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Objective To introduce and illustrate recent advances in statistical approaches to simultaneous modeling of

multiple change processes. Methods Provide a general overview of how to use structural equations to

simultaneously model multiple change processes and illustrate the use of a theoretical model of change to

guide selection of an appropriate specification from competing alternatives. The selected latent change score

model is then fit to data collected during an adolescent weight-control treatment trial. Results A latent

change score model is built starting with the foundation of repeated-measures analysis of variance and illus-

trated using graphical notation. Conclusions The assumptions behind using structural equations to

model change are discussed as well as limitations of the approach. Practical guidance is provided on

matching the statistical model to the theory underlying the observed change processes and the research ques-

tion(s) being answered by the analyses.
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Structural equation modeling (SEM) provides a framework

for flexibly modeling multiple change processes. Using

structural equations, researchers can specify a model of

change that closely matches their substantive theories of

how processes change and influence each other across

time. Structural equations have been used for some time

to specify or define latent curve models, where the com-

ponents of the change trajectory (e.g., intercept, slope,

quadratic, etc.) are represented by latent (a.k.a., random)

variables that allow these components to vary across indi-

viduals. There are, however, many types of change models

that can be specified using structural equations. The most

common are latent growth curve (LGC) models (Curran,

Obeidat, & Losardo, 2010), but there are others, including

latent change score (LCS) models (McArdle, 2009),

autoregressive latent trajectory (ALT) models (Bollen &

Curran, 2004), trait–state models for longitudinal data

(Kenny & Zautra, 2001), piecewise latent trajectory

models (Flora, 2008), and cross-lagged autoregressive

models (Little, Preacher, Selig, & Card, 2007). Moreover,

each of these specifications can be modified to better re-

flect the investigators’ theory about how the processes

change over time.

The increasing number of possible specifications

allows researchers to tailor their statistical model to

answer their particular research question, but deciding

on an approach that will provide an appropriate test of

the hypothesis can be daunting. There is not currently a

‘‘one-size-fits-all’’ model, and selecting the most appropri-

ate specification depends on the research question and the

nature of the processes being studied. Access to an increas-

ing number of possible specifications also increases the

danger of post hoc selection, where researchers explore mul-

tiple statistical models and select the one that best sup-

ports the stated hypotheses instead of the one that most

accurately reflects the processes being studied. Strong
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theory about how the processes being investigated influ-

ence each other across time helps guide the selection of the

most appropriate specification for the research question,

and helps protect against post hoc model selection

(Collins, 2006). However, using theory to inform the

statistical model is easier said than done.

The aim of this article is to help researchers in pedi-

atric psychology better understand the assumptions and

implications behind two different statistical models of

change. This aim will be accomplished by articulating our

theoretical model of how the variables of interest change

and are associated over time, selecting an appropriate sta-

tistical model of change, applying it to clinical data, and

interpreting the results. The data we will use throughout

the manuscript were obtained during an adolescent weight-

control treatment trial (Lloyd-Richardson et al., 2012).

Participants were randomized to a behavioral weight-

control program with either aerobic activity or peer-

enhanced physical activity. Participants and their parents

attended 16 weeks of group treatment, followed by 4 bi-

weekly weight-control maintenance sessions. Assessments

were conducted at baseline and at 4, 12, and 24 months

post-randomization. Participants were 118 adolescents

aged 13–16 years with a mean body mass index of 31.4.

At each of the four time points, participants completed the

8-item Fear of Negative Evaluation (FNE) subscale of the

Society Anxiety Scale–Adolescent (La Greca & Lopez,

1998), and height and weight were measured by trained

research assistants. The FNE subscale is a measure of the

degree to which adolescents are concerned with how

others evaluate them. Each item was rated on a 5-point

scale from 1¼ not at all to 5¼ all the time. Responses to

the FNE items were summed, with high scores reflecting

greater anxiety associated with perceived negative evalua-

tions by others. Overweight status was defined as percent

overweight—i.e., adolescents’ percent >50th percentile

body mass index for age and sex (OW). Previous manu-

scripts reported significant decreases in weight for both

treatment conditions, but no significant differences be-

tween conditions (Jelalian et al., 2010; Lloyd-Richardson

et al., 2012). To simplify the presentation of these data, we

will combine the two treatment conditions. However, the

initial decrease in percent overweight between the first and

second assessment (i.e., intervention effect) will have to be

accounted for by the statistical model and will play a role in

which model we ultimately select.

Our hypotheses are focused on the interplay between

FNE and OW. Specifically, we hypothesize that change in

OW will be reciprocally associated with change in FNE

over time. There are a number of models that could be

used to test this reciprocal relationship, including a

multivariate or parallel-process LGC model, a cross-

lagged autoregressive model, Bollen’s ALT model, and

McArdle’s LCS model (Figure 1). In the next section, we

will highlight the key assumptions and implications behind

these models and settle on one that addresses our hypoth-

esis while accounting for the features of the clinical trial

from which the data were collected.

Notation

Throughout the article we will be using graphical notation

to illustrate structural equations. In this notation, rectan-

gles represent observed or measured variables, ovals repre-

sent latent or random variables, directed arrows represent

regression parameters, and bidirectional arrows represent

association parameters (e.g., correlations). Variances and

residual variances (i.e., error terms) for latent variables

are indicated by rounded double-headed arrows. Error

terms for observed variables are often depicted as latent

variables with a factor loading of ‘‘1’’; for convenience

and visual simplicity, we will use a small directed arrow

to represent error terms of observed variables. Estimated

parameters will be indicated by letters, and fixed parame-

ters will be indicated by the number to which they were

fixed. Parameters fixed to ‘‘0’’ are omitted from the repre-

sentations, and due to their frequency, parameters fixed at

‘‘1’’ will be indicated using gray lines.

Articulating a Theoretical Model of Change

Our research question addresses the relationship between

FNE and OW across time. We hypothesize that FNE and

OW influence each other overtime, and will make the fol-

lowing assumptions about this bidirectional relationship:

the relationship between FNE and OW does not change

across the study period (i.e., from baseline to 24 months),

the relationship between FNE and OW does not change

across adolescence, and the relationship between FNE and

OW is the same across individuals (i.e., there are no mod-

erating influences for this relationship). Beyond the

hypotheses about how FNE and OW relate to each other,

there are additional hypotheses about how each process

changes overtime. There is evidence suggesting that some

of the change in FNE and OW can be attributed to devel-

opment. It has been suggested that FNE increases across

adolescence (Westenberg, Gullone, Bokhorst, Heyne, &

King, 2007), and there is evidence that adolescents who

are overweight increase in percent overweight across ado-

lescence (Rooney, Mathiason, & Schauberger, 2011). We

also expect that there will be variability among youth in the
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trajectories of FNE and OW across time. Beyond the con-

tributions of maturation, there is evidence that FNE and

percent overweight have some stability across time, mean-

ing their current status is predicted by previous assess-

ments, and that they are responsive to therapeutic

intervention (Lloyd-Richardson et al., 2012).

Translating the Theory Into a Statistical
Model
Selecting the Appropriate Specification

With a theory of how FNE and OW change and are asso-

ciated over time, we can begin selecting from among the

various statistical models of change. It is helpful to begin

by considering simple models of change and moving to

more complex models until the model matches the

assertions of the hypothesized model of change. At the

most basic, a repeated-measures analysis of variance

(RMANOVA) can be used to model trajectories. This

model allows participants to have different initial values

(i.e., intercepts), but constrains the trajectories to be

equal across participants. Our model of change assumes

that the trajectories for OW and FNE vary across partici-

pants, making it a poor match to the assumptions of a

RMANOVA. Additionally, the RMANOVA does not test

for cross-lagged relationships, which eliminates the possi-

bility of examining the bidirectional relationship between

OW and FNE.

An LGC specification (Figure 1a) allows the trajecto-

ries to vary across participants, but does not separate

sources of change. Our hypothesized model suggests that

change in FNE and OW is the result of a number of pro-

cesses, including developmental processes that are con-

stant overtime (i.e., intercept and slope/trajectory), a

stability process (i.e., levels of OW and FNE are predicted

by their levels at a previous time point; a.k.a.,

autoregression), and the interplay of the associations be-

tween FNE and OW overtime. A multivariate or parallel-

process LGC specification allows for tests of the association

between constant growth parameters of OW and FNE (e.g.,

correlated intercepts, correlated slopes), but does not

inform the direction of the association. In other words,

LGC tests whether the developmental trajectories of OW

and FNE are related, but not how they are related (e.g.,

does FNE predict change in OW, OW predict change in

FNE, change in FNE predict change in OW, etc.).

Compared with the RMANOVA, the LGC specification pro-

vides a better match with our hypothesized model of

Figure 1. Multivariate models. SLP¼ Slope; Int¼ Intercept; LCS¼ Latent Change Score; �¼ autoregressive parameter; �¼ cross-lagged parameters;

a¼proportional change parameters.
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change. It does not, however, model all of the hypothesized

change processes and may be overly simplistic for examin-

ing the interplay between FNE and OW across time.

A cross-lagged autoregressive specification (Figure 1b)

provides the ability to evaluate how two processes may be

associated across time; that is, whether change in FNE and

change in OW are reciprocally related. It also provides the

ability to include autoregressive parameters. With a cross-

lagged model, it is possible to evaluate if the relationship

between FNE and OW changes overtime, or if it changes as

a result of an intervention. This is accomplished by allow-

ing the cross-lagged parameters to vary across assessment

points. The specification, however, does not model devel-

opmental trajectories (i.e., constant change). Compared

with an LGC specification, a cross-lagged specification pro-

vides more flexibility in modeling the interplay between

two change processes. However, because the cross-lagged

model does not incorporate constant change trajectories, it

also may be overly simplistic for modeling change pro-

cesses that have developmental trajectories and, therefore,

it does not match our hypothesized model.

Two advanced specifications have been developed to

address some of the weaknesses of the LGC and cross-

lagged specifications. The first is Bollen’s ALT model

(Figure 1c), which combines the cross-lagged and LGC

specifications. The second is McArdle’s LCS specification

(Figure 1d), which divides the change processes into mul-

tiple segments and provides flexibility in modeling how

change processes are associated over time. Because they

both allow for the simultaneous modeling of multiple

change processes (e.g., constant change, autoregressive)

and because they model how change processes are associ-

ated across time (i.e., cross-lagged associations), both sta-

tistical models match our hypothesized model. There are

important differences between these two specifications,

which will inform which specification we will ultimately

choose to answer the research question, but first, we

would like to provide additional background about the

ALT and LCS specifications.

Autoregressive Latent Trajectories

As we briefly mentioned, the ALT model combines the

cross-lagged autoregressive and the LGC specifications.

The ALT model estimates the associations among repeated

measures as an additive combination of influences from an

underlying growth trajectory and from the previous assess-

ment. This is useful when testing child and adolescent

developmental hypotheses where change may be due to

both underlying growth processes, as well as may depend

on the previous assessment. In terms of our study hypoth-

eses, the ALT specification tests whether the longitudinal

reciprocal associations between change in OW and change

in FNE will be significant after accounting for previous

measurements and individual developmental trajectories.

The ALT model is specified by regressing each assess-

ment on the preceding assessment (i.e., autoregressive

parameters) and on the preceding assessment from the

linked process (i.e., cross-lagged parameters). The latent

growth trajectory is included by defining a latent intercept

term by fixing the factor loadings between the intercept

term and each time point to 1, and by defining a latent

slope term by fixing the factor loadings between the slope

term and each time point to a series of numbers starting at

0 and increasing linearly according the spacing of each

assessment (e.g., 0, 1, 2, 3 for evenly spaced assessments).

Typically, the latent growth trajectory does not include the

initial time point because the ALT model follows the tra-

dition of autoregressive models where the initial time point

is treated as predetermined, meaning that the statistical

model does not attempt to explain or model the initial

values. In our data, this means that the ALT model does

not estimate participants’ initial levels of OW and FNE;

instead, the initial raw values are used in the model.

Treating the initial time point as predetermined requires

that fewer assumptions are made when fitting the model to

the data. This means the statistical model provides a closer

fit to the observed data than with other approaches, like

LCS models, that model the initial time points. However,

not modeling the initial time points reduces the number of

degrees of freedom available to model additional sources of

change, such as treatment-related change.

The ALT specification accounts for the relationship

among repeated assessments, but does not define the

change between subsequent assessments as a parameter

in the model. The data from the weight-control trial

showed a decrease in FNE and OW for both treatment

conditions between the first and second assessments.

The ALT specification accounts for this decrease through

the regression of the 4-month assessment on the baseline

assessment and by including an intercept term for the 4-

month assessment. However, the specification does not

provide a direct estimate of this change, making it difficult

to report the amount of change, predict individual variabil-

ity in this change, or use the change to predict other

outcomes.

Latent Change Scores

Change scores have had a controversial history (Cronbach

& Furby, 1970; Williams & Zimmerman, 1996). One of

the most common critiques of their use has been that they

may increase the error in the model (Collins, 1996; King

et al., 2006). The LCS specification seeks to address this
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concern by using structural equations to define ‘‘error-

free’’ latent variables for each observed variable and then

creating a latent variable representing the change between

adjacent time points (Figure 2). This specification essen-

tially divides the change process into multiple segments,

enabling each segment to be predicted by constant

growth factors (e.g., growth trajectories used in LGC

specifications; Figure 2b), previous assessments (propor-

tional change; Figure 2c), other change processes (e.g.,

treatment-related change; Figure 2d), or other time-invari-

ant or time-variant predictors. Having a segmented change

process also allows for the relationships among change

processes to shift across time. This is accomplished by

allowing change parameters, which are traditionally con-

strained to be equal, to vary across time. The most

common LCS specification includes proportional change

and constant change processes, holds the error terms of

the observed variables to be equal, and constrains the in-

tercepts and residual variances of the LCSs to be 0. These

constraints, however, can be relaxed and more complex

change processes can be added as the number of assess-

ments and sample size increase (Grimm, An, McArdle,

Zonderman, & Resnick, 2012).

Similar to the ALT model, the LCS model also esti-

mates the relationships among change in OW and FNE

and models developmental trajectories for each variable.

Compared with the ALT specification, the LCS

specification does not explicitly test the autoregressive

parameters and the first assessment is included as part of

the model. This provides more degrees of freedom to test

other aspects of the change process, such as the interven-

tion effect between the first and second assessments of our

data.

For the purposes of our research question, both the

ALT and LCS specifications allow us to model the interplay

between FNE and OW while also being able to model de-

velopmental trajectories and account for stability of each

process over time. Under certain conditions, the two

specifications are equivalent (Bollen & Curran, 2004),

but generally they are distinct and emphasize different el-

ements of the hypothesized model of change. By incorpo-

rating autoregressive parameters, the ALT model provides

an explicit test of the stability of FNE and OW overtime. By

treating the initial time points as determined, the ALT

model makes fewer assumptions about the change process.

This means the ALT model will more closely follow the

observed data, but it also means the model has fewer de-

grees of freedom to test for additional change processes,

making it difficult to estimate change associated with the

weight-control intervention in our study. Alternatively, the

LCS specification models the initial time point and thus

makes more assumptions about the change process being

modeled, but in so doing provides additional degrees of

freedom to model additional sources of variability. Because

our data were collected as part of a clinical trial and we

would like to model and report the change associated with

participation, we selected the LCS specification to examine

the reciprocal relationship between FNE and OW, while

Figure 2. Graphical notation of LCS specification. SLP¼ Slope; Int¼ Intercept; LCS¼ Latent Change Score; a¼proportional change parameters;

�2
¼ variance or error variance; �is¼ covariance; * intercept and error variance estimated for the first LCS to capture pre-post change due to the

weight-control intervention.
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also addressing the initial change in both variables due to

involvement in an intervention trial.

Sample Size

There are a number of factors that determine how many

participants and how many assessments are required to

appropriately fit an SEM specification to longitudinal

data. Like most statistical models, the quality of the data

helps determine sample size, with higher amounts of mea-

surement error requiring larger samples. For longitudinal

data, it is also important to consider the number of re-

peated measures and overall duration of the study

(Collins, 2006). Precision increases as the number of

assessments increases and as the duration of the study

increases. Most longitudinal statistical models require at

least three assessments, but the appropriate number de-

pends on the nature of the phenomenon being studied—

complex change trajectories require more frequent assess-

ment (Curran, Obeidat, & Losardo, 2010). The duration of

a study is also dependent on the nature of the phenome-

non—more time is required for phenomena that change

over a longer period than those that change over a shorter

period.

Given the number of factors that contribute to deter-

mining an appropriate sample size, it is difficult to give a

general recommendation about how many participants or

time points are needed to use structural equation

specifications for longitudinal data. Some have recom-

mended that 100–200 participants are needed to provide

stable parameter estimates, but growth curve models have

been successfully applied in samples significantly smaller

than 100 (Curran, Obeidat, & Losardo, 2010). More work

is needed in providing guidance on how these methods

work in small longitudinal samples. In the absence of

such guidance, as a general rule, more assumptions must

be made when fitting statistical models to data limited by

small samples or few assessment occasions. For example,

RMANOVA, which has routinely been used in smaller sam-

ples, is a restricted SEM specification that makes a number

of assumptions about the data, including homogeneity of

variance and covariance across time and consistency of

change trajectories across individuals. As sample size in-

creases, assumptions can be relaxed, and it is easier to

address issues with ill-conditioned data (i.e., data that do

not meet the assumptions of multivariate normality).

The number of considerations influencing sample size

also makes it difficult to estimate how many participants

are required to achieve adequate power for a given analysis.

There are some off-the-shelf power calculators that can

handle structural equation and growth models (e.g.,

Optimal Design: Raudenbush et al., 2011; PinT: Snijders

& Bosker, 1993). If more flexibility is required, power can

be estimated using Monte Carlo simulation (Muthén &

Muthén, 2002). This approach can be time consuming

and often requires pilot data to build the population

model from which the simulations are drawn, but it can

be used to provide a power estimate for the exact model

researchers expect to run.

Assumptions

Before moving on to fitting the LCS specification to our

data, it is important to discuss the assumptions being

made by the LCS model. Due to advances in statistical

theory and analytic software, it is possible to relax many

traditional assumptions such as independent observations,

multivariate normality, independent error terms, and ho-

mogeneity of variance (Muthén & Muthén, 1998).

However, models that relax these assumptions typically

require larger sample sizes and more assessments, as well

as specialty software such as Mplus. In practice, the LCS

change specification makes many of the same assumptions

used by traditional statistical approaches, including inde-

pendent observations, normally distributed error terms

with means of 0, and multivariate normality.

There are additional assumptions to consider for

models focused on change. First, the models generally

assume that the measurement of observed variables is in-

variant across time, meaning the psychometric properties

of the instruments used to measure the outcomes do not

change with repeated measurements. Similar to previous

assumptions, this assumption can be tested and possibly

relaxed with the inclusion of more information, such as

including a measurement model with multiple indicators

(Millsap, 2007). Second, change models generally assume

that the relationships among change processes are invariant

across individuals. Certain aspects of the change process,

such as intercept or slope, can be allowed to vary across

individuals by including a latent variable, but, generally,

the change processes (e.g., auto-regressive, proportional

change, cross-lagged) are assumed to be the same across

individuals.

For LCS models, it is common to assume independent

error terms with equal variance across assessments, con-

strain the intercepts and error terms for the LCSs to be 0,

and constrain the proportional change and cross-lagged

parameters to be equal across assessments. These assump-

tions can be relaxed with appropriate theoretical justifica-

tion and sufficient information (e.g., sample size, number

of assessments). However, before relaxing these assump-

tions, it is important to consider the implications behind

assumptions being made in each model. For example, in-

dependent error terms suggest that all possible links
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between two adjacent observed variables are included in

the model. Relaxing this assumption and allowing errors to

correlate suggests that there are unmeasured processes that

are influencing the observed variables. For our data, these

may include processes such as a media campaign focused

on weight control, changes in other public weight-control

service, or other time-varying confounds. If this assump-

tion is reasonable and there are a sufficient number of

assessments to identify the model, then correlated errors

can be added to the model. Another example is relaxing the

constraints on the intercept and error terms of the LCSs.

The intercept and residual variance is often constrained to

0, suggesting that all of the change between assessments is

accounted for by the modeled change processes (i.e., pro-

portional change, constant change); releasing this null con-

straint would suggest that there are additional change

processes beyond the proportional and constant change

processes that are contributing to change in the observed

variables. For example, our data had an intervention that

took place between the first and second assessment, which

is modeled by releasing the null constraint on the error

term of the first LCS.

Finally, when modeling change processes, it is impor-

tant to consider the timing of assessments. As part of the

definition of the LCSs, the LCS specification constrains the

autoregressive parameters to a value of ‘‘1,’’ which suggests

that the lag between assessments is equal. In other words,

the LCS specification assumes equal spacing between as-

sessment points. This assumption does not preclude anal-

ysis of data collected at unequally spaced intervals, but it

does require the researcher to incorporate the time

structure of the data into the analysis. One convenient

way to accomplish this task is to create noninformative

latent variables (i.e., all aspects of the latent variable are

defined by the specification and no parameters are inde-

pendently estimated for the latent variable) as placeholders

for the absent assessment points. The use of such place-

holders is graphically depicted in Figures 1 and 2, and the

Mplus syntax for their implementation is included in the

Appendix (see Supplementary Material Online).

Estimating the LCS Model With the
Behavioral Weight-Control Intervention Data

When fitting a complex change specification to observed

data, it is helpful to begin with a simple specification and

work toward more complex specifications. The graphical

notations for increasingly complex LCS specifications are

presented in Figure 2. For our data, evaluations of the

global fit between the models and the observed data were

evaluated using sample size-adjusted Bayesian Information

Criterion, Root Mean Square Error of Approximation,

Comparative Fit Index, and the chi-square test of model

fit (Table I). All models were estimated using Mplus 6.12

with a maximum likelihood estimator that provides robust

standard errors (Muthén & Muthén, 1998). Missing data

were accounted for using full information maximum like-

lihood. Please refer to an article by Little, Jorgensen, Lang,

and Moore (in press) for a nice summary of missing data

issues in longitudinal data. We first fit univariate models

Table I. Chi-Squared Test of Fit and Fit Statistics for Autoregressive, LGC, ALT, and LCS Models

w2 df p BIC CFI RMSEA

Overweight

A) Repeated-measures ANOVA 115.90 10 <.01 3,201.30 .56 .30

B) LGC 94.35 8 <.01 3,185.69 .64 .30

C) LCS–Proportional change 113.50 9 <.01 3,198.82 .57 .31

D) LCS–Dual change 57.74 7 <.01 3,132.00 .79 .25

E) LCS–Dual changeþ Tx effect 20.47 5 <.01 3,092.84 .94 .16

F) LCS–Dual changeþ Tx effectþmodificationsa 5.72 4 .22 3,077.43 .99 .06

Fear of Negative Evaluation

A) Repeated-measures ANOVA 24.45 10 <.01 2,413.96 .67 .11

B) LGC 14.22 8 .08 2,405.91 .86 .08

C) LCS–Proportional change 24.56 9 .09 2,414.59 .63 .12

D) LCS–Dual change 7.64 7 .37 2,396.59 .98 .03

E) LCS–Dual changeþ Tx effect 6.89 6 .33 2,364.58 .98 .04

Multivariate LCS 42.65 21 <.01 5,477.16 .95 .09

Multivariate LCSþmodificationsa 28.16 20 .11 5,464.92 .98 .06

Note. BIC¼ Sample size-adjusted Bayesian Information Criterion; CFI¼Comparative Fit Index; RMSEA¼Root Mean Square Error of Approximation; LCS¼ Latent Change

Score Model; LGC¼ Latent Growth Curve; ALT¼Autoregressive Latent Trajectory; Tx¼ Treatment.
aThe model was modified post hoc by estimating the residual variance of the latent different scores between the 12- and 24-month assessments.
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for FNE and OW. For both processes, we began by fitting a

RMANOVA with linear basis (Figure 2a) and then fit an

LGC model (Figure 2b). Because these models are incon-

sistent with our theory of change, we did not expect these

models to provide a good fit to the observed data. They do,

however, provide a point of comparison for deciding if

proceeding to the more complex specifications is war-

ranted. Please note that the RMANOVA and LGC

specifications are depicted using the notation of LCS.

Although this notation looks different from traditional

graphical representation of LGC models, they represent

equivalent specifications. We next fit a proportional

change model (Figure 2c) where the LCSs were predicted

by the error-free latent variable from the previous assess-

ment. The final univariate model that we fit was the dual-

change LCS model that integrated the proportional change

model with the LGC model (Figure 2d).

To account for the intervention-related improvement

between the baseline and 4-month assessment, we re-

moved the null constraint on the intercept and error

term of the first LCS (Figure 2d). Estimating the intercept

term captures the average change across the sample follow-

ing the intervention, above and beyond what is explained

by the constant change and proportional change processes.

Estimating the error term allows for estimation of individ-

ual variability in how participants responded to the

intervention.

Although there are no concrete thresholds for sample

size, smaller samples increase the likelihood that there will

be problems estimating the model. For our models, there

were no issues estimating the model for OW, but the FNE

model had numeric difficulties (i.e., the covariance matrix

for the latent variables was nonpositive definite).

Specifically, the error variance for the first LCS was nega-

tive, which can occur when sample sizes are relatively

small and the variance being estimated is close to 0. The

difficulties were remedied by making additional assump-

tions that simplified the model: we constrained the error

variance for the first LCS to 0, eliminating individual var-

iability in response to the intervention for FNE. Fixing a

nonsignificant negative variance to 0 is one way to address

this issue (Dillon, Kumar, & Mulani, 1987); an alternative

strategy would be to use a Bayesian estimator (Muthén &

Muthén, 1998).

Model Selection

Evaluating the global fit of the statistical model to the ob-

served data helps select parsimonious models that show

reasonable fit to the data. It is important to note, however,

that there has been a robust debate regarding how best to

evaluate global fit (Barrett, 2007; Bentler, 2007), and that it

is only one of a number of issues to consider when evalu-

ating the appropriateness of a statistical model. Other con-

siderations include how well the model estimates key

parameters of interest (e.g., treatment effect, cross-lagged

effect), the consistency between current theory and the

statistical model, and how well the model predicts clini-

cally relevant outcomes (Barrett, 2007; Collins, 2006;

Tomarken & Waller, 2005). Moreover, there is evidence

that the model with the best global fit is not always the

most appropriate model (Tomarken & Waller, 2005;

Voelkle, 2008). Thus, pursuing global fit without address-

ing these other considerations risks creating a model that

closely fits the sample data, but does not generalize to

other samples or populations.

The fit statistics for each of the increasingly complex

models are presented in Table I. According to the chi-

square test of fit and the other indices of model fit, the

more complex models fit better than the more basic models

(i.e., RMANOVA, LGC). The model fit indices suggested

that the final model for OW was a poor fit to the observed

data, and that the statistical model of change may need

refinement. An exploratory analysis using the modification

indices produced as part of the Mplus output suggested

that the model fit would improve by releasing the null

constraint on the error terms for the change scores between

the 12- and 24-month assessments. Releasing this con-

straint suggests that there is another change process not

accounted for in our statistical model that is influencing

change in percent overweight between the 12- and

24-month assessments. We proceeded to fit both the orig-

inal theorized model and a model that estimated the resid-

ual variance in the change scores between the 12- and

24-month assessments—there were no substantive differ-

ences in the parameters of interest to our investigation (i.e.,

cross-lagged parameters between change in FNE and

change in OW). Estimates from the original model are pre-

sented in the Results section.

Although we chose to test our hypotheses using an

LCS, it is important to note that there are other complex

LGC models we might have used. For example, using a

piecewise, higher-order growth, or a growth mixture

model may have improved the fit of our model (Berlin,

Parra, & Williams, in press). These models emphasize dif-

ferent and potentially important aspects of the data, such

as the shape of the developmental trajectory or modeling

different change processes for different subsets of the

sample, but do not align with our intent to investigate

the cross-lagged relationships between OW and FNE in
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the context of developmental growth and treatment-related

change.

Results

The results from the multivariate model (Figure 1d) are

listed in Table II and identified in text by the parameter

labels used in the table. Descriptive statistics are included

in the MPlus output in the Appendix (see Supplementary

Material Online). Because results are from a model that

included multiple change processes (i.e., developmental

change, proportional change, change due to the interven-

tion, and cross-lagged relationships), coefficients are inter-

preted as the influence of a particular type of change

process after controlling for the other change processes.

The model provides estimates of the average initial values

for the sample (fixed effects: FNEintercept and OWintercept)

and tests whether there is variability among participants in

their initial score (random effects: FNEintercept and

OWintercept). For our example, on average, participants

started with a score of 19.29 (p < .01) for FNE and

161.39 (p < .01) for percent overweight, with significant

variability among participants in the initial score for both

FNE (b¼ 24.47, p < .01) and OW (b¼ 253.25, p < .01).

The model also provides the average trajectory over-

time (fixed effects: FNEslope and OWslope) and variability in

those trajectories (random effect: OWslope and FNEslope).

For our data, the average developmental trajectory for FNE

was 4.29 (p¼ .29) and OW was �0.64 (p < .01). If both

these parameters were significant, they would suggest that,

holding all other processes constant, FNE will increase

4.29 points and OW will decrease 0.64 points every 3

months. There was significant variability among partici-

pants around the average developmental trajectories for

Table II. Model Parameters for the Multivariate LCS Model

Fixed effect (StdErr) p-Value Random effect (StdErr) p-Value

Percent overweight

OW1 0 30.92 (7.29) <.01

OW4 0 30.92 (7.29) <.01

OW12 0 30.92 (7.29) <.01

OW24 0 30.92 (7.29) <.01

OWIntercept 161.39 (1.53) <.01 253.25 (28.14) <.01

OWSlope �0.64 (14.07) .96 3.74 (1.01) <.01

Proportional change (OWn on OWn-1; ax) 0.006 (0.09) .95

LCS4,1 �9.99 (1.17) <.01 29.23 (17.81) .10

LCS(8,4;12,8;16,12;20,16;24,20) 0 0

Fear of Negative Evaluation

FNE1 0 17.38 (2.30) <.01

FNE4 0 17.38 (2.30) <.01

FNE12 0 17.38 (2.30) <.01

FNE24 0 17.38 (2.30) <.01

FNEIntercept 19.29 (0.63) <.01 24.47 (5.29) <.01

FNESlope 4.29 (4.07) .29 2.45 (2.51) .33

Proportional change (FNEn on FNEn-1; ay) �0.25 (0.26) .33

LCS 4,1 �1.45 (1.09) .18 0

LCS (8,4;12,8;16,12;20,16;24,20) 0 0

Cross-lags

FNE on OW (�y) 0.18 (0.06) <.01

OW on FNE (�x) 0.52 (0.34) .12

Covariances between exogenous variables

OWIntercept with OWSlope �7.79 (24.32) .75

OWIntercept with FNEIntercept �13.18 (10.20) .20

OWIntercept with FNESlope 1.57 (3.29) .63

OWSlope with FNEIntercept 0.51 (2.12) .81

OWSlope with FNESlope 0.39 (0.78) .62

FNEIntercept with FNESlope 2.38 (4.83) .62

Note. OW¼Overweight status; FNE¼ Fear of Negative Evaluation; LCS¼ Latent Change Score; StdErr¼ Standard Error.

Greek letters correspond to Figure 1d. Fixed effects are interpreted as regression parameters (i.e., change in y given a unit change in x). Random effects are interpreted as

variances. The error variances for the observed scores (OW1/FNE1 to OW24/FNE24) were constrained to be equal.

Flexible Models of Change 241

: 
appendix 
http://jpepsy.oxfordjournals.org/lookup/suppl/doi:10.1093/jpepsy/jst082/-/DC1
http://jpepsy.oxfordjournals.org/lookup/suppl/doi:10.1093/jpepsy/jst082/-/DC1
Fixed 
Effects
Random 
Effects
Fixed 
Effects
Random 
Effect
-
three 


OW (b¼ 3.74, p < .01), but not for FNE (b¼ 2.45,

p¼ .33).

Proportional change was not significant for either FNE

or OW, but if it were, the parameters would be interpreted

as follows: for FNE, the amount of change in FNE between

assessment points decreases by .25 for every unit increase

in the FNE score from the previous assessment; for OW,

the amount of change in OW between assessment points

increases by .006 for every unit increase in overweight per-

centage from the previous assessment.

We included treatment-related change in our model

(fixed effects: FNE: LCS4,1 and OW: LCS4,1), which was

not significant for FNE (b¼�1.45, p¼ .18), but was

significant for OW (b¼�9.99, p < .01). The significant

finding for OW suggests that after accounting for develop-

mental and proportional change, participants’ OW de-

creased, on average, by 9.99 percentage points from the

first to second assessment. We also evaluated whether

treatment-related change varied across participants for

OW (random effect: OW: LCS4,1). The finding was not

significant (b¼ 29.23, p¼ .10). As mentioned previously,

variability in individual treatment responses for FNE was

constrained to 0 and thus not estimated by the model.

Finally, the goal of this analysis was to test whether

change in FNE and change in percent overweight were

reciprocally associated across time. We evaluated this ques-

tion by estimating the cross-lagged relationships between

change in FNE and change in OW (fixed effects: FNE on

OW; fixed effects: OW on FNE). The relationship between

change in OW and subsequent change in FNE was signif-

icant (b¼ .18, p < .01), but not the relationship between

change in FNE and subsequent change in OW (b¼ .52,

p¼ .12). Changes in FNE were predicted by changes in

OW at the previous assessment, such that a 1 percent

decrease in OW translated into a 0.18 decrease in FNE

at the subsequent time point. Changes in OW were not

longitudinally predicted by changes in FNE at the previous

assessment (i.e., cross-lagged association). These results

suggest that changes in FNE were related to earlier changes

in OW, but that change in OW was not preceded by

change in FNE. These findings were significant after

accounting for a number of change processes that theoret-

ically influence change in FNE and OW, including devel-

opmental change, change based on their previous

assessment point (proportional change), and change

related to participation in a clinical trial.

Discussion

Structural equations provide great flexibility in modeling

change and can provide a better match between statistical

models and theoretical formulations about change.

Moreover, these complex models can be specified using

any software that can run structural equations. The in-

creased flexibility, however, greatly increases the number

of decision points in an analysis, making them difficult to

navigate. Technical details of complex change models

(Ferrer, Hamagami, & McArdle, 2004; McArdle, 2005,

2009) and final worked examples (Hawley, Ho, Zuroff, &

Blatt, 2007; King et al., 2006; Kouros & Cummings, 2010;

Simons-Morton & Chen, 2006) are available in the litera-

ture; our intent has been to provide an overview of how to

translate a theoretical model of how processes change over-

time into a statistical model of change using a ‘‘real-world’’

example. We hope that this article helps provide a general

overview and starting point from which to understand

complex change models, and in conclusion, we would

like to provide a few practical recommendations for those

interested in implementing these models.

First, it is important to have a clear theoretical model

of change before implementing an advanced SEM

specification. Having a clear and well-articulated model of

change will help reduce the number of models that need to

be considered and can help guide which assumptions

should be allowed or disallowed in the statistical model.

Clear theories also help with communicating and justifying

the model assumptions. Ideally, this hypothesized model

should be articulated before the study is designed so that it

can inform the number and timing of assessments (Collins,

2006).

Second, it is helpful to start with a simple specification

like RMANOVA or LGC and build increasing complexity.

Such a process will help identify parsimonious models and

provides a point of comparison for more complex models.

Not every model that is theoretically indicated will have

perfect global fit, and in such situations, it is important

to justify the use of such models by articulating the theo-

retical justifications for the statistical models and by show-

ing that they fit better than more traditional and less

complex specifications. For example, the LCS specification

for overweight status did not show good global fit.

However, the specification aligns nicely with our hypothe-

sized model of change and enables individual responses to

the intervention to be modeled as a latent variable. We

believe these benefits outweigh the less-than-stellar global

fit, especially given that the LCS model shows better fit

than traditional RMANOVA or LGC specifications. Fit

was improved by including a straightforward post hoc ad-

justment that did not influence the key findings of the

analyses. It is not clear, however, if the adjustment is in-

dicative of an important unmeasured influence on change

in overweight status between the 12- and 24-month
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assessments or a spurious finding unique to this data set.

We, therefore, presented findings from the a priori

specification, despite the lack of perfect fit. To be clear,

we are not recommending that global fit be disregarded,

but models with less-than-perfect global fit may be consid-

ered with compelling rationale based on a clearly articu-

lated theory of change.

Third, fitting complex versus simple models requires

more information (e.g., sample size, number of assessment

occasions). Identifying how much information is sufficient

is difficult to determine and depends on the research ques-

tion and the specific model being fit to the data. There

currently is not a clear threshold for sample size for these

models, and complex change specifications can be cau-

tiously used in data with limited sample size or limited

number of assessments. There are challenges to applying

these specifications to limited data, such as the nonpositive

definite covariance matrices that we encountered as we fit

the LCS specifications to the FNE data. Fitting complex

models in limited data requires an increased number of

assumptions, such as constraining parameters to be equal

across time, or across participants. Larger sample sizes and

a greater number of assessments allow for fewer assump-

tions, and fewer assumptions typically result in better-fit-

ting models. Although placing more weight on the

hypothesized model of change enables the application of

complex change models in limited data sets, the conclu-

sions based on such applications should be tempered by

the knowledge that the accuracy of the conclusions de-

pends on the accuracy of the hypothesized model and ac-

companying assumptions. If the model is misspecified (i.e.,

the assumptions are incorrect), then the parameters de-

rived from the model will be biased and the conclusions

based on the model may be incorrect. It is, thus, incum-

bent on the researcher to make a compelling case justifying

the theoretical model.

Because these complex change specifications can be fit

using structural equations, they can also take advantage of

the analytic techniques developed for structural equations,

such as multiple group analyses, robust estimation tech-

niques, and measurement models. With so many options,

the challenge is in selecting which approaches will provide

the most parsimonious answer to the research question

and the closest match to the hypothesized model of

change.

In sum, modern statistical approaches have provided

researchers with a flexible and powerful array of tools to

examine change. The promise of these models is limited by

the added time and complexity required to select and fit

the models. Providing clearly articulated models of change

will help guide model selection and better enable

researchers to begin to elucidate the complex dynamics

of change within pediatric populations.

Supplementary Data

Supplementary data can be found at: http://www.jpepsy.

oxfordjournals.org/
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