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Tau-tubulin kinase-1 (TTBK1) is a central nervous system (CNS)especific protein kinase implicated in the
pathological phosphorylation of tau. TTBK1-transgenic mice show enhanced neuroinflammation in the CNS.
Double-transgenic mice expressing TTBK1 and frontotemporal dementia with parkinsonism-17elinked
P301L (JNPL3) tau mutant (TTBK1/JNPL3) show increased accumulation of oligomeric tau protein in the
CNS and enhanced loss of motor neurons in the ventral horn of the lumbar spinal cord. To determine the role
of TTBK1-induced neuroinflammation in tauopathy-related neuropathogenesis, age-matched TTBK1/JNPL3,
JNPL3, TTBK1, and non-transgenic littermates were systematically characterized. There was a striking switch
in the activation phenotype and population of mononuclear phagocytes (resident microglia and infiltrating
macrophages) in the affected spinal cord region: JNPL3 mice showed accumulation of alternatively acti-
vated microglia, whereas TTBK1 and TTBK1/JNPL3 mice showed accumulation of classically activated
infiltrating peripheral monocytes. In addition, expression of chemokine ligand 2, a chemokine important for
the recruitment of peripheral monocytes, was enhanced in TTBK1 and TTBK1/JNPL3 but not in other groups
in the spinal cord. Furthermore, primary cultured mouse motor neurons showed axonal degeneration after
transient expression of the TTBK1 gene or treatment with conditioned media derived from
lipopolysaccharide-stimulated microglia; this was partially blocked by silencing of the endogenous TTBK1
gene in neurons. These data suggest that TTBK1 accelerates motor neuron neurodegeneration by recruiting
proinflammatory monocytes and enhancing sensitivity to neurotoxicity in inflammatory conditions.
(Am J Pathol 2014, 184: 808e818; http://dx.doi.org/10.1016/j.ajpath.2013.11.026)
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Tau tubulin kinase 1 (TTBK1), located on chromosome
6p21.1, belongs to the casein kinase 1 superfamily. This
kinase, highly conserved from Caenorhabditis elegans to
human, is a serine/threonine/tyrosine kinase and is specifically
expressed in the brain, spinal cord, and testis in mammals.1,2

TTBK1 directly phosphorylates the tau protein at Ser198,
Ser199, Ser202, and Ser422, which are known phosphoryla-
tion sites of paired helical filament-tau.3e8 TTBK1 levels are
up-regulated in brains of human patients with Alzheimer dis-
ease (AD) compared with age-matched non-AD controls,1 and
genetic variations of the TTBK1 gene are associated with late-
onset AD in two large cohorts of Chinese and Spanish popu-
lations,9,10 further validating the potential significance of the
TTBK1 gene in the neuropathogenesis of tauopathy-related
neurodegenerative disorders, including AD. We have gener-
ated a transgenic (Tg) mouse model harboring an entire
stigative Pathology.
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bacterial artificial chromosome fragment of the human TTBK1
genomic region,1,11 which expresses full-length human
TTBK1 under the control of the endogenous promoter. We
have previously demonstrated that TTBK1-Tg mice show
significant age-dependent memory impairment, as determined
by the radial arm water maze test.2 This impairment is asso-
ciated with enhancement of tau and neurofilament phosphor-
ylation, increased levels of p25 and p35, both activators of
cyclin dependent kinase 5 (CDK5), another tau-kinase, and
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TTBK1 Alters Neuroinflammation
enhanced calpain I activity. Enhanced mononuclear phago-
cytosis (by brain resident microglia and infiltrating peripheral
monocytes) in cortical and hippocampal regions is an addi-
tional major phenotype of TTBK1 mice.2,11 Double-
transgenic mice expressing TTBK1 and P301L tau mutant
(JNPL3) show increased accumulation of oligomeric tau
protein in the forebrain and spinal cord, and enhanced reduc-
tion of motor neurons in the ventral horn of the lumbar spinal
cord with severe muscle weakness, pathological features that
are associated with neuroinflammation.11 However, precise
neuroinflammatory pathological features of TTBK1 and
TTBK1/JNPL3 mice are poorly understood.

Microglial activation parallels to neurofibrillary tangle (NFT)
formation in AD brains, and induction of systemic inflamma-
tion with lipopolysaccharide (LPS) significantly induces tau
hyperphosphorylation12,13 in AD mouse models. These find-
ings suggest that neuroinflammation could contribute to disease
progression in tauopathies. However, themechanism(s) through
which this might occur is unknown. Transgenic mice express-
ing P301S tau mutant show age-dependent neurodegeneration
in the entorhinal cortex and hippocampus, which is preceded by
extensive microglial activation that can be suppressed by an
immunosuppressive agent, FK506.14 This is indicative of
nonautonomous neuronal cell loss in the P301S tau mouse
brain. Similarly, other P301S taumouse models show extensive
neurodegeneration in both the brainstem and spinal cord, which
is accompanied by neuroinflammation and inflammatory
mononuclear phagocyte accumulation.15,16 Furthermore,
disruption of the CX3CR1 gene in hTau mice enhances
microglial activation and tauopathy-related neuropathological
features.17 These studies reveal that neuroinflammation is
significantly involved in tauopathy-related neuropathogenesis.

Neuroinflammation is triggered by the innate immune
response, in which mononuclear phagocytes play a major
role. When these phagocytes recognize pathogens or
damaged cell molecules, they become activated, and this
activation can be classified into two phenotypes: classic
(M1) and alternative (M2) activation.18 M1-skewed activa-
tion of mononuclear phagocytes causes the release of
proinflammatory cytokines, such as interferon-g, tumor
necrosis factor-a, IL-6, IL-12, IL-1b, IL-23, and reactive
oxygen/nitrogen intermediates induced by the expression of
nitric oxide synthase (NOS) and NADPH oxidases.19e21 In
contrast, M2-skewed activation is characterized by abundant
levels of nonopsonic receptors (eg, the mannose receptor)
and production of high levels of anti-inflammatory cyto-
kines.19 However, there is no comprehensive characteriza-
tion of central nervous system mononuclear phagocytes and
their activation status (M1 or M2) in tauopathy-related
neurodegenerative disorders.

In this study, we characterized tauopathy-related neuro-
degeneration and the profile of mononuclear phagocytes in
the spinal cord of TTBK1 mice crossed with JNPL3 in vivo,
and in primary tissue culture of neurons and microglia
in vitro. Our data show that TTBK1 is involved in the in-
duction of motor neuron degeneration by M1-skewed
The American Journal of Pathology - ajp.amjpathol.org
mononuclear phagocytes, thereby shedding light on how
up-regulation of AD-associated molecules can induce cell
nonautonomous neurodegeneration in the context of tau-
opathy pathogenesis.

Materials and Methods

Transgenic Animal Models

Generation of TTBK1, JNPL3, and TTBK1/JNPL3 trans-
genic mouse lines has been described previously.1,11 TTBK1
transgenic (TTBK1-Tg) mice (line 141) harboring human
TTBK1 genomic DNA (57 kb) were used in this study.
Briefly, the founders in the B6/SJL F1 background were
backcrossed to the B6/129 F1 strain (Jackson Laboratories,
Bar Harbor, ME) for five or fewer generations before the
study. Transgenic JNPL3 mice expressing the P301L mutant
of 4-repeat tau without amino-terminal inserts (4R0N for tau
isoform nomenclature22,23) were backcrossed to the B6/129
F1 strain for five or more generations and crossed with
TTBK1 mice to generate TTBK1, JNPL3, TTBK1/JNPL3,
and non-Tg mice. All animal use procedures were strictly
reviewed by the Laboratory Animal Safety Committee at
Boston University School of Medicine (Boston, MA).

Tissue Preparation

Age-matched (10 to 11 months) mice were euthanized with
a ketamine/xylazine mixture and perfused transcardially
with PBS. L4-L5 spinal cords were rapidly removed, fixed
in 4% paraformaldehyde for 48 hours, and cryoprotected by
successive 24-hour immersions in 15% and 30% sucrose.
Fixed, cryoprotected spinal cords were embedded in optimal
cutting temperature compound (Fisher Scientific, Pittsburgh,
PA), frozen, and divided into sections (10 mm thick) in the
coronal plane using a cryostat (Leica, Bannockburn, IL).

Immunohistochemistry

Serially prepared slides (10 mm thick) of spinal cord sections
were dehydrated, followed by antigen retrieval using 10%
formic acid. Endogenous peroxidase activity was inhibited
with 3% hydrogen peroxide incubation. Samples were per-
meabilized with 1% Triton X-100 and incubated in 1% bovine
serum albumin/5% normal goat serum blocking buffer (Sigma-
Aldrich, St. Louis, MI), followed by incubation with the
following primary antibodies: ionized calcium-binding adapter
molecule 1 (IBA1; 1:1000; WAKO Chemical, Tokyo, Japan),
Ym-1 (1:1000; Stemcell Technologies, Vancouver, BC, Can-
ada), and CD206 (1:100; Santa Cruz Biotechnology, Santa
Cruz, CA). Twenty-four hours later, sections were incubated in
secondary antibody for 1 hour (Envision HRP; Dako, Carpin-
teria, CA). 3,30-Diaminobenzidine (DAB; Vector Laboratories,
Burlingame, CA) staining was used as a chromogen, and
cresyl violet was used for counterstaining. Motor neuron
number was analyzed by counting cell bodies in the ventral
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horn of the spinal cord using a Nikon Eclipse E600 micro-
scope and a color charge-coupled device camera (Nikon
Instruments, Melville, NY).

Immunofluorescence

The fixed cells or tissue sections were subjected to immu-
nofluorescence with the following antibodies: CD169 mouse
monoclonal (1:200; AbD Serotec, Raleigh, NC), NOS2
rabbit polyclonal (1:500; Santa Cruz Biotechnology), CD11c
hamster polyclonal (1:50; eBioscience, San Diego, CA), b-3
tubulin mouse monoclonal (1:1000, for neurite density assay;
Promega, Fitchburg, WI), IBA1 rabbit polyclonal (1:1000;
Wako, Tokyo, Japan), and TTBK1mouse monoclonal (clone
F287-1.1-1E91), followed by incubation with species-
specific Alexa Fluor secondary antibodies (1:1000; Molec-
ular Probes/Invitrogen, Grand Island, NY). Immunostained
images were captured using an inverted fluorescence
microscope attached to a monochromatic charge-coupled
device camera (model TE-2000U; Nikon Instruments), and
the cell number or fluorescence intensity was quantified with
ImageJ software version 1.43 (NIH, Bethesda, MD). The
axon length was quantified by NeuronJ plug-in (http://www.
imagescience.org/meijering/software/neuronj, last accessed
January 22, 2014). The number of apoptotic bodies (deter-
mined by condensed/fragmented nuclei) was also quantified
with Hoechst 33342 staining (10 mg/mL; Invitrogen).

mRNA Analysis

RNAwas extracted from100mgof 4%paraformaldehydefixed
spinal cord, as described previously,24 by using the RecoverAll
Total Nucleic Acid Isolation Kit (Invitrogen), according to the
manufacturer’s instructions. Quantitative PCR was performed
with a QuantiFast SYBR Green PCR Kit (Qiagen, Valencia,
CA) with the Eppendorf realplex system. Melting curves were
determined to ensure the amplification of a single product. The
primers used were as follows: mouse chemokine ligand (CCL)
2, 50-TTAAAAACCTGGATCGGAACCAA-30 (forward);
50-GCATTAGCTTCAGATTTACGGGT-30 (reverse); and
810
mouse glyceraldehyde-3-phosphate dehydrogenase, 50-CATG-
TTCCAGTATGACTCCACTC-30 (forward); and 50-GGCC-
TCACCCCATTTGATGT-30 (reverse).25

siRNA Vectors

Four putative siRNA sequences (clone 19, 50-GCTCTT-
AAGGACGAAACCAACATGAGTGG-30; clone 304, 50-TT-
TAACTATGTGGTGATGCAGCTCCAGGG-30; clone 1624,
50-AAGGAGTGGGTCATTATTGACAAGGAGAC-30; and
clone 3152, 50-TCTTGTTGTTCTGAAGAGGATACAG-
GCTCA-30) were selected and subcloned into pVL-EGFP-Puro
vectors (Capital Biosciences, Rockville, MD).

Motor Neuron Culture

Mouse primary motor neurons were obtained and cultured
according to published protocol.26 E13.5-15 mice were
removed from the pregnant mother, and 10 to 12 embryonic
spinal cords were incubated with fresh trypsin (0.05% in
HBSS) for 15 to 20 minutes at 37�C. After incubation, tissues
were triturated. The dissociated tissue was undisturbed for 1 to
2 minutes to allow tissue debris to settle. Supernatants from the
digestionswere pooled and filtered through a 70-mmpore nylon
mesh. Cell-containing supernatants were then centrifuged for 5
minutes at 500 � g at 4�C. Cells were resuspended in Dul-
becco’s minimum essential media containing 10% heat-
inactivated fetal calf serum and 5% heat-inactivated horse
serum (all from Invitrogen/Gibco, Carlsbad, CA), seeded into a
100-mm uncoated dish, and incubated in a 5% CO2 incubator
for 30 minutes to allow tissue debris and nonneuronal cells to
adhere to the bottom of the dish. Supernatants were collected
and cells were plated into 24-well plates precoatedwith poly-D-
lysine at a concentration of 1 � 105 cells per well. The
following day, the medium was replaced with serum-free
Neurobasal media supplemented with 2% B27 supplement
and 2 mmol/L glutamine (all from Invitrogen). Cells were
transfected with plasmid DNAs using Lipofectamine 2000
(Invitrogen) or were treated with microglial conditionedmedia.
After 24 hours, cells were fixed for immunofluorescence.
Figure 1 Reduction of motor neurons in
ventral horn in TTBK1, JNPL3, and TTBK1/JNPL3
spinal cord. Ventral horn images of coronal spinal
cord frozen sections (L4-L5) with Nissl staining.
Original magnification, �40. Quantification of
motor neuron counts per mm2 in the ventral horn
(N Z 4 per group). **P < 0.01, ***P < 0.001,
as determined by one-way analysis of variance
and Tukey post hoc test, respectively. Scale
bar Z 50 mm.
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Figure 2 Morphological characteristics and distribution of IBA1þ cells in
the spinal cord. A: Ventral horn images of the coronal spinal cord frozen sec-
tions (L4-L5) DAB immunostained for IBA1 (brown) and counterstained with
cresyl violet (purple). G, gray matter; W, white matter. Original magnifications:
�10; �40 (insets). Scale bar Z 50 mm. B: Quantification of ramified (white
bars) and amoeboid (black bars) IBA1þ cells per mm2 in the ventral horn
(N Z 4 per group). ***P < 0.001, as determined by Student’s t-test.

Figure 3 CD169þ infiltrated macrophages are mostly M1 skewed in the
spinal cord gray matter of TTBK1 and TTBK1/JNPL3 mice. A: Immunofluo-
rescence of CD169 (peripheral macrophage marker, green) and NOS2 (M1
marker, red) in the L4-L5 spinal cord. Original magnifications: �10;
�40 (insets). Scale bar Z 50 mm. B: Quantification of NOS2þCD169þ cells
in gray (white bars) and white (black bars) matter. ***P < 0.001, as
determined by Student’s t-test (N Z 4 per group).

TTBK1 Alters Neuroinflammation
Microglial Culture

Microglial cultures were maintained in Dulbecco’s minimum
essential media containing 10% fetal bovine serum during the
first 24 hours after plating, then washed twice with serum-free
medium to remove any traces of fetal bovine serum and
stimulated with or without LPS (from Escherichia coli, 100
ng/mL; Sigma-Aldrich) or IL-4 (20 ng/mL; R&D Systems,
The American Journal of Pathology - ajp.amjpathol.org
Minneapolis, MN). After 1 hour of stimulation, cultures were
washed twice andmaintained in newmedium for an additional
24 hours. Microglia-conditioned media (MCM) were then
collected, centrifuged at 15,000 � g, filtered through a 0.22-
mm pore membrane (EMD Millipore, Billerica, MA), and
stored at �80�C until use.

Results

TTBK1 Accelerates Motor Neuron Degeneration in
JNPL3 Mice

We have previously demonstrated that TTBK1 expression
induced motor impairment by comparison between JNPL3
and TTBK1/JNPL3 mice. TTBK1/JNPL3 mice showed a
30% decrease in time on accelerating rotarod and a 20%
decrease in forelimb grip strength compared with JNPL3
mice.11 Because JNPL3 mice are also known to show motor
deficits and motor neuron degeneration in the ventral horn,23

we examined the pathological characteristics of neurons in
811
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Figure 4 M2 phenotype of microglia in JNPL3,
but not in TTBK1 or TTBK1/JNPL3, spinal cord. A:
Ventral horn images of coronal spinal cord frozen
sections (L4-L5) DAB immunostained for M2 markers
[brown, YM-1 (top panels); CD206 (bottom panels)],
and counterstained with cresyl violet (purple). B:
Immunofluorescence of IBA1 (green) and CD11c (red)
of ventral horn. Original magnifications: �10;
�40 (inset). Scale bar Z 50 mm (A and B).

Asai et al
the ventral horn of the L4-L5 spinal cord in non-Tg,
TTBK1, JNPL3, and TTBK1/JNPL3 mice. Quantification
of motor neurons by a cresyl violet Nissl stain on serially
prepared sections (10 mm thick) in non-Tg, TTBK1, JNPL3,
and TTBK1/JPNPL3 murine spinal cords revealed a sig-
nificant loss of spinal cord motor neurons in all transgenic
mice, compared with non-Tg mice (P < 0.001) (Figure 1).
Furthermore, motor neuron loss was most prominent in
TTBK1/JNPL3 mice, followed by TTBK1 and JNPL3 mice.

TTBK1 Alters Mononuclear Phagocyte Population in the
Spinal Cord

Our previous study demonstrated accelerated ionized cal-
cium binding adaptor molecule 1epositive (IBA1þ) mono-
nuclear phagocytosis in the spinal cord ventral horn of
812
TTBK1/JNPL3 mice, compared with age-matched JNPL3
littermates.11 However, whether this mononuclear phago-
cytosis causes motor neuron degeneration is unknown.
Several lines of evidence show enhanced microgliosis in the
JNPL3 mouse brain, but not in the spinal cord.27,28 To assess
this point, we first investigated the morphological charac-
teristics of IBA1þmononuclear phagocytes in the spinal cord
ventral horn in JNLP3, TTBK1, and TTBK1/JNPL3 mice.
This revealed that ramified IBA1þ cells were increased in the
ventral horn in JNPL3 mice, but there was no difference in
ramified IBA1þ cells between non-Tg, TTBK1, and TTBK1/
JNPL3 mice. On the contrary, IBA1þ cells were predomi-
nantly amoeboid in TTBK1 and TTBK1/JNPL3 mice
(Figure 2, A and B). Thus, microglial activation with rami-
fied morphological characteristics was exclusively observed
in JNPL3 mice, and infiltrated macrophages or amoeboid
ajp.amjpathol.org - The American Journal of Pathology
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Figure 5 CCL2 mRNA expression in non-Tg, JNPL3, TTBK1, and TTBK1/
JNPL3 spinal cord. Semiquantification of CCL2 mRNA levels by real-time RT-
PCR normalized by glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
mRNA levels in spinal cords (NZ 4 to 6 per group). *P < 0.05 versus either
non-Tg or JNPL3 group, as determined by one-way analysis of variance and
Tukey post hoc test.

TTBK1 Alters Neuroinflammation
microglia were predominantly observed in TTBK1 and
TTBK1/JNPL3 mice.

TTBK1 Induces a Switch of Cell Population from
CD11cþ Microglia to Infiltrating Activated Monocytes
in the Spinal Cord of JNPL3 Mice

Next, to classify the mononuclear phagocytes and activation
phenotype, spinal cord sections were immunostained for
CD169, a peripheral macrophage marker28,29) (Figure 3A)
Figure 6 Reduction of axonal length by the expression of TTBK1 in primary m
plasmids encoding GFP and pcDNA3.1 (mock, A) or TTBK1 (B) at 5 days div and fi

GFP expression) were determined by NeuronJ plug-in and subjected to statistical a
group). Scale bar Z 100 mm.
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and NOS2, an M1 marker.18,21 There were no NOS2þ cells
and few CD169þ cells in the ventral horn of JNPL3 mice. In
contrast, there were many CD169þ cells in both the white
and gray matter of TTBK1/JNPL3 mice (Figure 3A) and, to
a lesser degree, in TTBK1 mice. In TTBK1/JNPL3 mice,
80% and 10% of CD169þ cells were NOS2þ in the gray and
white matter, respectively (Figure 3B). CD169þNOS2þ

cells were also observed in TTBK1 spinal cord. Taken
together, these data demonstrate that IBA1þ cells are
mostly CD169-NOS2� ramified microglia in JNPL3 mice,
and CD169þ infiltrated macrophages are mostly
CD169þNOS2þ M1-activated monocytes in the gray matter
of TTBK1 and TTBK1/JNPL3 mice. This suggests a gray
matterespecific proinflammatory activation mechanism in
TTBK1/JNPL3 mice.

To verify further the phenotypes of CD169�NOS2�IBA1þ

cells, spinal cord sections were immunostained for YM1 (an
M2 marker18), CD206 (a mannose receptor and an M2
marker18), CD11c (a dendritic cell marker, commonly seen in
M2-skewedmicroglia30), and IBA1. YM1þ cells and CD206þ

cells were detected in JNPL3 mice (Figure 4A), whereas no
YM1þCD206þ cells were detected in non-Tg, TTBK1, or
TTBK1/JNPL3 mice. CD11cþ cells were exclusively in the
gray matter of JNPL3 mice and mostly colocalized with
IBA1þ cells in this region (Figure 4B). There were noCD11cþ

cells in the gray or white matter of non-Tg, TTBK1, or
TTBK1/JNPL3 mice (Figure 4B). Collectively, these data
suggest that most IBA1þ cells in JNPL3 mice are M2-skewed
CD11cþ dendritic cellelike microglia, which are absent in
TTBK1/JNPL3 mice.

A subset of infiltrating peripheral monocytes is known to
be recruited to spinal cord by CCL2/C-C chemokine re-
ceptor 2 signaling in experimental autoimmune encephalo-
myelitis and amyotrophic lateral sclerosis (ALS) mouse
models.29,31 This suggests that CCL2 levels are enhanced in
the spinal cord of TTBK1 and TTBK1/JNPL3 mice. To
verify this point, total RNA was isolated from spinal cord
from all of the mouse groups and subjected to quantification
of CCL2 mRNA by real-time PCR. As shown in Figure 5,
CCL2 mRNA levels were significantly enhanced in TTBK1
and TTBK1/JNPL3 mice, compared with the JNPL3 or non-
otor neurons. Primary cultured motor neurons were transfected with DNA
xed at 8 days div. The axonal lengths of transfected cells (as determined by
nalysis (C). ***P < 0.001, as determined by Student’s t-test (N Z 100 per
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Figure 7 Microglia-induced neurite extension of primary motor
neurons is attenuated by LPS. Mouse primary motor neurons were har-
vested from embryonic spinal cord and div for 7 days. A: No MCM
control. MCM was collected from primary cultured mouse microglia after
stimulation with PBS (B), LPS (C), or IL-4 (D), and applied to motor
neurons. Cells were fixed 24 hours after the incubation for analysis of
neurite density per neuron. E: Quantification. *P < 0.05, as determined
by one-way analysis of variance and Tukey post hoc test (N Z 50 per
group). Scale bar Z 10 mm.

Figure 8 Silencing of endogenous TTBK1 reduces M1-skewed microglia-
induced neuronal cell death. A: The silencing effect of lentiviral vectors
expressing shRNA targeting different mRNA sequences of murine TTBK1 was
quantified by immunofluorescence and presented as percentage TTBK1 in-
tensity versus control groups. B: Primary cultured mouse motor neurons
were transduced with siTTBK1 vectors co-expressing GFP at 5 days div, then
treated with MCM from PBS- or LPS-treated microglia (PBS or LPS MCM) at 8
days div, and fixed at 9 days div. The number of apoptotic bodies out of
siTTBK1 or control viral vector transduced (GFPþ) cells was counted and
presented as percentage cell death over background. *P < 0.05,
***P < 0.001 versus control (A) or LPS MCM (B), as determined by one-way
analysis of variance and Tukey post hoc test.

Asai et al
Tg group. These data suggest that CCL2 induction is
responsible for the infiltration of CD169þNOS2þ cells in
TTBK1 and TTBK1/JNPL3 mice.

M1-Skewed Microglia Suppress Neurite Extension of
Primary Cultured Motor Neurons

Based on our results suggesting peripheral monocyte infil-
tration in TTBK1-overexpressing mice, we hypothesized
that TTBK1 induced danger-associated molecular pattern
molecules (DAMPs; eg, ATP, DNA, S100, and chromatin-
associated molecules released from injured neurons), which
activate an M1-like innate immunity response of mono-
nuclear phagocytes and production of chemotactic factors
(CCL2), leading to the recruitment of peripheral macro-
phages into the affected brain region.32e34 To test this hy-
pothesis, we first showed that overexpression of TTBK1 in
814
primary mouse motor neurons at day 7 differentiation
in vitro (div) was associated with axonal degeneration,
compared with untreated control (Figure 6). Degenerating
axons are known to release DAMPs, which trigger the Toll-
like receptoremediated innate immunity response.34 Our
next concern was to determine whether phenotype-skewed
mononuclear phagocytes affected motor neuron degenera-
tion. To investigate microglial polarization, we cultured
mouse primary microglia and harvested the conditioned
media after treating cells with LPS (to induce M1), IL-4 (to
induce M2), or PBS, and examined their effect on mouse
primary cultured motor neurons at day 7 div (Figure 7). LPS
was used to induce M1 activation because it specifically
stimulates Toll-like receptor 4, a known receptor stimulated
by several DAMPs, such as Mrp8 and Mrp14.35 The
ajp.amjpathol.org - The American Journal of Pathology
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Figure 9 Scheme of neuroinflammation and neurodegeneration in JNPL3 and TTBK1/JNPL3 mice. In JNPL3 mice, CD11cþ neuroprotective microglia
accumulate in the gray matter of the ventral horn, thereby protecting from accelerated neurodegeneration. Conversely, in TTBK1/JNPL3 mice, the cell
population is shifted from CD11cþ microglia to M1-skewed infiltrating NOS2þCD169þ monocytes, resulting in enhanced neuroinflammation and accelerated
motor neuron loss.

TTBK1 Alters Neuroinflammation
conditioned media from PBS-treated microglia demon-
strated significant enhancement of neurite density,
compared with control (no treatment with microglia-
conditioned media) (Figure 7, A, B, and E). This is
because, under noninflammatory conditions, microglia are
known to release neurotrophic factors that can support the
growth of neurons.36,37 On the other hand, M1-skewed
microglia conditioned media significantly reduced neurite
density, compared with the PBS-treated microglia group
(P < 0.01), whereas M2-skewed microglia showed no dif-
ference from the PBS-treated microglia group. These data
suggest the following: i) un-stimulated microglia secrete
molecules enhancing neurite extension, ii) M1 skewing of
microglia diminishes the neurotrophic effect, and iii) M2
skewing has no significant effect on neurite extension.

TTBK1 Is Involved in the Induction of Motor Neuron
Degeneration by M1-Skewed Microglia in Vitro

To deduce whether TTBK1 induces motor neuron degen-
eration in a dose-dependent manner, we used a mix of
shRNA expression vectors against murine TTBK1 gene
(clones 19, 304, and 1624), which significantly suppressed
TTBK1 protein expression (Figure 8A). After the silencing
of TTBK1 gene expression, motor neurons were treated with
M1-skewed microglia conditioned media (Figure 8B).
Silencing of TTBK1 (siTTBK1) alone or direct treatment of
motor neurons with LPS had no effect on motor neuron
degeneration, as determined by the formation of apoptotic
bodies (No MCM groups � LPS) (Figure 8B). The condi-
tioned media from PBS-treated microglia rather suppressed
apoptotic body formation (PBS MCM group), which is
consistent with its effect on neurite growth. Conditioned
media from LPS-treated microglia significantly enhanced
motor neuron degeneration, which was neutralized by
The American Journal of Pathology - ajp.amjpathol.org
siTTBK1 pretreatment (LPS MCM � siTTBK1 groups).
This suggests that endogenous TTBK1 plays a significant
role in M1-skewed mononuclear phagocyte neurotoxicity.
Discussion

This study shows the following: i) TTBK1 accelerates
motor neuron loss in the spinal cord of JNPL3 mice, ii)
JNPL3 mice show mostly M2-skewed microglial accumu-
lation in the spinal cord ventral horn, whereas TTBK1/
JNPL3 mice show M1-skewed infiltrating monocytes in the
same region, iii) TTBK1 up-regulation reduces axonal
length, whereas resting microglia enhance neurite extension,
and iv) motor neurons are sensitive to neurotoxicity induced
by M1-activated microglia, and this is dependent on
endogenous TTBK1 gene expression. Figure 9 depicts our
proposed mechanism: In JNPL3 mice, motor neuron loss is
evident in the ventral horn of the lumbar spinal cord, which
is accompanied by accumulation of CD11cþ neuro-
protective microglia, thereby limiting neurodegeneration.
TTBK1/JNPL3 mice, on the other hand, show a dramatic
conversion of the cell population from CD11cþ microglia to
M1-skewed infiltrating monocytes. This could be because of
the accelerated neurodegeneration by TTBK1 up-regulation
and enhanced generation of danger-associated molecular
pattern molecules (M1-skewing ligands) from degenerating
motor neurons, which leads to proinflammatory activation,
generation of CCL2 chemokine, and infiltration of periph-
eral monocytes. This may lead to the acceleration of neu-
rodegeneration via bystander killing of neurons.

A possible explanation of how TTBK1 influences motor
neuron degeneration is that TTBK1 may enhance the sensi-
tivity of motor neurons to proinflammatory cytokine or reac-
tive oxygen/nitrogen intermediate-mediated neurotoxicity.
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Because TTBK1 phosphorylates both tau and tubulin, which
are enriched in axons, TTBK1 may mediate proinflammatory
cytokine-induced destabilization of microtubules through
phosphorylation of the two molecules, and up-regulation of
TTBK1 may accelerate the destabilization.

In the human AD brain, increased expression of proin-
flammatory cytokines or chemokines is accompanied by M1-
skewed microglial activation.38e40 In addition, CCL2 levels
are known to be associated with cognitive decline during the
early stage of AD in patients.41e43 These findings are
reproduced in several AD mouse models, such as the
APPþPS1 mouse,44 which shows a distinctive age-
dependent shift from M2 to M1 mononuclear cell activa-
tion in the hippocampus.45 We could not detect differences of
inflammatory changes in hippocampus between TTBK1 and
TTBK1/JNPL3 murine models (data not shown), because in
the JNPL3 mice, NFTs are primarily located in the spinal
cord and hindbrain, with fewer NFTs in the midbrain,
amygdala, and hypothalamus.23 However, the inflammation
mechanism of TTBK1 mouse spinal cord could be a useful
model for future investigation of tauopathy-mediated neuro-
inflammatory changes in AD brains.

The phenomenon of nonautonomous neuron death
induced by infiltrating monocytes in TTBK1 or TTBK1/
JNPL3 mice is reminiscent of established neuropathogenesis
in mutant Cu/Zn superoxide dismutase (SOD1) mice or
patients with ALS, although some aspects of the mechanism
of monocyte infiltration may be different. In spinal cords of
SOD1G93A rats46 and patients with ALS,47 a significant
decrease in expression of tight junction molecules was
observed, suggesting the effect of SOD1 mutants in endo-
thelium. In contrast, TTBK1 expression was absent in
endothelial cells, and the expression levels of tight junction
molecules (occludin and claudin-5) and aquaporin-4 (an
astrocyte endfeet-specific marker) were unchanged (data not
shown), suggesting a different molecular mechanism.
Another potential mechanism is that low expression of
TTBK1 may enhance monocyte recruitment or activation.
However, TTBK1 expression was negative in any type of
myeloid cells, as determined by various markers (IBA1,
CD169, NOS2, YM1, and CD206) both in spinal cord and
spleen (data not shown). In addition, transient expression of
TTBK1 gene in murine microglia cell line BV-2 had no
effect on cell migration or phagocytosis of apoptotic cells
in vitro (data not shown). These results show that it is un-
likely that TTBK1 gene expression in mononuclear phago-
cytes or myeloid cells contributes to their phenotypic
changes. Thus, the neuroinflammatory mechanism in
TTBK1 and TTBK1/JNPL3 mouse models appears to be
distinct from that of ALS models.

Populations of the Kii Peninsula in Japan and the US
territory Guam have historically shown a high incidence of
ALS.48e50 Symptoms of the unique ALS complex in pa-
tients in those areas are not restricted to motor neuron signs
but include parkinsonism and dementia. Pathologically,
patients display characteristic appearance of NFT-tau,
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especially in the temporal cortex, hippocampus, amygdala,
brainstem, and spinal cord.49 These clinical symptoms,
pathological tau phosphorylation, and affected areas are
similar to those of TTBK1/JNPL3 mice. Many patients with
ALS complex from certain areas in Kii Peninsula and Guam
Island have familial traits, but those from other areas in Kii
Peninsula are almost always sporadic cases. Genetic studies
show that SOD1, tau, apolipoprotein E, and neurofilament
heavy chain are not genetically linked to patients with ALS
from these areas.50 TTBK1 gene is a noteworthy candidate
for further investigation of these motor neuron disease
subtypes.
In conclusion, this study demonstrates that TTBK1

expression plays a unique role in accelerating motor neuron
degeneration in JNPL3 mice, and may be a pivotal neuronal
molecule for the accumulation and activation of infiltrating
monocytes in the central nervous system. Thus, TTBK1 is a
potential therapeutic target of neuroinflammation-associated
neurodegeneration, such as that seen in AD and tauopathy-
related ALS complex. In addition, TTBK1/JNPL3 mice are
symptomatically and pathologically similar to a certain
subset of patients with motor neuron disease and, therefore,
can be used as a valuable research tool for delineating
therapeutic treatments.
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