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Abstract

Optical imaging using multiphoton microscopy and whole body near infrared imaging has become a routine part of
biomedical research. However, optical imaging methods rely on the availability of either small molecule reporters or
genetically encoded fluorescent proteins, which are challenging and time consuming to develop. While directly labeled
antibodies can also be used as imaging agents, antibodies are species specific, can typically not be tagged with multiple
fluorescent reporters without interfering with target binding, and are bioactive, almost always eliciting a biological response
and thereby influencing the process that is being studied. We examined the possibility of developing highly specific and
sensitive optical imaging agents using aptamer technology. We developed a fluorescently tagged anti-Ab RNA aptamer,
b55, which binds amyloid plaques in both ex vivo human Alzheimer’s disease brain tissue and in vivo APP/PS1 transgenic
mice. Diffuse b55 positive halos, attributed to oligomeric Ab, were observed surrounding the methoxy-XO4 positive plaque
cores. Dot blots of synthetic Ab aggregates provide further evidence that b55 binds both fibrillar and non-fibrillar Ab. The
high binding affinity, the ease of probe development, and the ability to incorporate multiple and multimodal imaging
reporters suggest that RNA aptamers may have complementary and perhaps advantageous properties compared to
conventional optical imaging probes and reporters.
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Introduction

An emerging class of novel molecular probes based on RNA or

DNA aptamers may offer significant advantages as both thera-

peutic and diagnostic imaging agents [1–4]. Very large RNA
libraries can be rapidly screened to identify sequences that bind a

given molecule with high affinity using Selective Evolution of

Ligands by EXponential enrichment (SELEX) [5,6]. The affinities

and specificities of RNA aptamers are comparable to or even

better than those of antibodies [1,7]. Aptamers can fold back into

their natural conformation after denaturation and are stable in the

reducing environment of the cell [3]. Aptamers are much smaller

than antibodies, thereby improving their biodistribution [3,8].

Aptamers can be delivered to cells using viral vectors [4,9].

Aptamers can also be made by chemical synthesis, which allows

for tailor-made modifications and avoids biological contamination.

Imaging agents can be easily incorporated into aptamers using

labeled nucleotides, providing the potential for multiplexing and

for tuning reagents to the imaging platform. For example,

fluorescein-tagged nucleotides can be used for 2-photon imaging,

Cy5-tagged nucleotides for near infrared imaging, 18F-labled

nucleotides for positron emission tomography (PET) imaging, and
19F-labeled nucleotides for 19F magnetic resonance imaging

(MRI). Aptamers may also provide powerful tools for developing

therapeutic agents [3,4]. Aptamers have even been selected that

cross the blood-brain barrier [10]. Finally, aptamers typically have

low or no immunogenicity [3,11]. As a test of the idea that

aptamers could be used as a new in vivo optical imaging tool, we

have investigated the use of a fluorescently labeled anti-Ab
aptamer for imaging both amyloid plaques and oligomeric Ab in

Alzheimer’s disease (AD) mouse models.

Increasing evidence suggests that soluble oligomeric Ab is

synaptotoxic and plays a central role in the early pathogenesis of

AD [12,13]. Studies in neuronal cultures and organotypic slices

demonstrated that soluble forms of Ab induce synaptic changes

and dendritic spine loss and are toxic to mature central nervous

system neurons [14–16]. Shankar et al demonstrated that Ab
dimers, but not insoluble plaque cores, impaired long-term

potentiation, lowered the threshold for induction of long-term

depression, and reduced dendritic spine density in normal mouse

hippocampus [17]. Similarly, the presence of a 56-kDa Ab
assembly has been correlated with memory loss in Tg2576

transgenic mouse models of AD [18,19], while Tris-buffered saline

(TBS) soluble Ab from Alzheimer’s disease brain has been shown

to disrupt the memory of a learned behavior in normal rats [17].

Koffie et al demonstrated that oligomeric Ab, present in a halo

surrounding dense core plaques, is associated with postsynaptic

densities and correlates with excitatory synapse loss near amyloid

plaques [20,21]. Finally, recent studies of transgenic mice that co-

express mutant forms of amyloid precursor protein (APP) and tau
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have demonstrated that oligomeric Ab accumulation, but not total

amyloid plaque burden, correlates with neuronal loss and

inflammatory response [22]. These studies suggest that amyloid

plaques serve as reservoirs of oligomeric Ab and that oligomeric

Ab is synaptotoxic. Given this evidence of a direct role of Ab
oligomers in AD, there is a great need for new reagents capable of

detecting not only mature amyloid plaques but also oligomeric

forms of Ab.

A large number of antibodies that recognize a variety of

epitopes of different Ab assemblies, including low molecular

weight Ab oligomers, have been developed and used extensively in

ex vivo studies [23–31]. However, the use of antibodies for in vivo

studies is complicated by the plaque clearance that is induced by

anti-Ab antibodies [32]. In addition, the incorporation of multiple

optical labels, to provide for increased detection sensitivity,

typically significantly reduces the antibody binding affinity. A

small molecule positron emission tomography (PET) tracer for

imaging amyloid plaques that crosses the blood-brain barrier

(BBB), Pittsburgh Compound-B (PiB), was developed and has been

successfully used in many clinical studies [33]. Similarly, a small

molecule fluorescent derivative of Congo Red, methoxy-XO4, has

been extensively used in optical studies of AD transgenic mouse

models [34]. However, while these small molecule amyloid probes

do cross the BBB and are able to detect fibrillar Ab, they do not

detect oligomeric Ab. If oligomeric Ab burden is more directly

related to synaptic toxicity and the risk of developing AD, a probe

that bound Ab oligomers might provide a more specific reporter

for the risk of developing AD. Approaches to image oligomeric

Ab, even if only in experimental models, may prove important to

inform our understanding of the pathobiology of these species

in vitro and in vivo.

A novel RNA aptamer, b55, generated from a SELEX screen

against monomeric Ab1–40 was previously shown to bind synthetic

amyloid fibrils [35]. Similar SELEX screens against covalently

stabilized Ab trimers [36] and against Ab1–40 conjugated to

colloidal gold nanoparticles [37] have been performed. More

recently, a DNA aptamer selected against a-synuclein was shown

to also bind oligomeric Ab [38]. However, to date no ex vivo stains

of human AD brain tissue or in vivo mouse studies in amyloid-

laden transgenic AD models have been performed with aptamer

probes. Here we demonstrate for the first time the ability of b55 to

bind amyloid plaques in ex vivo human AD brain tissue and in live

transgenic mouse models of AD. Furthermore, we demonstrate

that b55 binds Ab oligomers and is able to visualize the oligomeric

halo surrounding the dense cores of amyloid plaques. This is the

first use of an aptamer as an in vivo optical imaging probe.

Materials and Methods

Synthesis of Labeled RNA Aptamers
Double-stranded DNA template (132 bp) was synthesized by

polymerase chain reaction of the 76 mer 59 ends of b55 and its

reverse complement (Operon Biotechnologies, Huntsville, AL),

which contain a 20 bp overlap. The DNA sequence (Table 1)

included a 25 mer T7 RNA polymerase primer. Imaging probes

were introduced into the aptamer by transcription of the DNA

template with T7 RNA polymerase and either biotin-labeled uracil

(Roche Diagnostics, Indianapolis, IN), for ex vivo studies, or

fluorescein-labeled uracil (Roche Diagnostics, Indianapolis, IN),

for in vivo studies, using the Hi-Scribe RNA transcription kit (New

England BioLabs, Ipswich, MA). RNA was purified twice on Mini

Quick-Spin RNA columns (Roche Diagnostics, Indianapolis, IN)

to ensure complete removal of unincorporated nucleotides. The

RNA sequence length was characterized both by running the

RNA on a denaturing gel and an Agilent 2100 Bioanalyzer using a

small RNA kit (Agilent Technologies, Santa Clara, CA). Both

methods observed an RNA length of just over 100 nucleotides

consistent with the expected length of 107 nucleotides. RNA

concentrations were determined from the absorbance measured at

260 nm using a Biophotometer (Eppendorf, Hauppauge, New

York). Typical RNA concentrations after purification ranged

between 25–35 mM.

Aptamer Staining of ex vivo AD Brain Tissue
Frozen brain tissue from AD subjects was obtained from the

Massachusetts Alzheimer’s Disease Research Center (http://

madrc.mgh.harvard.edu/) tissue bank. All the study subjects or

their next-of-kin gave written informed consent for the brain

donation at their respective institutions. Tissue was sectioned on a

cryostat at a thickness of 10 mm and fixed for 10 minutes in 4%

paraformaldehyde followed by overnight incubation at 4uC with

either biotinylated b55 aptamer or its reverse complement, b55rc,

used as a control probe. Probes were visualized by reacting with

avidin binding complex followed by tyramide signal amplification

using AlexaFluor 488 tyramide (Invitrogen, Carlsbad, CA). For

slides co-stained with Thioflavin-S, AlexaFluor 594 tyramide

(Invitrogen, Carlsbad, CA) was used for visualizing b55 positive

plaques in the red channel. Slides were coverslipped and imaged

on either an Olympus BX51 fluorescence microscope (Olympus,

Tokyo, Japan) or a Zeiss LSM 510 confocal microscope (Carl Zeiss

MicroImaging, Jena, Germany).

Dot and Western Blot of Synthetic Ab Aggregates
1.1 mM of synthetic Ab1–40 and Ab1–42 (Peptide Institute,

Osaka, Japan) were incubated at 37uC for 3 days with gentle

shaking. 4 ml each of Ab1–40 and Ab1–42 were blotted onto

nitrocellulose paper and allowed to dry. The dot blot was then

stained with biotinylated b55. b55 was visualized by secondary

staining with streptavidin IRDye 700DX (Rockland Immuno-

chemicals, Gilbertsville, PA) and imaged on an Odyssey infrared

imaging system (LI-COR Biosciences, Lincoln, NB). Western blots

of the synthetic Ab reaction mixtures were also performed to

identify the Ab species present in each reaction mixture. Western

blots were stained with 6E10 antibody (1:1000), which is reactive

to amino acid residues 3–8 of Ab. 6E10 was visualized by

secondary staining with anti-mouse IgG antibody conjugated to

IRDye800 (Rockland Immunochemicals, Gilbertsville, PA) and

imaged on an Odyssey infrared imaging system (LI-COR

Biosciences, Lincoln, NB).

In vivo 2-photon Imaging of APP/PS1 Transgenic Mice
In vivo multiphoton images of optical fluorophores were

obtained in real time using an Olympus Fluoview 1000 MPE

with prechirp optics mounted on an Olympus BX61WI upright

microscope. APP/PS1 transgenic mice which coexpress mutant

alleles of amyloid precursor protein (APP) and presenilin (strain

B6C3-Tg[APPswe, PSEN1dE9]85Dbo/J, Jackson Laboratory,

Bar Harbor, ME) [39] were used for all imaging experiments.

After craniotomy, 20 mg of fluorescein labeled aptamer probe

(either b55 or b55rc) was topically applied to the mouse brain for

30 minutes. The surface of the brain was then flushed with

artificial cerebral spinal fluid, followed by placement of the

coverslip window. A wax ring was placed on the edges of the

coverslip covering the craniotomy window and was filled with

distilled water to maximize contact between water and an

Olympus 206 dipping objective (numerical aperture, 0.95). A

mode-locked titanium/sapphire laser (MaiTai; Spectra-Physics)

generated two-photon fluorescence with 800-nm excitation, and

RNA Aptamer Probes for Imaging Amyloid Plaques

PLOS ONE | www.plosone.org 2 February 2014 | Volume 9 | Issue 2 | e89901

http://madrc.mgh.harvard.edu/
http://madrc.mgh.harvard.edu/


detectors containing three photomultiplier tubes (Hamamatsu)

collected emitted light in the ranges of 380–480, 500–540, and

560–650 nm (4). Average power reaching brain tissue in each

experiment ranged from 20 to 60 mW. Images were acquired

between 100 and 500 mm below the surface of the brain. Images

were acquired approximately 1 and 24 hours after topical

application of the aptamer probe. All animal experiments were

approved by the Massachusetts General Hospital Subcommittee

on Research Animal Care (SRAC protocol # 2004N000092) and

conformed to national and institutional guidelines.

Determination of Plaque Contrast-to-noise Ratio
Plaque regions-of-interest (ROI) were determined by threshold-

ing the in vivo images to signals greater than two standard

deviations above the background signal intensity. The plaque

contrast-to-noise ratio (CNR) was calculated from the difference

between the plaque and background signal-to-noise ratios (SNR).

The gold standard used for the identification and counting of the

number of amyloid plaques was the presence of methoxy-XO4

staining.

Results

The predicted secondary structures for the b55 aptamer and a

RNA aptamer synthesized from the reverse complement of the

b55 coding sequence (b55rc), shown in Figure 1, were determined

using the RNAfold Webserver suite of programs (http://rna.tbi.

univie.ac.at/cgi-bin/RNAfold.cgi) [40,41]. The b55rc aptamer

has a very different predicted secondary structure from that of b55

and was used as a control aptamer probe.

The ability of the b55 aptamer to stain amyloid plaques was

demonstrated by staining frozen-section brain tissue from AD

subjects with biotinylated b55 and b55rc aptamers. While plaques

were clearly visible with the b55 aptamer (Figure 2a), only a few

very faint b55rc positive plaques were observed (Figure 2b). A

tissue section co-stained with b55 and Thioflavin-S showed good

colocalization of b55 and Thioflavin-S for amyloid plaques

(Figure 2c).

Dot blots of synthetic Ab1–40 and Ab1–42 that were incubated at

37uC for 3 days were performed to examine the binding of b55 to

different Ab species. b55 staining of both Ab1–40 and Ab1–42 was

observed (Figure 3a). The increased staining observed for Ab1–42 is

consistent with the increased propensity of Ab1–42 to form high

molecular weight (HMW) species relative to Ab1–40 as shown in

the 6E10 western blot of the synthetic Ab reactions (Figure 3b),

where no HMW species were observed for Ab1–40.

Sodium dodecyl sulfate (SDS) western blots of human AD brain

homogenates were stained with both 6E10 monoclonal antibody,

which is reactive to amino acid residues 3–8 of Ab, and

biotinylated b55 (Figure S1 and File S1). b55 and 6E10 bound

many of the same bands, in particular higher molecular weight

oligomer bands between 20 and 60 kDa. In contrast, no binding of

monomeric Ab or soluble APP (sAPP) by b55 was observed. While

some caution must be taken in the interpretation of the western

blot given the documented effects of SDS on Ab oligomer

structure and aggregation [42–46], the colocalization of 6E10 and

b55 bands provides further support for the binding of b55 to Ab
oligomers.

The ability of b55 to bind to plaques in post mortem tissue and

fibrillar and non-fibrillar Ab species on dot blots of synthetic Ab
raised the possibility that the aptamer may label plaques in an

in vivo setting. In vivo 2-photon imaging studies performed in APP/

PS1 transgenic mice, which overexpress mutant alleles of amyloid

precursor protein (APPswe) and presenilin-1 (PS1dE9), showed

that fluorescein-labeled b55 binds amyloid plaques in the cerebral

cortex (Figure 4a) and vasculature (Figure 4b). Plaque staining by

b55 was then compared to plaque staining with methoxy-XO4

(Figure 5). While methoxy-XO4 stained only the dense core of

each plaque, b55 stained both the plaque core and a diffuse halo

surrounding the plaque core (Figure 5c,f).

In vivo b55 plaque staining was compared to plaque staining

with the b55rc control aptamer (Figure 6a). Images were acquired

1 and 24 hours after topical application of the aptamer probes in 2

mice for each aptamer. The b55 aptamer detected almost all of the

methoxy-XO4 positive plaques at both 1-hour (96%) and 24-hour

(83%) time points (see Table 2). In contrast, while the b55rc

control aptamer detected 83% of plaques at the one-hour time

point, only a few faint plaques (,30%) were detected after 24

hours. The contrast-to-noise-ratio (CNR) for b55 positive plaques

was significantly greater (p,0.01) than that for b55rc plaques at

both 1- and 24-hour time points (Table 2 and Figure 6b).

To examine whether b55 induces plaque clearance or

degradation, similar to antibody probes of amyloid plaques,

longitudinal in vivo 2-photon imaging of a 10 month-old APP/PS1

mouse at 1 and 4 days following topical application of b55 was

performed. However, no changes in plaque number or appearance

were observed.

Discussion

RNA aptamers have previously been shown to detect synthetic

Ab fibrils with very high sensitivity [35–37]. These RNA aptamers

were selected in SELEX screens against either Ab monomers or

low molecular weight Ab oligomers and may therefore prove to be

excellent probes for detecting not only amyloid plaques, but also

Ab oligomers. Here we examined the ability of b55, an aptamer

previously selected in a SELEX screen against synthetic Ab1–40

[35], to bind oligomeric Ab and amyloid plaques in ex vivo human

AD brain tissue slices and in an in vivo transgenic mouse model of

AD.

As demonstrated in Figure 2, robust staining of amyloid plaques

by b55 was observed in ex vivo human AD brain tissue slices, while

only a few very faint plaques were observed with the b55rc control

aptamer. In addition, costaining with Thioflavin-S demonstrated

that b55-positive plaques colocalize with Thioflavin-S stained

plaques (Figure 2c). Similarly, b55 bound amyloid plaques in the

cortex and vasculature of live APP/PS1 mice (Figure 4) and

colocalized with methoxy-XO4 staining (Figure 5). Interestingly,

b55 stained not only the plaque core, but also labeled a diffuse

halo surrounding the core that was not observed with methoxy-

XO4. These data suggest that b55 may bind smaller aggregates of

Ab surrounding the dense core, including oligomeric Ab.

Table 1. DNA sequence for the b55 aptamer including the T7 polymerase primer, highlighted in bold text.

59-GCG TAA TAC GAC TCA CTA TAG GGC GGG GAA TTC GAG CTC GGT ACC TTT ACC GTA AGG CCT GTC TTC GTT TGA CAG CGG CTT GTT GAC CCT CAC ACT TTG
TAC CTG CTG CCA ACT GCA GGC ATG CAA GCT TGG-39

doi:10.1371/journal.pone.0089901.t001
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To gain more insight into whether b55 binds oligomeric Ab, dot

blots of synthetic Ab aggregates were performed. Strong b55

staining of Ab1–42 aggregates was observed with fainter staining of

Ab1–40 aggregates (Figure 3a). The difference in staining is

attributed to the increased propensity of Ab1–42 to form fibrils

relative to Ab1–40. This is demonstrated in the 6E10 western blot

of the Ab samples, where a large number of high molecular weight

species were observed for Ab1–42, but not Ab1–40 (Figure 3b). The

Ab1–40 dot blot staining therefore indicates that b55 binds low

molecular weight, non-fibrillar Ab species. In accord with these

findings, Tsukakoshi et al observed binding of a DNA aptamer to

oligomeric Ab1–40 [38].

The in vivo optical imaging data indicates that both b55 and

b55rc control aptamer bind plaques. This is consistent with

previous studies that demonstrated that RNA aptamers in general

have a high affinity for amyloidigenic structures. In a SELEX

screen for Ab targeted RNA aptamers, Rahimi et al showed that

both the naı̈ve SELEX library and the final selected aptamers

bound a large number of different amyloidogenic proteins,

suggesting that RNA has an intrinsically high affinity for

amyloidogenic, b-sheet structures [36]. Further support for the

affinity of RNA for amyloidogenic structures is provided by a

recent molecular modeling study that observed a very high

homology between Ab and the RNA binding protein AF-Sm1 [47]

and by the fact that senile plaques have been found to contain high

Figure 1. Predicted Secondary Structure of RNA Aptamers. Predicted secondary structure of the b55 (left) and b55rc (right) aptamer probes
with base pair probability indicated by the color scale bar. Minimum free energy structures were determined using the RNAfold Webserver suite of
programs.
doi:10.1371/journal.pone.0089901.g001

Figure 2. b55 Staining of Amyloid Plaques in Ex Vivo Human AD Brain Tissue. Merged red and green channel confocal images of frozen-
section human AD brain tissue stained with biotinylated b55 (a) and b55rc (b). b55 positive plaques (green) were clearly visible, while only a few very
faint b55rc positive plaques were observed. Background auto-fluorescence, observed in both red and green channels, is shown in yellow. (c)
Fluorescence images of human AD brain tissue costained with biotinylated-b55 (red) and Thioflavin-S (green). b55 colocalized with Thioflavin-S
positive plaques. (Scale bars: 50 mm).
doi:10.1371/journal.pone.0089901.g002
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levels of RNA [48–50]. The affinity of RNA for amyloidogenic

structures would explain the in vivo plaque binding observed for

the b55rc aptamer that was used as a control in our study.

However, while RNA may have some affinity for beta sheet

structures, the fact that a significantly increased CNR was

observed for b55 plaques compared to b55rc plaques in the

in vivo multiphoton images (Figure 6 and Table 2), at both early

and late imaging time points, suggests that there are differences in

binding affinity with b55 having a significantly greater affinity than

b55rc. This is consistent with the fact that only a few very faint,

b55rc-positive plaques were visible in the ex vivo human AD brain

tissue (Figure 2b). In addition, Ylera measured aptamer dissoci-

ation constants (Kd) for binding to Ab using affinity chromatog-

raphy and while a Kd of 29 nM was determined for b55 no Kd

was measureable for the RNA aptamer pool obtained from the

first SELEX cycle [51], again indicating that RNA aptamers do

display significant differences in binding affinity.

While the large molecular weight of the b55 aptamer (34 kDa)

precludes its crossing the blood-brain barrier (BBB), a recent study

by Cheng et al, in which an in vivo SELEX screen for a BBB

penetrating aptamer was performed, did find an aptamer (A15)

capable of crossing the BBB [10]. While the exact mechanism of

the brain uptake of the BBB penetrating aptamer is unclear, given

the large molecular weight of the aptamer (23 kDa) the most likely

mechanism is by receptor-mediated transcytosis. Studies are

currently underway to investigate the possibility of designing a

fusion aptamer consisting of BBB penetrating and amyloid binding

domains that would allow aptamers to be delivered non-invasively

to the brain.

These studies demonstrate the great potential of RNA aptamers

as in vivo and ex vivo imaging probes. One third of uracil nucleotides

were fluorescein labeled, corresponding to a total of 10 fluoresceins

per aptamer, providing high detection sensitivity. The incorpora-

tion of multiple fluorescein labels did not interfere with the

amyloid binding. The fact that the fluorescein-labeled aptamer still

bound plaques with high affinity is likely due to the fact that only a

relatively small conserved region of the aptamer is required for

binding. A significant fraction of the aptamer consists of sequences

required for the selection/amplification process in the SELEX

screen. In addition, topical application of b55 did not result in

Figure 3. b55 Staining of Dot Blots of Synthetic Ab Aggregates. (a) Dot blot of synthetic Ab1–42 and Ab1–40 aggregates probed with
biotinylated-b55. (b) Western blot of the synthetic Ab1–42 and Ab1–40 aggregates probed with 6E10 antibody. The increased staining of Ab1–42
aggregates in the dot blot relative to Ab1–40 aggregates is consistent with the greater fibril and high molecular weight oligomer composition of Ab1–
42 aggregates observed in the western blot.
doi:10.1371/journal.pone.0089901.g003

Figure 4. In Vivo Imaging of b55 Positive Amyloid Plaques. In vivo 2-photon microscopy images from an 18 month old APP/PS1 transgenic
mouse obtained 1 hour after topical application of fluorescein-labeled b55 (a,b). Texas Red labeled dextran was intravenously injected for
visualization of blood vessels. b55 positive plaques and cerebral amyloid angiopathy are clearly visible in the cortex (a) and vasculature (b),
respectively. (Scale bars: 20 mm).
doi:10.1371/journal.pone.0089901.g004
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Figure 5. Colocalization of b55 and Methoxy-XO4 Positive Amyloid Plaques. In vivo 2-photon microscopy plaque images from a 7 month
old APP/PS1 transgenic mouse acquired 1 hour after topical application of fluorescein-labeled b55 (a,d) and 1 day after intraperitoneal injection of
methoxy-XO4 (b,e). While methoxy-XO4 stains only the dense core of the plaque, b55 stains both the plaque core and a diffuse halo surrounding the
plaque (c,f). (Scale bars: 20 mm).
doi:10.1371/journal.pone.0089901.g005

Figure 6. Contrast-to-Noise Ratio for b55 and b55rc Positive Amyloid Plaques. (a) Representative in vivo 2-photon microscopy images from
7.5 month old APP/PS1 transgenic mice acquired 1 hour (left column) and 24 hours (right column) after topical application of either fluorescein-
labeled b55 (top row) or b55rc (bottom row). Most b55 plaques were still visible 24 hours after topical application. In contrast, only a small number of
very faint b55rc plaques were still visible after 24 hours. (b) Average plaque contrast-to-noise ratio (CNR) observed 1 hour and 24 hours following
topical application of fluorescein-labeled b55 (n = 2) or b55rc (n = 2). b55 positive plaques had a significantly greater CNR than b55rc plaques (p,0.01)
at both time points. (Scale bars: 50 mm).
doi:10.1371/journal.pone.0089901.g006

RNA Aptamer Probes for Imaging Amyloid Plaques

PLOS ONE | www.plosone.org 6 February 2014 | Volume 9 | Issue 2 | e89901



plaque clearance or degradation indicating that the aptamer is

relatively inert biologically, in contrast to antibody probes that

induce an inflammatory response and plaque clearance [32].

Finally, aptamers can be made with a variety of multimodal probes

for optical, MR or PET imaging. Uracil labeled with a whole host

of different optical tags is readily available and can easily be

incorporated into the aptamer. In addition, cytosine and uracil

nucleotides fluorinated at the 29-pyramidine position, which are

commercially available, can be used to make RNAse resistant

aptamers that may also be detectable by 19F MRI. A previous

study with a cold 19F PET probe specific for amyloid plaques was

able to detect plaques using 19F MRI, however, with only a single
19F per probe molecule the sensitivity was very low and an

extremely long MRI acquisition time of 90 minutes was required

to obtain low resolution 19F images [52]. However, significantly

greater 19F MRI sensitivity, and hence decreased signal acquisition

times, would potentially be achievable with fluorinated b55, which

contains 30 cytosine and 30 uracil nucleotides for a total of 60 19F

nuclei. Finally, a PET aptamer probe could be generated either by

incorporating 59-ethynyl-uridine, a commercially available uracil

analog, into the RNA aptamer followed by click chemistry

reaction with 18F-azide or by end labeling the aptamer with 64Cu.

Conclusions

In summary, the b55 aptamer binds amyloid plaques in both ex

vivo human AD brain tissue and in vivo APP/PS1 transgenic mice.

Diffuse halos surrounding the methoxy-XO4 positive plaque cores

were observed with b55 in vivo, which may represent oligomeric

Ab. The unprotected RNA aptamer appears to be quite stable and

detectable for at least 24 hours under in vivo conditions when

bound to amyloid plaques. In addition, no detectable tissue

response to the aptamer application, such as plaque clearance, was

detected. These data suggest that Ab-targeted aptamers bind

oligomeric Ab and may be useful reagents for imaging both

fibrillar and non-fibrillar Ab. Moreover, these data illustrate the

broader principle that RNA aptamers, which are nearly infinitely

adaptable using SELEX technologies and that can be labeled with

any number of off-the-shelf multimodal imaging agents (fluor-

ophores, biotin, radioisotopes or epitope tags), can be developed

with high enough detection sensitivity and selectivity to rival

antibodies and small molecules in in vivo and ex vivo imaging

studies.

Supporting Information

Figure S1 b55 Staining of Western Blot of Human AD
Brain Tissue Extracts. Western blot of human AD brain tissue

extracts obtained after sequential treatment with TBS, 2% Triton

X-100, 0.5% SDS, and 70% formic acid. The western blot was

probed with both 6E10 antibody (green) and biotinylated-b55

(red). b55 binds many of the same bands as 6E10 (yellow asterisks).

The green and red asterisks indicate bands unique to 6E10 or b55,

respectively. Faint bands at ,8 and 16 kDa were visible in the b55

image (arrows) of the SDS soluble fraction.

(TIF)

File S1 Methods and Results for b55 Staining of Western
Blot of Human AD Brain Tissue Extracts.

(DOCX)
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