure,31 although
cost-effectiveness was not a con-
sideration in this study. Mean-
while, with the high initial R0

estimates from Mexico, the US
Centers for Disease Control and
Prevention (CDC) initially recom-
mended school closures, particu-
larly in border states, including
Texas, which ultimately closed
800 schools, affecting 491000
students.32 On April 28, 2009,
the CDC advised that schools close
if even 1 suspected or confirmed
case of H1N1 was reported, in
hopes of reducing transmission to
neighboring communities. How-
ever, with the influx of new data
indicating a lower risk of severe
illness and death, the CDC
rescinded its recommendation
on May 5, 2009, urging schools to
remain open.33 We assert that
reliance on early approximations
of R0, particularly those calculated
in a disparate population, can lead
to misinformed policy decisions.

APPLICATIONS OF R0 IN
PRACTICE

Public health responders in the
United Kingdom used approaches
based on modeling in near real
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the dependence of dynamics on the actual values for the transmission rate (x-axis) and the recovery rate (not shown, for the figure c = b/1.5, thus
forcing R0 = 1.5). As the transmission rate and recovery rate increase, the time for the epidemic to run its course is abbreviated.

FIGURE 5—The dependence of system dynamics on N, b, and c.
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time to determine appropriate
public health interventions during
the 2001 foot and mouth disease
outbreak.23 Policies enacted on
the basis of modeling results were
controversial and were the subject
of debate in peer-reviewed litera-
ture. Uncertainty centered around
how beneficial the recommended
intervention was and whether
less radical strategies—given that
the intervention, mass culling,
was viewed as economically
damaging—might have been
equally or evenmore effective.34---39

Although we can only speculate
how alternative interventions
would have compared with those

instituted, this debate highlights the
uncertainty over public acceptance
of approaches based on reducing
effective reproductive ratios.

Even if accurate attack rates
could be gauged from R0 esti-
mates, many of the more critical
public health questions would re-
main unanswered. For example,
case fatality, hospitalization, and
absenteeism rates are essentially
independent of disease dynamics
(and thus from what can be de-
rived from R0 estimates), yet they
are the key determinants of mor-
bidity and mortality during an
infectious disease outbreak. The
2009 H1N1 pandemic aptly

illustrates this point: high attack
rates did not produce correspond-
ingly high levels of morbidity be-
cause of the relatively mild severity
of infection and the low attack rates
among the populations typically
at greatest risk for serious influenza
complications, particularly adults
older than 65 years.

Another important consider-
ation is the potential evolution of
a pathogen during the course of an
epidemic. In pandemics in which
attack rates are high but adverse
outcomes are rare, mitigation
strategies must consider the pos-
sibility of the virus mutating to
a more virulent form. If the 2009

H1N1 virus had genetically
changed over time to become
more virulent, the impact of the
virus would have increased dra-
matically; yet such evolution is
largely ignored in the types of
dynamic models most used by
modelers.40 For pathogens such as
influenza that experience rapid
evolution, with unknown portions
of the population not susceptible
to various circulating strains, esti-
mating a viable R0 is a daunting—if
not impossible—task.

CONCLUSIONS

Estimation of reproductive ra-
tios can potentially provide valu-
able insights during epidemics.
These reproductive ratios, partic-
ularly the effective reproductive
number, measure the spread of
a disease through a population,
with higher values indicative of
more rapid circulation. We em-
phasize that estimation of repro-
ductive ratios from data in a par-
ticular population is still useful for
that population. This parameter
is, in its essence, the exponential
growth rate of an ongoing epi-
demic and thus provides informa-
tion about the current rate of
transmission in the study popula-
tion. The key issues for the in-
terpretation of R values are the
period for which an estimate is
valid (e.g., does the estimate need
to be updated weekly, based on
patterns in surveillance data?), the
applications thereof for theoretical
practices (e.g., determining the
propagation of the disease or the
potential intervention impact), and
how well an estimate for one
population applies to another.
For example, can an estimate
made in California apply to
Nevada? Is an R0 for the United
Kingdom relevant to New Zea-
land? Another critical consider-
ation is the applicability of the
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estimate to a particular popula-
tion (e.g., was data collected
representative of an entire met-
ropolitan area or just an unob-
served subcommunity?). Other
issues, such as acquiring the data
necessary to establish consistent
estimates with narrow confi-
dence intervals, also need to be
resolved before growth rates
made with specific R values can
be reliably used in public health
decision-making.

If mechanisms existed to esti-
mate real-time or near-real-time

values of Re > 1, public health
officials could determine if specific
intervention strategies—such as
school closure or quarantine—were
working to alter disease dy-
namics and whether such inter-
ventions should be sustained.
Comparison of reproductive
numbers before and after public
health interventions has been
conducted retrospectively for the
1918 influenza pandemic,41 but
the effectiveness of an interven-
tion measured from past epi-
demics is unlikely to apply to

a contemporary epidemic (be-
cause of changes in social struc-
ture, environment, pathogens,
etc.). We must recognize that,
although the ability to estimate
reproductive numbers in real
time could be advantageous, the
effectiveness of a specific inter-
vention may vary temporally and
geographically owing to changes
in environment, population
structure, viral evolution, and
immunity; hence, estimates made
in one region may not be appli-
cable to another.

Additional factors essential to
the dynamics of infectious dis-
eases, including the transmission
rate, are less frequently estimated
than R0 (Table 1). Latency period
and the period of infectiousness
were, however, estimated in some
regions for the 2009 H1N1 pan-
demic.5,42 Tuite et al., in particular,
provided a noteworthy example of
estimating the individual parameters
during the H1N1 pandemic, rather
than solely focusing on R0.

5 Ideally,
those parameters that are the most
strain-specific and are direct targets

TABLE 1—Parameters of Infectious Disease Dynamics

Parameter Definition Used Here Relevance Public Health Interest Intrinsic or Specific to

Transmission rate The product of the contact rate and

the risk of infection; also known as

the effective contact rate

Determines peak incidence, time to peak incidence,

and duration of an epidemic; low transmission

rates reduce overall attack rate

As this is a product of the contact rate

and risk of infection, interventions

targeted at these 2 parameters affect

the transmission rate.

Population · strain · host

Recovery rate The reciprocal of the duration of being

infectious (i.e., 1/D), thus making this

a direct consequence of the

“infectious period”

Determines peak incidence, time to peak incidence,

and duration of an epidemic; higher recovery rates

reduce overall attack rate

Use of antivirals theoretically reduces the

infectious period, which in turn lessens

disease impact.

Strain · host

Latent period Time from being infected until

being infectious

Determines peak incidence, time to peak incidence,

and duration of an epidemic; long latent periods

extend the epidemic duration

For interventions such as quarantine,

latent periods play an important role

in the duration of quarantine necessary.

Strain · host

Incubation period Time from being infected

until onset of symptoms

Not relevant to disease dynamics, but is relevant

to public health

Incubation period is important

for disease surveillance and estimation

of when a disease was first introduced

to a population.

Strain · host

Contact rate The probability of 2 sympatric

individuals contacting each

other; also known as the

total contact rate

In combination with the risk of infection, determines

how effectively a disease will be transmitted

in a population

Interventions such as school closure and

quarantine reduce contact rates.

Population

Risk of infection The probability of an infection

being transferred to a naive

individual; also known as the

infectivity or the secondary

attack rate

In combination with the contact rate, determines

how effectively a disease will be transmitted in

a population

Interventions such as hand washing and

using face mask reduce infectivity.

Strain · host

Virulence The pathogenicity of a disease Critical to determining the severity of a disease

epidemic (e.g., loss of life)

Reducing virulence via use of antivirals

lessens disease impact.

Strain · host

Basic reproductive

number

Emergent property of disease models;

may be a consequence of all previously

listed parameters (and others not listed)

depending on the specific model

Broad comparisons of models being used by different

modeling groups; if larger than unity, indicates a

disease is spreading

Real-time estimation provides

current impetus of epidemic.

In limited circumstances

(depending on accuracy), might be of

useful in predicting overall attack rates.

Model · population ·
strain · host
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of public health interventions should
be the focus of studies conducted
during outbreaks with major health
and economic implications. Even for
these parameters there always exists
an interaction between the host and
the virus that must be addressed
with appropriate statistics.

The basic reproductive ratio is
a complicated property of an
epidemic specific to the underly-
ing model used to estimate it,
the population being studied (in
terms of contact patterns and
demography), the host, the path-
ogen, and often the specific strain
of the pathogen. Thus, although
R0 is an intuitive property of
an epidemic, it is not especially
useful in determining potential
utility of control measures.
However, when considered as
part of a collection of estimated
epidemic characteristics, R0 may
be useful in making public health
decisions.

Although infectious disease
modelers appreciate the issues
discussed in this article, those who
apply the results of mathematical
models during public health re-
sponses may not have a thorough
understanding of such issues. If
estimates of R0 are to be used in
determining public health re-
sponses, the limitations of such
estimates need to be clearly com-
municated to policymakers. Be-
yond those dedicated to calculat-
ing R0, resources must also be
devoted to estimating other epi-
demic parameters such as trans-
mission rates, infectious periods,
or latent periods that have more
relevance to the public health re-
sponse to infectious disease out-
breaks, including influenza pan-
demics. The analysis of Tuite
et al.5 serves as a paradigm of
effective analysis of 2009 H1N1
data by highlighting a variety of
transmission parameters in addition
to R0. Further population-based

evidence on how the basic re-
productive number relates to
disease dynamics holds great
promise for optimizing public
health interventions for the
study population. j
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