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Objective Demonstrate multivariate multilevel survival analysis within a larger structural equation model.

Test the 3 hypotheses that when confronted by a negative parent, child rates of angry, sad/fearful, and posi-

tive emotion will increase, decrease, and stay the same, respectively, for antisocial compared with normal

children. This same pattern will predict increases in future antisocial behavior. Methods Parent–child

dyads were videotaped in the fall of kindergarten in the laboratory and antisocial behavior ratings were

obtained in the fall of kindergarten and third grade. Results Kindergarten antisocial predicted less child

sad/fear and child positive but did not predict child anger given parent negative. Less child positive and

more child neutral given parent negative predicted increases in third-grade antisocial

behavior. Conclusions The model is a useful analytic tool for studying rates of social behavior. Lack of

positive affect or excess neutral affect may be a new risk factor for child antisocial behavior.

Key words behavior problems; family functioning; longitudinal research; structural equation modeling.

Pediatric psychologists are often interested in predictors

and consequences of social interaction patterns among

children because many leading theories of child develop-

ment focus on such interaction. In fact, many times the

theoretical focus is primarily on social interaction in the

context of a particular dyad (e.g., parent–child) thought to

play a critical role in healthy or pathological development.

Patterson and colleagues’ coercion theory (Granic &

Patterson, 2006) is an example where coercive social inter-

action between parent and child has been shown to be a

major risk factor of the most common of child behavior

problems, externalizing (i.e., aggressive, acting out behav-

ior). This has led to the development of therapeutic inter-

ventions aimed at teaching and motivating parents to use

more effective discipline strategies (Forgatch & Patterson,

2010). Coercive family interaction has also been implicated

in other problems as well such as poor adherence to com-

plex glycemic control regimens for managing type 1 diabe-

tes (Duke et al., 2008). Finally, there is evidence to suggest

that extreme coercive parent–child interaction in the family

leads to exaggerated responses to stress. If this process

continues on chronic basis, it can lead to a proinflam-

matory phenotype in adolescence that sets the stage for

future susceptibility to degenerative disease (Miller &

Chen, 2010).

Applying new and advanced statistical methods may

provide a better understanding of patterns of behavior than

previously implemented traditional methods. Thus, the

goal of this article is to demonstrate multivariate multilevel

survival analysis (MMSA), an advanced statistical method

that is useful in general to answer research questions about

the timing of events and in particular can be applied to

research questions about dyadic social interaction. Using

MMSA to study predictors and consequences of dyadic

social interaction, however, requires extensions to basic

survival analysis that have only recently become available.

It is these extensions that are the primary focus of this

article. Readers interested in more details should see the

Supplementary Material that accompanies and extends this

article.
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As motivation for an example application, consider the

following research question: For young children just

starting kindergarten, are current child externalizing behav-

ior problems related to over and under use of angry and

sad/fearful emotions, respectively, in the parent–child dyad

but not associated with positive emotion? Does this pattern

predict increases in future externalizing problems several

years later in third grade? More specifically, if the child is in

a neutral affective state but the parent is in a negative

affective state, as often happens in a discipline encounter,

is the aforementioned pattern predicted by child antisocial

and predictive of increases in future child antisocial behav-

ior? On a macro level, such research questions involve

an attempt to integrate aspects of coercion theory with

emotion regulation theory to advance understanding of

child antisocial behavior (Dagne & Snyder, 2011; Snyder,

Stoolmiller, Wilson, & Yamamoto, 2003). On a micro

level, the research question focuses on the rate of specific

child responses (from neutral to anger, sad/fearful, or pos-

itive) to a specific antecedent parent behavior (parent neg-

ative). These child responses terminate episodes where the

child is affectively neutral and the parent is affectively neg-

ative. For shorthand, we refer to these patterns as, for ex-

ample, child anger given parent negative with the

understanding that the child was neutral to begin with.

For more information about the macro/micro distinction

and the important role it plays in coercion theory, see

Granic and Patterson (2006).

To understand how MMSA methodology could be

applied, it is helpful to have a rough idea of the required

data structure and how such data might be obtained.

Suppose we bring parent–child dyads into the laboratory,

ask them to engage in some problem-solving interaction

task that is likely to result in parent–child conflict, and

we videotape and code in proper sequence the durations

of the displayed emotions of both parent (mutually exclu-

sive and exhaustive categories of positive, neutral, or neg-

ative) and child (mutually exclusive and exhaustive

categories of positive, neutral, angry, or sad/fearful) in

real time. At the same time, we get ratings from the

child’s parent about the child’s externalizing behavior,

and in a follow-up 3 years later, we get the same ratings.

At this point, MMSA can be used to estimate the rates of

interest (usually referred to as hazard rates), the correla-

tions among the child hazard rates, and whether the hazard

rates are predicted by concurrent child externalizing

and in turn are predictive of increases in future child

externalizing.

Survival analysis is well developed and covered in

detail in many sources (see Allison, 1984, for an introduc-

tion). Other terms for the same model include hazard

rate regression or event history analysis. Generally, the no-

menclature reflects the fact that the model estimates the

underlying hazard rate, which controls the timing of occur-

rence of events of interest. A higher hazard rate means that

the waiting time until the event happens is shorter and, on

average, more events per unit time will occur. Hazard rates

are not necessarily constant but can in fact change over

time due to either observed or unobserved influences.

Survival analysis also incorporates information about cen-

soring, which is what happens when the observation period

ends before the event happens for some of the subjects in

the sample. Survival models incorporate all that is known

about the waiting time for censored subjects, namely, that

the waiting time is not known exactly but it was at least as

long as the observation period.

The extension to MMSA is more recent but is still

covered in number of other sources (Dagne & Snyder,

2009; Goldstein, 2011; Stoolmiller & Snyder, 2006). At

this point in time, however, what the existing sources have

in common is that the survival process that is generating

the event(s) of interest is treated as the ultimate end point

or outcome to be predicted. This is most clear in medical

applications where the process is disease and the event of

interest is death and the goal is to study predictors of the

disease process. In contrast, in our application, which uti-

lizes recent advances in the Mplus program (Muthén &

Muthén, 2013), the rate of child anger given parent nega-

tive is both an outcome and a predictor of future psycho-

logical adjustment. This is what makes our application of

MMSA novel and an advance over our previous work

(Stoolmiller & Snyder, 2006). A heuristic path diagram at

the dyad level is shown in Figure 1 to illustrate the

concept.

Mplus, a commercially available program, contains the

necessary MMSA functionality but also links and embeds

MMSA in a larger SEM framework, which is what makes it

possible to fit models such as the one shown in Figure 1.

Indeed, the researcher has many tools available, if neces-

sary, that are part of the SEM framework that are not

Hazard child 
anger  given 
parent nega�ve 

Baseline predictors 
of child an�social 
behavior 

Future child 
an�social behavior
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Figure 1. Heuristic diagram of the multivariate multilevel survival

model.
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available in more traditional survival regression programs.

To name a few, it is possible to address questions about

mediation, or include latent continuous variables if mea-

surement error is a concern, or include latent categorical

variables if the population is believed to consist of

unobserved sub-populations, or include dyads with partial

data (missing observation data or missing dyad-level data)

either by design or by accident. The modeling opportuni-

ties in Mplus are very rich.

The particular MMSA we focus on is the Cox model

that has several features that make it attractive for working

with real-time observed behavior data (Therneau &

Grambsch, 2000). First, the Cox model is a continuous-

time survival model. When the time of occurrence of

events is known more precisely, as it is when events are

recorded in real time on electronic recording devices, time

is usually conceptualized as continuous. In contrast, for

less precise time scales, when many events can apparently

happen simultaneously, time is usually conceptualized as

discrete. Second, the Cox model is semi-parametric

because the baseline hazard function need not be specified,

which eliminates one potential source of model

misspecification. The baseline hazard function, usually

denoted h0(t), shows how the hazard rate changes as a

function of time, t, while waiting for the event to happen

and is somewhat analogous to a combination of both the

intercept and residual term in standard regression. Like an

intercept, it is the same for all subjects. Like a residual

term, it is the source of randomness in the survival

model. We will give more details on h0(t) shortly as we

use our example application to illustrate the details of the

Cox model.

A more detailed but still heuristic path diagram is

shown in Figure 2 for a single hazard rate, child anger

given parent negative, which we abbreviate AcRp

(A¼ anger, c¼ child, R¼ negative, p¼ parent). The dia-

gram is heuristic because there are no well-established

conventions for depicting multilevel models or survival

models, but the rest of the diagram follows the usual con-

ventions with observed variables in boxes, latent variables

in circles, double-headed arrows indicating correlation, and

single-headed arrows indicating linear regression effects.

The dyad-level model is shown above the horizontal gray

line and the within-dyad model is shown below. Because

the hazard rate is required to be non-negative to make

sense, the Cox model is a multiplicative model involving

two pieces, both of which are non-negative, the baseline

hazard function, h0,AcRp(t) and an exponential term that

includes all the predictors, latent or observed (e.g.,

exp(bX1iþ fAcRp,i)). Notice that the baseline hazard func-

tion lacks a subscript i for individuals but does allow

the hazard to vary continuously across time, and the expo-

nential term has a collection of terms inside it that have

subscripts for individuals, which allows the hazard to vary

across individuals. Together the product of the baseline

hazard and the exponential term constitute the hazard

rate, hAcRp,i(t), for any individual dyad. Estimation is typi-

cally easier, however, and carried out on the log scale,

which converts the multiplicative hazard model to an ad-

ditive model. Thus, the latent variable in the Figure 2 rep-

resents individual differences on the log of the hazard scale

and this is important to keep in mind when interpreting

effect sizes. The within-dyad observed variables that define

the latent hazard rates are shown as both a duration,

NcRp!AcRp, identifying the initial state, child neutral

parent negative and the terminating event, child anger

and a dichotomous censoring indicator variable within a

single square box. This is to remind readers that although

these are two separate variables, they must go together to

avoid biased estimates of hazard rates. Finally, the arrows

that connect latent log AcRp, fAcRp,i, and the baseline

hazard function for AcRp, h0,AcRp(t), to the overall hazard

function, hAcRp,i(t), and to the episode durations and cen-

soring indicators are shown as crooked arrows to remind

readers that the Cox model is a nonlinear model.

Because the baseline hazard function is not specified

in the Cox model, we could just ignore it and focus on the

predictor effects, fixed and random, and indeed, this is a

large part of the appeal of the Cox model. After all, almost

nothing is known about the nature of any of the baseline

hazard functions for typical parent–child social interaction

behaviors. The baseline hazard function, however, can still

Figure 2. Heuristic path diagram of the multilevel Cox model for

hazard rate for child anger.
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be estimated after model fitting and it may be interesting

in some applications, so we will spend a bit more time

exploring it.

The most unusual thing about the baseline hazard

function, compared with a standard regression intercept

or residual term, is that it is a function of time. What

this means is that the population rate of event occurrence

can change over time while we are waiting for the events to

occur independent of any predictors in the model, includ-

ing moment-to-moment predictors. So the baseline hazard

function captures the sum total of all moment-to-moment

influences that have been omitted from the model over all

individuals in the sample. An intuitive example of a base-

line hazard function is the death rate in the United States.

The death rate is not constant across the lifespan in the

United States but rather starts out higher in the first years

of life, drops in early childhood, and is fairly constant for a

long period of years, and then gradually increases again in

old age as people begin to wear out.

The final extension of our model is to add two more

multilevel Cox models for the hazard rates for child sad/

fear given parent negative and child positive given parent

negative, which is what makes the model multivariate as

well as multilevel. The only new additions to the model

parameters beyond those in Figure 2 are the three correla-

tions among the log hazard rates, which get at research

questions such as, ‘‘When confronted by a negative

parent, are children who are quick to get angry also slow

to get sad/fearful?’’ See Supplementary Material for the

path diagram for the full model.

The last issue to cover is the issue of censoring in

MMSA. Censoring is more complicated in MMSA because

for any particular episode of child neutral parent negative,

there are multiple competing end states that could happen

and the occurrence of one necessarily precludes the occur-

rence of all the others. This is illustrated schematically in

Figure 3 for a single episode shown in dark black that lasted

for 1.5 s and ended in child sad/fear. For the other two child

states that could have happened, the occurrence of child

sad/fear censored their waiting times at 1.5 s, as indicated

by the gray lines. The complete durations for this episode for

the hypothetical alternative states are not known, except

that they were longer than 1.5 s. This type of MMSA is typ-

ically referred to as a ‘‘competing risks’’ survival analysis,

terminology that arises from the underlying concept that the

possible end states are competing in a race to terminate the

current episode and only the winning state’s time is re-

corded (Therneau & Grambsch, 2000). More importantly,

the implication of competing risks style censoring for MMSA

is that censoring will always be inherent and extensive in

social interaction data and must be accounted for in the

model to get accurate results. Next we present a few more

details about the study sample and measures and then pre-

sent a series of analyses to illustrate the methods.

Methods

The participants were 275 children, (and their parents),

49% male, who were recruited at kindergarten entry to

one elementary school that exclusively served a low-

income, mixed industrial-residential neighborhood.

Seventy-one percent of the children were European

Americans, 19% were African American, 5% were

Hispanic/Latino, and the remaining children were Native-

and Asian American. The median per-capita annual family

income was $8,300, and 34% of the parents had education

beyond high school. The recruitment rate of children at

kindergarten entry was 76%. The sample of children and

families who participated in the study reflected the demo-

graphics of those in the neighborhood and (with the

exception of family income) of the metropolitan area

(MSA pop.¼ 550,000) in which the sample was located.

Of these 275 families, 5 had missing data on all the mea-

sures in all the models and so were dropped, leaving the

analytic sample at 270.

Child and Parent Emotion Displays

The interaction of parent–child dyads was videotaped for

2 hr on each of two occasions, separated by a minimum of

1 week (average¼ 2.3 weeks). The first hour of each ses-

sion was structured around a series of tasks that were com-

pleted at a table, permitting a continuous and

simultaneous observation of the facial expressions and

frontal gestures of the parent and the child as well as

their verbal and vocal behavior. The structured activities

Figure 3. Schematic diagram of censoring in models of competing

risks. What actually happens is the behavior shown at the end of the

black arrow, and alternatives that could have happened but did not

are shown at the end of the gray arrows; the length of the arrow

indicating the waiting time. The behavior with the higher rate will

tend to have the shorter waiting time and will censor (dashed black

line) the occurrence of the behaviors with the lower rates and longer

waiting times.
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of the two sessions were very similar but not identical. The

first hour of interaction of each parent–child dyad was

coded using the Specific Affect Coding System (SPAFF;

Gottman, McCoy, Coan, & Collier, 1996). Observers

were trained extensively to a criterion of 75% agreement

before initiating coding of videotaped interaction derived

from participants in the current research. Weekly

recalibration training was completed to minimize observer

drift. Two observers independently coded 15% of all the

sessions to assess coder agreement. Observers were blind

to which sessions were used to assess observer agreement.

The average between-observer agreement on the occurrence

of SPAFF codes (using a þ/�6-s window) was 83%

(kappa¼ .73).

In the hazard analyses, super-ordinate categories

labeled child ‘‘anger,’’ ‘‘positive,’’ ‘‘sad-fearful,’’ and ‘‘neu-

tral’’ were defined by combining the SPAFF codes of anger,

contempt, and disgust; SPAFF codes of validation, interest,

enthusiasm, and humor; SPAFF codes of sad and fear–

tension; and all other codes, respectively, except an

out-of-view code. Super-ordinate categories labeled parent

‘‘negative,’’ ‘‘positive,’’ and ‘‘neutral’’ were defined by

combining the SPAFF codes of anger, contempt, disgust,

criticism, domineering, belligerence, threats, whining,

stonewalling, defensiveness, fear/tension, and sadness;

SPAFF codes of validation, interest, enthusiasm, and

humor; and all other codes, respectively, except an out-of-

view code. Observers used the out-of-view code when the

child or parent’s affect could no longer be accurately coded

because they were not visible. Out-of-view codes were

treated just like the end of the session in the hazard analyses.

Child Antisocial Behavior

A measure of child antisocial behavior was obtained in the

fall (child age 5.5 years) of the kindergarten year and in the

spring of third grade consisting of the mean of 23 items

scored 0, 1, or 2 from the parent Child Behavior Checklist

(Achenbach & Edelbrock, 1991) describing aggressive and

oppositional child behavior. The scale reliabilities (alpha)

were greater than .90 on each measurement occasion.

Based on 255 subjects with fall K data and 203 subjects

with third-grade data, observed means at fall K and third

grade were .49 and .43, respectively; standard deviations

were .31 and .38, respectively; minimum scores were both

0; and maximum scores were 1.61 and 1.91, respectively.

Although the antisocial measures were positively skewed

(.89 and 1.32 for K and third grade, respectively), pro-

nounced floor effects (many subjects with the identical

minimum score of 0) were absent. The correlation between

K and third-grade antisocial was .64 based on 189 subjects.

See Snyder et al., 2003, for a more thorough description of

the sample, the family-level measures, the observational

procedures, and coding for parent–child emotion displays.

The data structure for multilevel Cox models is the

same as that for standard two-level models in Mplus with

the repeated measures, the episode durations, in ‘‘tall’’

format, one line for each repeated observation within a

higher-level unit, in our case the dyad, which is identified

by an ID variable. The dyad ID variable and any dyad-level

predictors get duplicated across the repeated rows for the

durations. The steps by which the observation data get

combined with the dyad-level data will vary depending

on how the observation data are stored but we briefly

describe the process for our data to give readers some

idea of how to proceed. For more detail about data prep-

aration, see the Supplementary Material. For a family at a

single session, the child and parent were coded indepen-

dently of each other in separate passes through the video

tape and the data stored in two separate files. The raw data

consisted of multiple rows of session times and child or

parent states; each time the child or parent changed state,

the session time was recorded, called the start time, along

with the new state called the start state. The parent and

child codes were aggregated into the super-ordinate cate-

gories described previously and then merged using start

time as the merging key. Merging creates missing values

in the child start state and start time when the parent

changes but the child does not and vice versa. These miss-

ing values were filled in using the last nonmissing values.

A dyadic start state indicator was created by concatenating

the start state of the child and parent in that order. A lag

1 time variable called end time and a lag 1 dyadic state

variable called end state were computed, which for the jth

row were just the jþ 1 row values of the same variables.

Duration was computed by subtracting the start time from

the end time. Thus on any row, the data would indicate

when a dyad started and ended a state, which state they

started in and ended on, and the duration of the state.

Mplus requires a censoring indicator variable that by

default takes the value of 1 if the episode duration was

censored and 0 otherwise. The very last row in both

parent and child files was always an end-of-session time

and an end-of-session code, which allowed us to indicate

that the duration of the final dyadic state was always

censored. Out-of-view codes were treated just like end-of-

session codes. As explained previously, for competing

risks, it is also necessary to have a censoring indicator for

each possible end state. This is a set of dummy variables

that we named according to the end state (e.g., AcRp was

the name of the dummy variable censoring indicator that

indicated whether the NcRp episode ended in AcRp,

scored 0 for not censored, or ended in some other state,
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scored 1 for censored). A dyad ID variable was added, and

all the dyadic files were concatenated to make one very

large file for all episodes for all dyads in Session 1 in the

sample. The same procedure was followed for Session 2

and for Session 1, and two files were combined for use in

the example analyses reported in this article. The final step

consisted of selecting just the transitions of interest (epi-

sodes of NcRp ending in AcRp, ScRp, or PcRp) and merg-

ing in the additional dyad-level predictors or outcomes (K

and third-grade antisocial), which like the dyad ID repeat

across the multiple rows of durations within a dyad.

Results

Basic descriptive statistics for the survival data are impor-

tant and interesting for a number of reasons. First, we have

the possibility that the sub-sample that agrees to participate

in the laboratory task is not representative of the larger

sample in the study. Our models are based on 270 of

the 275 dyads in the sample (five dyads were missing all

data for all measures). However, 30 of the 270 dyads or

11% of the sample did not participate in any laboratory

session. These 30 dyads are still included in the models

and selection bias is minimized to the extent that the miss-

ing observation data are missing completely at random or

at least random conditional on other predictors in the

model. Although we will not pursue it here, we could

use baseline data beyond child K antisocial to predict

laboratory participation and include any significant predic-

tors in our models to further minimize the possibility of

selection bias. Second, we have the possibility that having

experienced the first laboratory session, some dyads may

decide not to participate in the second laboratory session,

further augmenting the possibility of biased sampling. In

our case, of the 239 dyads that participated in Session 1,

19 or 8% declined to come back for a second session. One

dyad participated in the second but not the first session, so

the total number of dyads in the second session was 221.

Third, given a fixed sample size of dyads, the precision

of the estimates of the latent log hazards is strongly deter-

mined by the number of events. Most of the child transi-

tions were from neutral to positive, 952 or 68%, followed

by transitions to anger, 219 or 17%, and sad/fear, 186 or

15%; and most dyads, 208 or 82%, had at least one child

positive transition, but fewer dyads had at least one child

anger or child sad/fear transition, 98 or 41% and 89 or

37%, respectively. Two types of transitions omitted from

the analyses are simultaneous dyadic transitions in which

both dyad members change states at the exact same

moment (at least they appear to at the resolution of time

we used for coding, 1/30th of a second) and parent

transitions where the child does not change state but the

parent changes to either neutral or positive. The former can

be safely ignored because they are very rare, making up a

tiny fraction (0.3%) of the total number of transitions for

NcRp, and the latter, while more numerous, are omitted to

keep the demonstration models simple. In actual practice,

because the parent hazard rates may be correlated with

both the child hazard rates and third-grade child antisocial,

it would be important to eventually include them in the

model as competing predictors of third-grade child antiso-

cial to avoid biased estimates for the child hazard effects.

As a preliminary, fitting smaller pieces of bigger

models is usually a very good strategy, especially when

complex estimation techniques like numerical integration

are involved, as is the case with the multilevel Cox model.

These smaller models are easier to debug, run much faster,

are more likely to successfully converge to a final solution,

and they can provide good initial estimates for the bigger

models. A smart choice for small models in this context is

to minimize the dimensions of integration required, which

can be accomplished by focusing on a single multilevel

survival process at a time. For example, the model shown

in Figure 2 for the antisocial measures and just the hazard

rate of child anger requires only a single dimension of

integration. This model and the corresponding single

hazard rate models for child positive and sad/fear could

be used to get baseline hazard plots, preliminary estimates

of dyad-level covariances and correlations, check for curvi-

linear regression effects, and assess normality assumptions

on the latent variables. Mplus will compute and export

estimates of the latent log hazards and their standard

errors and these can be plotted against normal quantiles

to look for possible violations of assumptions like clusters

of points that might indicate latent subtypes, extreme out-

liers, or just highly non-normal distributions.

After fitting the Cox model, the baseline hazard param-

eters can be used to make plots of the hazard and the

cumulative hazard across the waiting time. To our knowl-

edge, baseline hazard functions for emotional displays of

children interacting with their parents have never been

published, so it is instructive to do so. The single hazard

models for each of the three child transitions were used to

obtain baseline hazard parameters and these in turn were

used to compute the cumulative hazard curve, which is

often easier to visualize than plotting the baseline hazard

parameters against waiting time. The cumulative hazard

curve gives the expected cumulative number of transitions

in the interval from 0 to any particular value of time for a

hypothetical average child, one who scores 0 on the latent

log hazard variable. All three curves are shown in Figure 4.

The waiting time axis has been limited to 30 s to show
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more detail in that part of the waiting time where the vast

majority of transitions take place. Immediately obvious is

the fact that positive transitions are accumulating much

quicker than anger or sad/fear transitions, which are

quite similar. By 5 s, about 0.2 positive transitions but

only about 0.05 anger and sad/fear transitions have accu-

mulated. The child positive cumulative hazard appears to

slow down at about 5 s, but the anger and sad/fear cumu-

lative hazards appear to steadily increase in a fairly linear

fashion. A linear cumulative hazard curve corresponds to

a constant hazard rate throughout the waiting time and

this appears to describe fairly well anger and sad/fear

transitions. The nonlinear cumulative hazard for positive

transitions suggests that the hazard rate is not constant

but drops after about 5 s. Perhaps children are willing

to try a positive response to the parent’s negative behavior

early in the episode, but as the parent’s negative behavior

drags on, children become more reluctant to respond

positively.

Using the single hazard models to obtain initial esti-

mates, the full model including all three child hazard rates

converged in about 10 min on a multicore desktop com-

puter, taking advantage of Mplus’ multicore capabilities to

speed up the computations. Results are shown in Table I.

The variances of the log hazards are all strongly significant

Figure 4. Cumulative hazard curves for child hazard rates of anger, positive, and sad/fearful given parent negative.

Table I. Parameter Estimates, Standard Errors, Critical Ratios, and

p Values for MMSA Corresponding to Figure 4

Effect Estimate SE Estimated/SE p

Standardized effects

K child antisocial to

Anger log hazard 0.188 0.114 1.654 0.098

Positive log hazard �0.203 0.093 �2.182 0.029

Sad/fear log hazard �0.292 0.116 �2.526 0.012

Third child antisocial on

Anger log hazard �0.151 0.150 �1.008 0.314

Positive log hazard �0.230 0.120 �1.916 0.055

Sad/Fear log hazard �0.135 0.156 �0.869 0.385

K child antisocial 0.567 0.089 6.342 0.000

Correlations

Anger log hazard with

Positive log hazard �0.348 0.152 �2.283 0.022

Sad/fear log hazard 0.287 0.188 1.529 0.126

Positive log hazard with

Sad/fear log hazard �0.101 0.178 �0.567 0.571

Means or intercepts

K child antisocial 0.491 0.019 25.954 0.000

Third child antisocial 0.102 0.053 1.934 0.053

Variances

K child antisocial 0.096 0.01 9.805 0.000

Third child antisocial 0.077 0.012 6.543 0.000

Anger log hazard 0.599 0.145 4.128 0.000

Positive log hazard 0.334 0.063 5.310 0.000

Sad/fear log hazard 0.703 0.159 4.434 0.000
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(ps < .001), indicating ample individual differences to pre-

dict and to use as predictors of future outcomes. For the

predictor, K child antisocial, the signs of the standardized

effects are in the expected direction for anger (positive) and

sad/fear (negative), but the standardized effect for anger at

0.188 is not significant (p¼ .098). The standardized effect

for sad/fear, however, at �0.29 is significant (p¼ .012).

Contrary to what was hypothesized, the standardized

effect for the log hazard of positive at �.20 is also signif-

icant (p¼ .029). All the standardized effects are modest in

magnitude, regardless of the level of statistical significance.

The results indicate that antisocial children did not differ

from normal children in their likelihood of an angry

response to a negative parent but were less likely to

show positive or sad/fear emotions. The raw effects of

K child antisocial on the three hazards can also be inter-

preted in terms of hazard risk ratios, although space

limitations preclude their presentation here (see

Stoolmiller & Snyder, 2006, for more details of these

kinds of interpretations).

For the prospective prediction to third-grade antisocial

over and above K antisocial, only the log hazard of positive

emotion was marginally significant with a small standard-

ized effect of �0.23 (p¼ .055). Anger and sad/fear log

hazards were also negatively related to third-grade antiso-

cial but not strongly enough to be significant (p¼ .314 and

p¼ .385, respectively). The fact, however, that all three log

hazards were negatively related to third-grade antisocial

suggests that longer durations of neutral child behavior

would also significantly predict third-grade antisocial. We

can test this by re-estimating the model and ignoring the

terminating state. The results indicate that the standardized

effect of K antisocial on child log neutral termination rates

is small but significant at �0.23, (p¼ .011, i.e., lower

termination rates or longer durations go with higher anti-

social), and in turn, child log neutral termination rates

are significantly predictive of third-grade antisocial net of

K antisocial (standardized effect¼�0.24, p¼ .027, i.e.,

lower termination rates or longer durations go with

higher antisocial). Evidently, antisocial children are less

likely to terminate NcRp states than normal children and

hence spend more time in a neutral emotional state given

that the parent is negative, and children who are less likely

to terminate NcRp states and hence spend more time in a

neutral emotional state given that the parent is negative

increase in antisocial behavior from K to third grade.

Mplus will compute estimates of the latent log hazard

scores for each child for each type of transition. These

estimated log hazard scores can be plotted to check under-

lying model assumptions. In particular, the MMSA

corresponding to Figure 4 is based on the assumption

that all the latent variables are multinormally distributed,

which implies a linear regression with constant residual

variance between any two variables. If these assumptions

are not at least roughly true, then model inferences may be

inaccurate. Mplus does offer robust estimation methods to

minimize the risk but perhaps, more critical, however,

there may be important substantive implications if the

multinormality assumptions are clearly violated. One pos-

sible source of theoretically interesting non-normality is the

presence of latent classes of dyads, which could represent

qualitatively distinct subpopulations with differing patterns

of dyadic interaction (Berlin, Williams, & Parra, 2013).

Clearly it would be important to know if the risk of child

externalizing behavior was highly associated with latent

class membership, and although it is beyond the scope

of this work, Mplus has facilities for incorporating latent

classes in to survival analyses.

Figure 5 shows a scatter plot matrix with normal

quantile plots on the main diagonal for the three estimated

log hazard scores. The data points should fall roughly on

the diagonal reference line in the normal quantile plots if

the data are sampled from a normal distribution. The

bottom, middle, and top dashed lines mark off the 25th,

50th, and 75th percentiles of the distribution of the

observed data and as is apparent, the highest 20% or so

of the data for each type of transition departs from the

diagonal reference line, indicating positive skewness.

Descriptive statistics are also printed in the top margin of

the normal quantile plots, and the values for skewness

confirm that all of the hazard distributions are positively

skewed, although the anger distribution is the most

extreme. The anger and sad/fear distributions also have

several data points that are quite extreme, 4 or more stan-

dard deviations from the mean. Although we will not

pursue it here, it might be a good idea to re-run the

model and exclude several of these dyads to make sure

they are not unduly influencing the results.

Discussion

For simplicity, our example application focuses only on

hazard rates of child anger, positive, and sad/fear given

parent negative, ignoring the hazard rates for parent posi-

tive and neutral. The substantive results provide mixed

support for the hypotheses that compared with normal

children, antisocial children have higher anger terminations

rates, lower sad/fear termination rates, and the same pos-

itive termination rates. Of these three hypotheses, only the

second was supported by the data; antisocial children had

lower hazard rates of sad/fear emotions compared with

normal children. Contrary to our predictions, antisocial
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children had about the same anger termination rates

and significant lower positive termination rates. For pro-

spective prediction, the only significant effect (p¼ .049)

was that positive termination rates were negatively related

to third-grade antisocial behavior, contrary to what was

hypothesized. Sad/fear termination rates were negatively

related to third-grade antisocial behavior, as hypothesized,

but the effect was too small to be significant. Anger termi-

nation rates were also negatively related to third-grade

antisocial, contrary to expectation, but too small to be

significant.

The fact that all three child termination rates were

negatively related to third-grade antisocial behavior sug-

gested that what is most predictive of future antisocial

behavior is long durations of neutral child behavior.

In fact, when we re-estimated the model ignoring the

different types of termination, the overall child neutral

termination rate was significantly negatively related

to third-grade antisocial behavior net of K antisocial.

This indicates that children who spend long durations

in neutral affect (when their parent is negative) tend

to increase in antisocial behavior. It is not clear why the

Figure 5. Normal quantile plots (main diagonal) and scatter plots for model estimated latent log hazard rates. Lower, middle, and upper dashed

lines in the normal quantile plots indicate 25th, 50th, and 75th quantiles, respectively, of the distributions. A normal distribution tends to track the

diagonal solid reference line in the normal quantile plots. The black straight and gray curvy lines in the scatter plots are linear and nonparametric

regression fits. The nonparametric regression is the lowess procedure. Descriptive statistics are printed in the top margins of the plots. For the

normal quantile plots, the statistics are mean, standard deviation, skewness, and kurtosis, abbreviated M, Sd, Sk, and K, respectively. For the scatter

plots, the statistics are correlation, regression weight, t value, p value, and bivariate sample size, abbreviated r, b, t, p, and N, respectively.
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apparent absence of child affect would predict increases in

antisocial behavior.

The novel part of our example application is the use of

dyad-level log hazard rates as predictors of future child-level

outcomes. MMSA are not new but most programs do not

allow for subject-level log hazard rates to be embedded

within a subject-level SEM and used as both outcomes

and predictors at the same time. The current version of

Mplus is capable of such modeling, and all the usual tools

of SEM can be deployed to test hypotheses of interest. To

keep the example application simple, we used a single pre-

dictor of hazard rates and a single outcome to be predicted

by the hazard rates. It would be straightforward to add

in more predictors or outcomes or to structure additional

subject-level predictor or outcome variables as growth

models, cross-lagged panel models, discrete time survival

models, latent class models, latent factor models, etc.

The within-dyad survival part of the model can be

extended in a number of interesting ways as well. At the

most micro level, we could include predictors that can

change during an episode or, alternatively, we could

allow dyad-level predictors that are time-fixed to have

time-varying effects during an episode. Both of these pos-

sibilities make the model a nonproportional hazards

model. For example, besides just differences in rates for

the three child transitions we studied, antisocial children

may have a distinctly different baseline hazard functions as

well and by allowing the child antisocial predictor to have

time-varying effects, we could test this possibility (Muthén,

Asparouhov, Boye, Hackshaw, & Naegeli, 2009). Stepping

up a level, we could include predictors that vary during the

session but are constant during an episode. For example,

does the number of previous child anger terminations

extend or shorten the current episode of NcRp? (e.g.,

Dagne & Snyder, 2009, 2011). The model could also be

extended to include time-fixed but session-varying predic-

tors. For example, if we obtained mood ratings from the

participants just before each session, we could include

these as predictors of session-level latent NcRp termination

rates. The modeling possibilities are very diverse.

Limitations and Future Directions

Computing speed is a serious current limitation for MMSA.

In our data, the parent can be in one of three states and the

child can be in one of four states, so there are 12 possible

dyadic states. In addition, if we want to distinguish hazard

rates according to the end state, then there are 11 possible

end states for the 12 possible start states or 132 hazard

functions in all. Fortunately, some of these may be safe to

ignore because they almost never happen, which is usually

the case for the situation when both members of the dyad

change simultaneously to new states. This eliminates

72 hazard functions but still leaves 60. Clearly, investiga-

tors will need to be selective because the computational

burden increases exponentially with the number of hazard

functions in the model due to the necessity of using

numerical integration to estimate the models. Current

desktop computing power makes including more than

five or six hazard functions in a single model difficult.

On the other hand, access to super computers is becoming

more common now and this opens up possibilities for

extending the models.

Observational designs that included planned

missingness (Little, Jorgensen, Lang, & Moore, 2014) are

badly needed to minimize costs associated with coding

behavior. For example, an investigator could recruit a

large and representative sample and then randomly select

a subset for dyadic interaction tasks that will be coded.

Very little is known about statistical power for MMSA

under these types of circumstances. A related issue is the

adequacy of large sample size assumptions at both the

dyad-level and the within-dyad level. How many dyads

are necessary for sampling distributions to approximate

normality? Fortunately, many of the tools to address

these issues are now available in Mplus, so the future

outlook for MMSA is bright.

Supplementary Data

Supplementary data can be found at: http://www.jpepsy.

oxfordjournals.org/

Funding

National Institute of Mental Health grant R01 57342.

Conflicts of interest: None declared.

References

Achenbach, T. M., & Edelbrock, C. (1991). Manual for

the child behavior checklist and revised child behavior

profile. Burlington, VT: University of Vermont

Department of Psychiatry.

Allison, P. D. (1984). Event history analysis: Regression

for longitudinal event data. In J. L. Sullivan, &

G. G. Niemi (Eds.), Quantitative applications in the

social sciences (pp. 9–67). Beverly Hills, CA: Sage.

Berlin, K. S., Williams, N. A., & Parra, G. R. (2013).

An introduction to latent variable mixture modeling

(part 1): Cross sectional latent class and latent

Multivariate Multilevel Survival Analysis 231

dyad 
child 
subject 
subject 
subject 
within 
dyad 
time 
time 
-
3 
time 
prior 
time 
session 
session 
5 
6 
,
dyad 
within 
http://jpepsy.oxfordjournals.org/lookup/suppl/doi:10.1093/jpepsy/jst076/-/DC1
http://www.jpepsy.oxfordjournals.org/
http://www.jpepsy.oxfordjournals.org/
This research was funded by 
Grant 


profile analyses. Journal of Pediatric Psychology.

In press.

Dagne, G. A., & Snyder, J. (2009). Bayesian hierarchical

duration model for repeated events: An application

to behavioral observations. Journal of Applied

Statistics, 36, 1267–1279.

Dagne, G. A., & Snyder, J. (2011). Relationship of

maternal negative moods to child emotion regulation

during family interaction. Development and

Psychopathology, 23, 211–223.

Duke, D. C., Geffken, G. R., Lewin, A. B., Williams, L. B.,

Storch, E. A., & Silverstein, J. H. (2008). Glycemic

Control in youth with type 1 diabetes: Family

predictors and mediators. Journal of Pediatric

Psychology, 33, 719–727.

Forgatch, M. S., & Patterson, G. R. (2010). Parent man-

agement training – Oregon model: An intervention

for antisocial behavior in children and adolescents.

In J. R. Weisz, & A. E. Kazdin (Eds.), Evidence-based

psychotherapies for children and adolescents (2nd ed.,

pp. 159–178). New York, NY: Guilford.

Goldstein, H. (2011). Multilevel statistical models.

Hoboken, NJ: Wiley.

Granic, I., & Patterson, G. R. (2006). Toward a

comprehensive model of antisocial development:

A systems dynamic systems approach. Psychological

Review, 113, 101–131.

Little, T. D., Jorgensen, T. D., Lang, K. M., &

Moore, W. G. (2014). On the joys of missing data.

Journal of Pediatric Psychology, 39, 151–162.

doi:10.1093/jpepsy/jst048

Miller, G. E., & Chen, E. (2010). Harsh family climate in

early life presages the emergence of a

proinflammatory phenotype in adolescence.

Psychological Science, 21, 848–856.

Muthén, B. O., Asparouhov, T., Boye, M., Hackshaw, M.,

& Naegeli, A. (2009). Applications of continuous-time

survival in latent variable models for the analysis of

oncology randomized clinical trial data using Mplus.

Los Angeles, CA: Muthén & Muthén.

Muthén, L. K., & Muthén, B. O. (2013). Mplus user’s

guide (7th ed.). Los Angeles, CA: Muthén & Muthén.

Snyder, J., Stoolmiller, M., Wilson, M., & Yamamoto, M.

(2003). Child anger regulation, parental re-

sponses to children’s anger displays, and early

child antisocial behavior. Social Development, 12,

335–360.

Stoolmiller, M., & Snyder, J. (2006). Modeling

heterogeneity in social interaction processes: Using

multilevel survival analysis. Psychological Methods, 11,

164–177.

Therneau, T. M., & Grambsch, P. M. (2000). Modeling

survival data: Extending the Cox model. New York,

NY: Springer.

232 Stoolmiller and Snyder


