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Cell Cycle Regulators Guide Mitochondrial Activity
in Radiation-Induced Adaptive Response
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Abstract

Significance: There are accruing concerns on potential genotoxic agents present in the environment including
low-dose ionizing radiation (LDIR) that naturally exists on earth’s surface and atmosphere and is frequently
used in medical diagnosis and nuclear industry. Although its long-term health risk is being evaluated and
remains controversial, LDIR is shown to induce temporary but significant adaptive responses in mammalian
cells and animals. The mechanisms guiding the mitochondrial function in LDIR-induced adaptive response
represent a unique communication between DNA damage and cellular metabolism. Elucidation of the LDIR-
regulated mitochondrial activity may reveal new mechanisms adjusting cellular function to cope with hazardous
environmental stress. Recent Advances: Key cell cycle regulators, including Cyclin D1/CDK4 and Cyclin B1/
cyclin-dependent kinase 1 (CDK1) complexes, are actively involved in the regulation of mitochondrial functions
via phosphorylation of their mitochondrial targets. Accumulating new evidence supports a concept that the
Cyclin B1/CDK1 complex acts as a mediator in the cross talk between radiation-induced DNA damage and
mitochondrial functions to coordinate cellular responses to low-level genotoxic stresses. Critical Issues: The
LDIR-mediated mitochondrial activity via Cyclin B1/CDK1 regulation is an irreplaceable network that is able to
harmonize vital cellular functions with adjusted mitochondrial metabolism to enhance cellular homeostasis.
Future Directions: Further investigation of the coordinative mechanism that regulates mitochondrial activities in
sublethal stress conditions, including LDIR, will reveal new insights of how cells cope with genotoxic injury and
will be vital for future targeted therapeutic interventions that reduce environmental injury and cancer risk.
Antioxid. Redox Signal. 20, 1463–1480.

Introduction

Humans are consistently exposed to a certain dose
range of low levels of ionizing radiation (IR), which in-

cludes natural radiation on earth surface, medical radiation,
and industrial radioactive materials (31, 92, 141, 198). In
contrast to extensive studies collected from the exposure to
high doses of IR that cause acute injury resulting in cell death
and carcinogenesis (15, 77, 88, 109, 161), the health risks as-
sociated with low level of genotoxic agents, including low-
dose ionizing radiation (LDIR) (less or equal to 10 cGy), need
to be further investigated (169, 213). In addition to the con-
troversial cancer risks evaluated on long-term consequences
(27, 34, 56, 169, 170), mammalian cells exposed to a single dose

or accumulated doses of LDIR are shown to be able to induce
a temporary but significant resistance to subsequent more
severe genotoxic agents, such as high doses of IR (3, 4, 22, 67,
68, 98, 122, 186, 192, 240). Further investigation of LDIR-
associated adaptive mechanism may reveal new information
on unknown cellular capacities that may allow cells to sense
and tolerate hazardous environmental conditions. Such
studies may also provide effective approaches or targets to
reduce radiation-associated injury and cancer risk. Recent
evidence suggests that mitochondria play a key role in the
orchestrated response to maintain the homeostasis of the
cell and organism (129). IR triggers not only the DNA repair
(70) but also the detoxification of reactive oxygen species
(ROS) that lasts for many hours or weeks depending on the
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cell or tissue type, and redox imbalance plays a critical role in
mitochondria-mediated adaptive response (46, 101, 160, 211,
221, 233). Under IR stress, cells initiate several critical steps to
induce an adaptive protection, including the enhancement of
free glutathione and superoxide dismutase with a subsequent
decrease in lipid peroxidation (65, 80, 201, 242). Additional
prosurvival pathways are activated via a cross talk between
mitochondria and NADPH oxidase (NOX) (53), which is con-
trasted with the proapoptotic response induced by mitochon-
drial dysfunction and subsequent Ca2 + release to the cytoplasm
activating protein kinase C (PKC), mitogen-activated kinases
(MAPKs), and c-jun N-terminal kinases ( JNKs) (129).

Additionally, mitochondria affect cell fate by inter-
connecting glycolysis and the pentose phosphate signaling
pathways to cell cycle progression and apoptosis (33, 60, 113,
126, 184, 189, 218). Essential nuclear events are shown to be
affected by cellular nutrient metabolism via the regulation
of D type cyclins, cyclin-dependent kinases (CDKs), p53, and
B-cell lymphoma 2 (Bcl-2) proteins (19, 26, 43, 95, 176, 190, 205,
234). These results illustrate a unique signaling network that
appears to enable the mitochondria to sense and respond to
major nuclear events, such as IR-induced DNA damages and
repair. In this review, we demonstrate a pattern of radiation-
induced cell adaptive response via the cell cycle regulator-
mediated mitochondrial activity. We will focus the role of
Cyclin D1/CDK4 and Cyclin B1/CDK1 in LDIR-induced
adaptive response. A conceptual new mechanism is proposed
to link the nuclear events, such as IR-induced nuclear DNA
damages and G2/M division, with mitochondrial regulation
(Fig. 1). The elucidation of the cell cycle regulator-guided
mitochondrial metabolism in IR-induced adaptive resis-
tance may shed light on how DNA damage can initiate
the reprogramming of mitochondrial metabolism. Since
the mitochondria-to-nuclear communication has been re-
viewed well in the literature, we will focus on the mitochon-
drial functions triggered by IR-induced mitochondrial
protein influx, while keeping in mind the hypothesis that

this could represent a paradigm for understanding nuclear-to-
mitochondria and mitochondria-to-nuclear cross talk. Further
elucidation of these communications in genotoxic conditions
may define more abnormalities in cellular metabolism and
human diseases.

Features of LDIR-Induced Adaptive Response

Mammalian cells are able to induce an adaptive protective
response when exposed to IR with low dose and/or low dose
rate. The term of adaptive radioprotection is defined as ‘‘the
ability of low dose radiation to induce cellular changes that
alter the level of subsequent radiation induced or spontaneous
damage’’ (Notice 03-07 of Office of Science, DOE, 2003) (29, 31,
122, 141, 186, 202, 230, 240, 247). Radioadaptive responses
have been observed in nearly all the species, including
Escherichia coli, protozoa, algae, higher plants, and insects (12,
35, 143, 185, 192, 246, 247). The most significant phenomena of
LDIR-induced radioprotection include the reduction of the
lethal and mutagenic effects caused by subsequent exposure
to higher doses (105, 154, 173, 193, 204, 227), resistance to
subsequent radiation-induced genomic instability (96, 105,
121, 142), and activation of stress-sensitive transcription fac-
tors and gene regulators (68, 69, 202, 228). Bhattacharjee and
Ito (22) reported that whole-body pre-irradiation of Swiss
mice with five repeated exposures to small doses of 1 cGy per
day reduces the incidence of thymic lymphoma from 46% to
16% following 2 Gy IR (21). Additionally, IR-induced non-
targeted effects from astronaut space exploration were mim-
icked by cranially irradiated Sprague Dawley rats; the results
showed that levels of key proteins involved in mitochondrial
fatty acid metabolism were reduced, and proteins involved in
various cellular defense mechanisms, including antioxidants,
were elevated in both irradiated and nonirradiated tissues
(2, 81). An adaptive response of human lymphocytes to IR has
long been observed (154, 238) (187), and several reports create
a strong case for the existence of cellular radioprotective

FIG. 1. Hypothesized communi-
cation between nuclear DNA
damages and mitochondrial activ-
ity. Cyclin B1/CDK1, one of the
components of the MPI, is delivered
with mitochondrial chaperones to
mitochondria and potentially co-
operated with NPI (not discussed in
this review) in the LDIR adaptive
response. CDK1, cyclin-dependent
kinase 1; LDIR, low-dose ionizing
radiation; MPI, mitochondrial pro-
tein influx; NPI, nuclear protein in-
flux. To see this illustration in color,
the reader is referred to the web
version of this article at www
.liebertpub.com/ars
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mechanisms activated in response to IR (3, 105, 154, 173, 193,
204, 227). IR induces the expression of a specific cluster of
stress responsive genes to repair damaged biomolecules, in-
cluding DNA, and enhance overall cell survival (7, 28, 63, 68,
69, 85, 120, 140, 199, 202, 228). Recent studies demonstrate
that colon carcinoma cells along with transformed mouse
embryonic fibroblasts showed an adaptive response when
grown either to confluence in vitro or as tumors in the flank of
C57BL/6 mice. LDIR-induced survivin expression was linked
to the adaptive radioresistance after pre-exposure of 100 mGy
or a lower dose. This survivin-mediated adaptive response
may affect the outcomes if regularly induced throughout a
course of image-guided radiation therapy (82). In another
study, the same dose of 100 mGy offered radioprotection to
C57BL/6 mice exposed 24 h later to 100 mg/kg of N-ethyl-N-
nitrosourea via inducing manganese superoxide dismutase
(MnSOD) (83) whose enzymatic activity can be further en-
hanced by Cyclin B1/CDK1-mediated phosphorylation (36).
These results clearly indicate that mitochondria are actively
involved in LDIR-induced adaptive response and specific
factors that are able to coordinate DNA damages with the
mitochondrial activity remain to be identified.

Mitochondrial Activities Guided by Nuclear
Genome-Encoded Proteins

Accumulating evidence suggests that mitochondria play an
important role in the IR-induced adaptive response via the
regulation of mitochondrial metabolism (198). The major
function of mitochondria in mammalian cells is to generate
adenosine triphosphate (ATP) through oxidative phosphor-
ylation (OXPHOS) to accommodate cellular energy demands
(14, 18, 51, 112). The nucleus represents a less oxidizing and
hospitable environment for high fidelity storage of large
amounts of genetic material necessary to code for the gene
products required for organism function (226). Many mito-
chondrial functions are shown to be regulated by nuclear-
encoded proteins and via protein phosphorylation (159). For
example, despite the presence of mitochondrial DNA
(mtDNA), more than 98% of mitochondrial protein compo-
nents are encoded by the nuclear genome (174) with only 13
of 1465 mitochondrial proteins identified to date transcribed
from the mitochondrial genome (48). Such a ‘‘foreigner-
taking-over’’ process in the mitochondrion indicates how
adopted organelles with its own genome are well integrated
evolutionarily into one living system. As a result, the major
function of mitochondria is under the control of the central
genome in the host cells. Thus, the nuclear genome is able to
efficiently and timely guide the activity of mitochondria. This
organization of the regulatory hierarchy likely evolved be-
cause coordinated control in cellular fuel generation is re-
quired for optimal function of cell proliferation and stress
response.

Mitochondrial Activities Guided by Radiation-Induced
Cyclins and CDKs

Cell cycle progression depends on highly ordered events
controlled by a subset of Cyclins and CDKs (139, 146, 191).
Cyclin B1/CDK1 complex specifically regulates the entry into
mitosis at the G2/M border (61). Through its cytoplasmic,
nuclear, and centrosomal localization, Cyclin B1/CDK1 syn-
chronizes the crucial events of early mitosis, such as nuclear

envelope breakdown and centrosome separation (76). Accu-
mulating evidence links mitochondrial dynamics (40) and
metabolism (54, 107) with cell proliferation and cell cycle
regulation (10, 73, 128, 175, 183). Examples include the G1–S
arrest caused by mitochondrial dysfunction (156); involve-
ment of Cyclin D1 in coordinating mitochondrial bioener-
getics with G1 progression; (118, 176, 178, 223) and Cyclin E in
controlling the formation of high energy-charged mitochon-
dria in the G1/S transition (138). Recent identification of the
mitochondrial localization of Cyclin B1/CDK1 (149) as well as
its role in the integration of mitochondrial fission with the
onset of G2/M transition (207) suggests that Cyclin B1/CDK1
activity is involved in mitochondrial morphological dynam-
ics, mitochondrial bioenergetics, and mitochondria-mediated
resistance to IR as shown in Figure 2. Numerous studies have
examined the effects of IR on the expression of genes involved
in cell cycle control (8, 20, 93, 120, 158, 199). Irradiated MCF7
cells showed a rapid reduction in Cyclin D1 levels before p53
stabilization, indicating that the stability of Cyclin D1 was
controlled in a p53-independent manner (48). In addition,
Cyclin D1 phosphorylation and proteolysis are linked with
cell genomic instability and the regulation of Cyclin D1 deg-
radation is involved in cancer development (132, 166). How-
ever, specific cyclins induced by varied IR doses may function
differently in mitochondria-mediated responses. In Xenopus
embryos, a high dosage of IR induced apoptotic cell death due
to the increased levels of Cyclin A1 and Cyclin A1/CDK2
activity (9). In the following review, we will illustrate the
protective functions of two cell cycle complexes, Cyclin D1/
CDK4 and Cyclin B1/CDK1, in LDIR-induced adaptive re-
sponses (Fig. 2).

Cyclin D1/CDK4-Mediated Adaptive Radioprotection

Cell cycle progression is controlled by highly ordered
events via Cyclins and CDKs (97, 137, 139, 146, 162). The ac-
tivity of CDKs is exquisitely controlled by multiple pathways,
including the regulation of Cyclins (49), phosphorylation of
the catalytic subunits (125), and subcellular localization (209).
Cyclins, such as Cyclin D1, is involved in cell cycle arrest
in DNA-damage response. A study tested the hypothesis
that Cyclin D1 regulates mitochondrial apoptosis. Cyclin D1
was found to complex with chaperon 14-3-3f (3). A direct
interaction of Cyclin D1 with proapoptotic Bax occurred in
LDIR-treated cells and improved mitochondrial membrane
potential (Dwm). These results demonstrate the evidence
that cytosolic Cyclin D1 is able to regulate apoptosis by in-
teraction with Bax in LDIR-induced adaptive resistance (105).

The LDIR-induced adaptive response is manifested
through changes of total mitochondrial protein translocation
rate (160). NF-jB upregulates and translocates mitochondrial
antioxidant MnSOD from the nucleus to the cytoplasm in (55)
cells exposed to IR (67, 85). According to radiation-induced
gene expression profiles (6, 200), cell cycle regulators, such as
Cyclin D1, are also required for the IR-induced adaptive re-
sponse. Cyclin D1 is involved in the IR-induced adaptive re-
sponse when localized in the cytoplasm, and apoptosis is
enforced by nuclear relocation of Cyclin D1 (203). Ad-
ditionally, 14-3-3 chaperones (14-3-3s) are crucial for cell cycle
checkpoint control and cell survival after radiation-induced
DNA damage (231). Studies show that inhibition of 14-3-3s
renders cancer cells sensitive to IR (171). The radioprotective
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effect of 14-3-3s in normal cells is from both interaction and
inhibition of proapoptotic Bcl-2-associated X protein (Bax)
(151), relocation of apoptosis-promoting fork-head tran-
scription factor (FKHRL1) to the cytoplasm (32), and seques-
tration of cytoplasmic c-Abl (237). The mitochondrial
proapoptotic Bax and antiapoptotic Bcl-2 are major factors
involved in mitochondrial apoptosis and Dwm (103). Bcl-2
antagonizes the proapoptotic activity of Bax through the
formation of Bcl-2/Bax heterodimers, and the Bcl-2 to Bax
ratio is associated with alterations of Dwm and cell death (243).
Bax activity is decreased in cells with enhanced Dwm pre-
venting cell death. An antiapoptotic pathway was induced by
Ataxia telangiectasia mutated (ATM)/NF-kB-mediated Cy-
clin D1 expression after treating human skin keratinocytes
with LDIR (5- or 10-cGy X-ray) and mice with whole-body IR.
Exposure of normal cells to 5 Gy IR caused nuclear translo-
cation of Cyclin D1, whereas LDIR decreased 14-3-3/Cyclin
D1 complex formation resulting in free cytoplasmic Cyclin
D1. Higher levels of free cytoplasmic Cyclin D1 further se-
questered Bax from mitochondria maintaining Dwm. siRNA-
mediated Cyclin D1 inhibition ablated LDIR-induced Cyclin

D1/Bax complex formation and decreased Dwm. Thus, the
formation of Cyclin D1/Bax in LDIR is able to inhibit
mitochondria-mediated cell death (Fig. 3).

Mitochondrial Relocation of Cyclin B1/CDK1
in Adaptive Radioprotection

Cyclin B1 and its catalytic partner protein CDK1 belong
to the fundamental kinase machinery regulating cell cycle
progression from G2 to mitosis (61, 164). The cytoplasm-,
nucleus- and centrosome-localized Cyclin B1/CDK1 syn-
chronizes critical subcellular events, such as nuclear envelope
breakdown and centrosome separation to ensure even seg-
regation of chromosomes into two daughter cells (76). Cyclin
B1/CDK1 was not activated in G2 phase until nuclear enve-
lope breakdown, thereby initiating the events of prophase and
different levels of Cyclin B1/CDK1 activity required to trigger
different mitotic events (76). Mass spectrometry analysis
identified a cluster of MnSOD protein–protein interactions in
an array of cellular and mitochondrial proteins (63). Cyclin
B1/CDK1 regulates the MnSOD activity through reversible

FIG. 2. Schematic presentation of mitochondrial signaling network in cellular adaptive response to IR. IR generates
reactive oxygen species (ROS) to induce nuclear DNA damages and mitochondrial ROS level by accumulating cells in the G2/M
phase (235). NF-jB can be activated via the ROS in cytoplasm and damaged DNA in nucleus via the regulation of IjB kinase
(IKK). NF-jB in turn regulates an array of IR-responsive effector genes, including mitochondrial antioxidant MnSOD, Cyclins,
and CDKs (marked as red color). These effector genes are shown to localize to mitochondria and to regulate the mitochondrial
activity to induce the adaptive response after exposure to IR. IR, ionizing radiation; MnSOD, manganese superoxide dismutase.
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serine 106 phosphorylation both in vivo and in vitro, enhanc-
ing the MnSOD enzymatic activity and protein stability to
improve mitochondrial function in LDIR-induced adaptive
protection (36). Also known as the mitotic promoting factor,
Cyclin B1/CDK1 phosphorylation governs key steps for mi-
totic entrance featured by the nuclear envelope breakdown,
spindle formation, and chromatin condensation (75). How-
ever, the mitochondrial transition of Cyclin B1/CDK1 is hy-
pothesized to be dependent on the total levels of cellular
Cyclin B1 and CDK1 (149). Abundance of Cyclin B1 was
found to regulate c-ray radiation-induced apoptosis (167).
Under normal growth conditions, mitochondrial localization
of Cyclin B1/CDK1 is attenuated during G1 phase due to a
lack of cellular Cyclin B1 before gradually accumulating in the
mitochondria. Upon entering S/G2 phase, Cyclin B1 expres-
sion reaches a maximum level at the G2/M phase, and this
will be discussed in the following sections. Upon DNA-
damage conditions, such as chemotherapy and IR, induced
Cyclin B1/CDK1 expression can delay the cell cycle causing
the G2/M border arrest to enable DNA damage repair or
initiate apoptosis (147). Following DNA-damaging agents
and radiation, at least a fraction of the induced Cyclin B1/
CDK1 is translocated to mitochondria and Cyclin B1/CDK1
may phosphorylate mitochondrial targets under both normal
and DNA-damaging stress conditions (149). As shown in
Figure 4A, mitochondrial localization of Cyclin B1/CDK1
appears to be proportional with the overall expression levels
of cellular Cyclin B1/CDK1 throughout the cell cycle phases.
Since Cyclin B1/CDK1 is activated in the prophase stage of

mitosis (99), the mitochondrial CDK1 may be activated
causing the phosphorylation of mitochondrial substrates in
prophase. In Figure 4B, mitochondrial ATP generation and
ROS production are linked with G2/M transition phase, in-
dicating that mitochondrial Cyclin B1/CDK1 may participate
in mitochondrial bioenergetics in DNA damage-associated
adaptive response. This is supported by the fact that cell
division cycle 25c (Cdc25c), the phosphatase activator of
CDK1, is also present in mitochondria and therefore may
further enhance the mitochondrial CDK1 kinase activity. We
assume that mitochondrial Cdc25c may allow Cyclin B1/
CDK1 to function in this particular compartment of cells,
whereas the cytoplasmic and nuclear Cyclin B1/CDK1 may
remain inactive until the cells progress into prophase. Thus,
the mitochondrial Cdc25c may also play a critical role in
radiation-induced adaptive protection, which remains to be
elucidated.

Redox and Mitochondrial Cyclin B1/CDK1
in the Adaptive Response

Cells under genotoxic stress, such as IR, induce an imbal-
ance in redox reactions caused by altered mitochondrial
function, metabolism, and adaptive responses leading to
short- or long-term effects in the cells (9, 49, 56, 57, 71–73, 100,
175, 214). A topic on redox reactions in cellular responses to IR
has been well reviewed (199). Recent studies revealed that
normal stem cells alter their redox homeostasis to adapt to
adverse conditions, and radiation-induced oxidative stress in

FIG. 3. Cyclin D1 interacts with
Bax in the LDIR-induced adaptive
response. LDIR (10 cGy X-ray) in-
duced Cyclin D1 via NF-jB regula-
tion is conjugated with the
chaperon 14-3-3 protein in the cy-
toplasm. Cyclin D1 then interacts
and forms a complex with Bax in
mitochondria of human kar-
otinocytes and skin tissue from
whole-body irradiated mice (3). The
NF-jB-Cyclin D1-Bax signaling
pathway is critical to the regulation
of the level of 14-3-3/Cyclin D1
complex in the LDIR adaptive re-
sponse. Bax, Bcl-2-associated X
protein; 14-3-3f, chaperones. To see
this illustration in color, the reader
is referred to the web version of this
article at www.liebertpub.com/ars
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the pluripotent and multipotent human stem cells plays a
crucial role in regulating the function and fate of stem cells
within tissues compromised by radiation injury (72, 78, 110).
IR-mediated ROS generation can directly alter the activity
of kinases and transcription factors indirectly modulating
cysteine-rich redox-sensitive proteins exemplified by thior-
edoxin and glutathione S-transferase. ROS-related redox
changes in key signaling pathways have been well addressed
(1, 11, 79, 86, 199).

Mitochondrial Ca2 + release to the cytoplasm causes the
activation of multiple signaling pathways, including PKCs,
MAPKs, and JNK (129). Herein, we illustrate two other major
lines of evidence supporting mitochondria-centered redox
signaling pathways in IR-induced adaptive response. The first
is NOX. Under IR stress, NOX-derived ROS can activate
MAPKs (extracellular signal-regulated kinase, p38) and JNK,
which both participate in the adaptive response signaling
network that cross talk with mitochondria (53). Acetylation of
MnSOD directs the enzymatic activity responding to cellular
nutrient status or oxidative stress (157). JNK-mediated re-
pression of MnSOD and catalase occur via mitochondrial
complex I and NOX I (104). Among the main factors involved
in the redox balancing in adaptive response to IR (119), ATM,
NF-jB, and pre-inflammatory factors (134, 135, 224) may also
be regulated via NOX (220). In addition, plasminogen acti-
vator inhibitor-1 is a redox-regulated factor involved in the
induction of profibrogenic mediators in acute or chronic oxi-

dative stress after exposure to IR or H2O2 (244). A second
redox-regulated factor is Dynamin-related protein 1 (DRP1), a
guanosine triphosphate hydrolase enzyme (GTPase) regulat-
ing mitochondrial fission during cell cycle progression (236).
A recent study reported that excessive nitric oxide could
also lead to S-nitrosylation of Drp1 at cystine 644 (130).
S-nitrosylation of Drp1 (resulting in SNO-Drp1) induces Drp1
dimerization, which functions as fundamental elements for
higher order structures of Drp1 to activate Drp1 GTPase (148).
Hypoxia-inducible factor-1a (HIF-1a) activation leads to mi-
tochondrial fission by Cyclin B1/CDK1-dependent phos-
phorylation of DRP1 at serine 616 (130). These results together
with the identification of mitochondria-localized Cyclin B1/
CDK1 (36, 149) indicate that Cyclin B1/CDK1 cooperates with
the redox-mediated signaling network to regulate the mito-
chondrial activity (Fig. 5).

Chaperones for Cyclin B1/CDK1 Mitochondrial Influx

Although mitochondria possess their own transcriptional
machinery, merely 1% of mitochondrial proteins are synthe-
sized inside the organelle; thus, the transportation of the
nuclear-encoded proteins into mitochondria is an indispens-
able process alluding to multiple cross talk signaling path-
ways resulting in the nuclear to mitochondrial translocation
of proteins. For proteins containing mitochondrial targeting
sequences (MTS), the chaperone Translocase of Inner Mi-
tochondrial Membrane 23 complex located on the mitochon-
drial membrane mediates their mitochondrial translocation to
the matrix of the mitochondria (217). However, few mito-
chondrial proteins, including Cyclin B1 and CDK1, are iden-
tified to contain an MTS. Thus, specific chaperone proteins are
required to assist their mitochondrial translocation. Although
chaperone proteins, such as heat shock protein (HSP)60,
HSP10, and HSP70, are suggested to be involved in mito-
chondrial translocation of many proteins (38, 150), the exact
mechanism and the chaperones responsible for trafficking the
cell cycle regulators to mitochondria remains largely un-
known. Both 14-3-3f, a well-defined chaperon for mitochon-
drial protein flux, and Cyclin B1 are activated by radiation (67,
85), indicating the possibility that 14-3-3f may be the vehicle
responsible for delivering Cyclin B1/CDK1 to the mitochon-
dria under genotoxic stress. Interestingly, 14-3-3f is known to
bind to Cdc25c (74) and thus may also be responsible for
transporting Cdc25c to mitochondria to activate the mito-
chondrial CDK1 activity. Taken together, although the exact
mechanism underlying mitochondrial relocation of Cyclin
B1/CDK1 is unknown, current data implicate that chaperone
proteins, including 14-3-3f, are involved in facilitating Cyclin
B1/CDK1 mitochondrial relocation. In addition to the 14-3-3s,
Cyclin B1/CDK1 is shown to interact with other chaperone
proteins, such as HSP70-2, HSP90, and cell division cycle 37
(144, 214, 248). These chaperones should be able to assist
Cyclin B1/CDK1 mitochondrial translocation. The specific
pathways involved in a timely fashion of Cyclin B1/CDK1
mitochondrial transportation, especially under cell cycle
progression and nuclear DNA damaged conditions, remain to
be elucidated.

Cyclin B1/CDK1 in Mitochondrial Fission

Cyclin B1/CDK1 may regulate mitochondrial fission and
fusion in radiation-induced adaptive responses. Mitochondria

FIG. 4. Correlation between mitochondrial Cyclin B1/
CDK1 activity and mitochondrial bioenergetics in cell cy-
cle progression. (A) Cyclin B1 is expressed at the beginning
of S phase, accumulated during the G2 phase, peaked at the
late G2/early M-phase before advancing into mitosis, and is
rapidly degraded during anaphase (86, 92). Cyclin B1 is not
expressed throughout G1 phase. (B) The activity of mito-
chondrial CDK1 correlated with the level of mitochondrial
Cyclin B1 and IR induces Cyclin B1/CDK1-mediated phos-
phorylation of mitochondrial p53 to mediate the adaptive
response. An enhanced mitochondrial ATP generation (149)
and mitochondrial ROS are accompanied by upregulation of
mitochondrial electron transport chain function, and mito-
chondrial content is under control of cell cycle checkpoints
(235). ATP, adenosine triphosphate. To see this illustration in
color, the reader is referred to the web version of this article
at www.liebertpub.com/ars
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proliferate only from existing mitochondria (168) via com-
plementary fission and fusion events. A balance between
these opposing processes contributes to mitochondrial mem-
brane dynamics (152, 225). In mammalian cells, the fusion
events are carried out by a mitochondrial transmembrane
GTPase known as mitofusin (66), whereas Drp1 is responsible
for mitochondrial fission events (195). The post-translational
modification on Drp1 is shown to play a critical role in de-
termining the GTPase activity during mitochondrial fission
(179). The contribution of Cyclin B1/CDK1 in the regulation
of mitochondrial functions is not limited to directing the
kinase targeting to mitochondria but also is involved in the
morphological regulation. It has long been recognized that
the mitochondrial number coordinates with the cell cycle
phase with a 50% increase during S phase due to fission (58).
However, the mechanism connecting cell cycle and regulation
of mitochondrial fission and fusion remains obscure. Taguchi
et al. demonstrated that in addition to chromatid segregation,
Cyclin B1/CDK1 is the kinase regulating the mitotic mito-
chondrial fragmentation, also known as mitochondrial fission
during mitosis (207). Interestingly, phosphorylation of Drp1
by Cyclin B1/CDK1 at serine 585 residue during mitosis was
found to be required to translocate Drp1 from cytosol to the
mitochondrial outer membrane, which is necessary for mito-
chondrial fission (Fig. 6) (194, 207). Cyclin B1/CDK1 coordi-
nates mitochondrial fission with the onset of G2/M transition
via phosphorylation of Drp1 by Cyclin B1/CDK1 (207). Ac-
tivated Drp1 then punctuates holes on the mitochondrial
membrane to proceed with membrane constriction and fission
directed by mitochondrial fission 1 protein (Fis1) (41, 111).
Drp1 reportedly assembles into rings and spirals that encircle
and constrict the mitochondria during fission (57). The sepa-
ration of mitochondria during cytokinesis is essential to the
survival of the two daughter cells, and the mitochondrial

fragmentation modulated by Drp1 allows equal distribution
of the mother mitochondria into two daughter cells as the
fission events occur during the cell cycle. Exogenous expres-
sion of unphosphorylated mutant Drp1S585A leads to re-
duced mitotic mitochondrial fragmentation (207). In addition
to morphological alterations, the Drp1 activity has shown to
be essential for mitochondrial bioenergetics supported by the
fact that ATP production is severely impaired in Drp1 - / -

deficient cells (17). On the contrary, phosphorylation at serine
637 residue by cyclic adenosine monophosphate-dependent
protein kinase on Drp1 has been shown to suppress its
GTPase activity by decreasing the intramolecular interaction
that drives GTP hydrolysis (42, 108), which can be removed
by the phosphatase calcineurin (52). Mutation in Drp1 also
leads to the highly elongated mitochondrial filaments and
reduction in mitotic mitochondrial fragmentation (24, 207).
This hypothetic pathway is illustrated in Figure 6. Further
definition of the relationship between Cyclin B1/CDK1
and Drp1 during mitochondrial fission may reveal a new
role of mitochondrial Cyclin B1/CDK1 in regulating Drp1 to
prepare mitochondria for a successful cell division, which
may be interrupted or enhanced under different doses of
genotoxic agents.

Mitochondrial Cyclin B1/Cdk1 in Cell Cycle Progression

Dynamic alterations in mitochondrial mass and Dwm to-
gether with cellular ATP levels were detected during cell cycle
progression (206). Depletion of nutrients induced mtDNA
replication but not nuclear DNA replication during the de-
velopment of Dictyostelium discoideum cells (188). Mitochon-
drial regulation of cell cycle progression during development
was revealed by the permanent mutation in Drosophila, which
caused a reduction of intracellular ATP that was still sufficient

FIG. 5. NADPH oxidase
redox reaction imbalance in
IR-induced adaptive protec-
tion. Cyclin B1/CDK1 phos-
phorylation of the
ubiquinone-binding site of
core complex I confers tran-
sition of G2 to M phase. ATP
mitochondrial generation
mediates cell division by G2
to M phase transition.
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to maintain cell survival, growth, and differentiation, but not
adequate for progression through the cell cycle (128). This
suggests that a group of mitochondrial proteins were regu-
lated during cell cycle progression. We have identified mito-
chondrial protein targets of Cyclin B1/CDK1 in an array of
cancer cells that were treated with high-dose IR (5 Gy) (149).
As shown in Figure 7, a model of Cyclin B1/CDK1-mediated
mitochondrial function in cell cycle progression is proposed
for the IR-induced adaptive response. In this model, adaptive
response-inducing DNA damage, such as those triggered by
LDIR, stimulates the translocation of Cyclin B1 and CDK1 to
mitochondria where the kinase activity of Cyclin B1/CDK1 is
activated by cdc25 to phosphorylate the cluster of subunits in
the OXPHO machinery. This leads to increased mitochondrial
respiration, ATP production, and Dwm, which facilitates DNA
repair and cell cycle progression. This may be significant for
rapidly growing cells, and radiation may block cellular mi-
tosis by causing G2/M arrest.

Specific Cyclin B1/CDK1 Targets in OXPHO

Mitochondria, the powerhouse in mammalian cells, derive
energy from both the tricarboxylic acid cycle and OXPHOS.
Although the metabolic activity is believed to be a crucial

determinant for cell proliferative growth, the exact pathways
linking mitochondrial energy output and cell cycle regulation
are unknown (7). During division, cells require additional
amounts of ATP to enter mitosis at the G2/M phase (206).
OXPHOS supplies more than 90% of cellular ATP required
for eukaryotic cells (91), and the mitochondrial OXPHOS is
irrefutably critical for the progression of the cell cycle as the
level of ATP determines the fate of cell division (133). A mi-
tochondrial protein database for the CDK1 consensus phos-
phorylation motif (S/T P · R/K) (196, 215) reveals 12
OXPHOS subunits that can be potentially phosphorylated by
CDK1 on the mitochondrial respiration chain (Complex I–V)
(Fig. 8). This phosphorylation has the potential to modulate
the activity of the protein complexes thereby regulating en-
ergy production. The majority of those subunits are the
components of the mitochondrial Complex I (nicotinamide
adenine dinucleotide-ubiquinone oxidoreductase), the essen-
tial complex in the OXPHOS system (180, 216). The poten-
tial targets of phosphorylation by Cyclin B1/CDK1 are the
ubiquinone-binding sites located on the core of the complex I
facing the matrix side of the mitochondria (Fig. 8). Since the
ubiquinone of complex III and an unknown component of
complex I functions as the major sites of ROS generation
(25, 62, 127), the mitochondrial Cyclin B1/CDK1 may regulate

FIG. 6. Phosphorylation of Drp1 by Cyclin B1/CDK1 at the serine 585 residue during mitosis is required to translocate
Drp1 from cytosol to the mitochondrial outer membrane during mitochondrial fission. Activated Drp1 results in mem-
brane constriction and fission directed by Fis1. Drp1, dynamin-related protein 1. To see this illustration in color, the reader is
referred to the web version of this article at www.liebertpub.com/ars
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the surge in mitochondrial ATP production required for the
critical boost of cellular energy reserves to repair DNA dam-
age. In addition, radiation-induced Cyclin B1/CDK1 is also
required for many cellular functions, such as DNA repair in
the nucleus. Therefore, a cooperation of events occurring in

the nucleus and mitochondria by the same regulator high-
lights a tight connection of cell cycle progression with mito-
chondrial activity.

Cyclin B1/CDK1 in Mitochondria-Mediated Apoptosis

It has been generally accepted that the initiation of apo-
ptosis is a unique function of mitochondria in mammalian
cells (64, 84, 115–117, 165). Cyclin B1/CDK1 is known to be
responsible for initiating mitochondria-mediated apoptosis
under cell damage conditions by phosphorylation of several
pro- and antiapoptotic proteins (37, 219, 229). CDK activity is
involved in the mitochondrial translocation of Bax, which
plays an important role in the mitochondrial membrane per-
meability transition during apoptotic progression (47). Under
different levels of genotoxic stresses, including IR, the phos-
phorylation of several Bcl-2 family proteins, such as Bcl-2, Bcl-
2-associated death protein, and B-cell lymphoma-extra large
(Bcl-xL) by Cyclin B1/CDK1 can alter mitochondrial mem-
brane permeability resulting in loss of cytochrome c to the
cytosol (100, 149, 212, 219, 232). Cyclin B1/CDK1 thus may be
the determining factor in deciding cell apoptosis. Abnormal
activities and aberrant expression of Cyclin B1 have been
observed in a number of human cancers, including esopha-
geal squamous cell carcinoma (145), laryngeal squamous cell
carcinoma, nonsmall cell lung cancer (197), and colorectal
carcinoma (59, 114, 208, 222). Most importantly, Cyclin B1
also potentially causes chemo- and radioresistance in cancer
cells (89, 90). Deficiency of Cyclin B1 leads to profound inhi-
bition of cell proliferation and activation of apoptosis (241).
Activated Cyclin B1 is linked with the prosurvival pathway
regulated by NF-jB (158). Therefore, Cyclin B1/CDK1 serves
as an important component in NF-jB-induced cellular resis-
tance to genotoxic insults. However, Cyclins and CDKs ap-
pear to have dual functions in both promoting and
suppressing apoptosis in mammalian cells. Examples include
that phosphorylation on pro-caspase-9 by Cyclin B1/CDK1 or
survivin (Baculoviral inhibitor of apoptosis repeat-containing

FIG. 7. Cyclin B1/CDK1 phosphorylation of the ubiqui-
none-binding site of core complex I confers transition of
G2 to M phase. DNA-damage IR stimulates the gene ex-
pression and translocation of Cyclin B1 and CDK1 from the
nucleus to the mitochondria. Mitochondrial Cyclin B1 and
CDK1 form a complex to phosphorylate the ubiquinone-
binding site of core complex I, which leads to increased ATP
production and inhibition of mitochondria-mediated apo-
ptosis. To see this illustration in color, the reader is referred
to the web version of this article at www.liebertpub.com/ars

FIG. 8. The location of potential Cyclin B1/CDK1-targeted mitochondrial complex I subunits corresponding to the
structure of complex I (NADH-ubiquinone oxidoreductase) in the mitochondrial inner membrane. Three of the phos-
phorylation targeted subunits are the central subunits for NADH reduction (30). The phosphorylation on these subunits leads
to the enhanced function of the complex I, particularly during the G2/M phase when Cyclin B1 expression is at the peak level
(Fig. 3). The model structure is derived from Sazanov and Hinchliffe (181). NADH, nicotinamide adenine dinucleotide. To see
this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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5) by p34cdc2 leads to inhibition of apoptosis (5, 153). These
results suggest that although Cyclin B1/CDK1 is a key factor
determining the fate of an irradiated cell, cell survival appears
to be dependent on not only the degree of genomic injury and
instability but also Cyclin B1/CDK1-associated mitochon-
drial targets of phosphorylation with the end result of in-
creased or decreased energy production.

Cyclin B1/CDK1-Mediated Antiapoptotic Pathway

Tumor suppressor p53 is well characterized to regulate
mitochondria-mediated apoptosis at protein and mRNA
levels (45, 136). p53 initiates the apoptotic cascade by in-
ducing expression or interacting directly with cytoplasmic
proteins in the Bcl-2 family (44). Localization of p53 to mito-
chondria conventionally resembles a major starting signal
for mitochondria-mediated apoptosis (245). However, mito-
chondrial p53 may not necessarily induce apoptosis (71). Vital
functions of mitochondrial p53 have been reported, including
mtDNA transcription, DNA repair, mitochondrial biogenesis
(13, 177, 239), as well as in ATP production since p53 also reg-
ulates mitochondrial respiratory genes, synthesis of cytochrome
c oxidase (SCO2), and phosphate-activated mitochondrial glu-
taminase (GLS-2) (131, 205). Therefore, the role of mitochondria-
localized p53 should be considered broadly, depending on its
cooperative and differential phosphorylation in addition to
apoptotic signals (102). Although several kinases reportedly
phosphorylate 17 residues on p53, the regulation of phos-
phorylation on mitochondrial p53 is not yet known. In an
attempt to identify kinases for mitochondrial p53, our group
recently reported direct evidence showing Cyclin B1/CDK1
phosphorylation on mitochondrial p53 (149). Upon stress
stimulus, the levels p53, Cyclin B1, and CDK1 in mitochon-
dria were all elevated leading to the phosphorylation of mi-
tochondrial p53 at serine 315 residue, the only putative site for
CDK1 phosphorylation (23). This phosphorylation, together
with the phosphorylation of other Cyclin B1/CDK1 targets in
the mitochondria and elevated OXPHO, could compromise

the proapoptotic function of mitochondrial p53 by seques-
tering it from binding to Bcl-2 and Bcl-xL (Fig. 9). As a result,
its proapoptotic potential is reversed into the prosurviving
function by maintaining mitochondrial integrity and in-
creasing ATP production as a possible supplement for the
DNA repair processes. The finding of Cyclin B1/CDK1-
phosphorylated mitochondrial p53 reinstates the prosurvival
function of Cyclin B1/CDK1, an important insight in the
nuclear-guided mitochondrial functions.

Conclusion

Citing a model of cellular adaptive response to LDIR, this
review discussed a new feature of nuclear-to-mitochondrial
communication mediated by the cell cycle G2/M regulator
Cyclin B1/CDK1. A myriad of Cyclin B1/CDK1 protein targets
remain to be characterized (94, 124, 215). Promising novel
mitochondrial targets of Cyclin B1/CDK1 may play an impor-
tant role in coordinating cellular respiration related to cell cycle
progression and the adaptive response to genotoxic stress. Thus,
Cyclin B1/CDK1 may be considered one of the key harmonizers
for the regulation of mitochondrial functions in cellular adaptive
response under genotoxic stress, including LDIR.

The variation in cellular energy at different stages of the cell
cycle requires the precise control and communication with
mitochondria that produces the major resource of ATP for
proliferation. The production of ATP from a glucose molecule
is *13-fold higher with aerobic respiration compared to an-
aerobic metabolism (172). The targets of mitochondria regu-
lated by Cyclin B1/CDK1 may serve as one of the many
mechanisms for cells to communicate with mitochondria
under different growth or stress conditions. Since the function
of this kinase complex varies at different stages of the cell
cycle and can be induced by IR, Cyclin B1/CDK1 seems to
synchronize mitochondrial energy production in concomitant
with the nuclear DNA repair. In addition, the Warburg effect,
described as cancer cells utilizing energy produced from
glycolysis rather than OXPHOS (106), may be perturbed or

FIG. 9. Schematic representation of signaling transduction for Cyclin B1/CDK1 in mitochondria. Cyclin B1/CDK1 serves
as a kinase on several mitochondria-translocated proteins involved in bioenergetics and apoptotic functions. The Cyclin B1/
CDK1 complex also serves as a direct link between cell cycle and mitochondrial responses in response to stress signals. During
the G2 phase, the Cyclin B1/CDK1 serves as an apoptotic suppressor when the cells undergo a G2 checkpoint and repair DNA
damage. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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reversed under stress conditions leading to mitochondrial
metabolism reprograming. Unknown mechanisms remain to be
elucidated to understand why cancer cells avoid utilizing mi-
tochondrial machinery for its major energy source and how it is
adjusted under anticancer radiotherapy. A potential critical
mechanism involving sirtuin3 (SIRT3), a mitochondrial sirtuin
protein (50), was proposed to guide mitochondrial energetics in
normal cells versus glycolysis in tumor cells described as the
Warburg effect (16, 39, 123, 155, 163, 182). A recent study
showed that tumors from SIRT3-deficient mice have high levels
of ROS that induce genomic instability and elevate HIF-1a
protein levels (87). Importantly, the acetylation/deacetylation
status of MnSOD was found to regulate the MnSOD enzymatic
activity responding to cellular nutrient status or oxidative stress
(157). Thus, an integration of signals between Cyclin B1/CDK1-
mediated MnSOD phosphorylation (36) and SIRT3-mediated
MnSOD acetylation status (210, 249) may coordinate the radi-
ation-induced adaptive response at the subcellular level.
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Abbreviations Used

Dwm ¼mitochondrial membrane potential
14-3-3f¼ chaperones
Apaf-1¼ apoptotic peptidase activating factor 1

ATM¼ ataxia telangiectasia mutated
ATP¼ adenosine triphosphate
BAD¼Bcl-2-associated death protein
Bak¼Bcl-2 homologous antagonist/killer
Bax¼Bcl-2-associated X protein

Bcl-2¼B-cell lymphoma 2
Bcl-xL¼B-cell lymphoma-extra large
BIRC5¼Baculoviral inhibitor of apoptosis

repeat-containing 5
cAMP¼ cyclic adenosine monophosphate

Cdc25c¼ cell division cycle 25c
Cdc37¼ cell division cycle 37

CDK¼ cyclin-dependent kinases
CDK1¼ cyclin-dependent kinase 1

DRP1, Drp1¼dynamin-related protein 1
ERK¼ extracellular signal-regulated kinase

FKHRL1¼ apoptosis-promoting fork-head
transcription factor

GLS-2¼phosphate-activated mitochondrial
glutaminase

GTPase¼ guanosine triphosphate hydrolase enzyme
HIF-1a¼hypoxia-inducible factor 1

HSP¼heat shock protein
IR¼ ionizing radiation

JNKs¼ c-jun N-terminal kinases
LDIR¼ low-dose ionizing radiation

MAPKs¼mitogen-activated kinases
Mfn¼mitofusin

MnSOD¼manganese superoxide dismutase
MPF¼maturation promoting factor
MPI¼mitochondrial protein influx

mtDNA¼mitochondrial DNA
MTS¼mitochondria targeting sequence

NADH¼nicotinamide adenine dinucleotide
NDUFA12¼NADH dehydrogenase ubiquinone 1

alpha subcomplex subunit 12
NDUFB6¼NADH dehydrogenase ubiquinone 1

beta subcomplex subunit 6
NDUFS2¼NADH dehydrogenase ubiquinone

iron-sulfur protein 2
NDUFV1¼NADH dehydrogenase ubiquinone

flavoprotein 1
NDUFV3¼NADH dehydrogenase ubiquinone

flavoprotein 3
NOX¼NADPH oxidase

NPI¼nuclear protein influx
OXPHOS¼ oxidative phosphorylation

PAI-1¼plasminogen activator inhibitor-1
PKA¼ cAMP-dependent protein kinase
PKC¼protein kinase c

SCO2¼ synthesis of cytochrome c oxidase
sirtuin3¼ SIRT3

Thr¼ threonine (T)
Tyr¼ tyrosine (Y)
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