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Mesenchymal stem cells (MSCs) display multipotent characteristics that make them ideal for potential thera-
peutic applications. MSCs are typically cultured as monolayers on tissue culture plastic, but there is increasing
evidence suggesting that they may lose their multipotency over time in vitro and eventually cease to retain any
resemblance to in vivo resident MSCs. Three-dimensional (3D) culture systems that more closely recapitulate the
physiological environment of MSCs and other cell types are increasingly explored for their capacity to support
and maintain the cell phenotypes. In much of our own work, we have utilized fibrin, a natural protein-based
material that serves as the provisional extracellular matrix during wound healing. Fibrin has proven to be useful
in numerous tissue engineering applications and has been used clinically as a hemostatic material. Its rapid self-
assembly driven by thrombin-mediated alteration of fibrinogen makes fibrin an attractive 3D substrate, in which
cells can adhere, spread, proliferate, and undergo complex morphogenetic programs. However, there is a
significant need for simple cost-effective methods to safely retrieve cells encapsulated within fibrin hydrogels to
perform additional analyses or use the cells for therapy. Here, we present a safe and efficient protocol for the
isolation of MSCs from 3D fibrin gels. The key ingredient of our successful extraction method is nattokinase, a
serine protease of the subtilisin family that has a strong fibrinolytic activity. Our data show that MSCs recovered
from 3D fibrin gels using nattokinase are not only viable but also retain their proliferative and multilineage
potentials. Demonstrated for MSCs, this method can be readily adapted to retrieve any other cell type from 3D
fibrin gel constructs for various applications, including expansion, bioassays, and in vivo implantation.

Introduction

Bone marrow stromal cells, commonly referred to as
mesenchymal stem cells (MSCs), are nonhematopoietic

cells found in the adult bone marrow that possess multi-
potent characteristics. MSCs have the ability to differentiate
into multiple lineages, including osteogenic, adipogenic, and
chondrogenic phenotypes. Due to their high degree of plas-
ticity and relative ease of isolation from many tissues,1–5

MSCs have been explored in numerous clinical trials for
tissue engineering and regenerative medicine applications.
Despite the apparent therapeutic potential of MSCs, most
likely through trophic factor secretion,6 current understand-
ing of the intrinsic and extrinsic components of the micro-
environment that regulate their activity in vivo remains
incomplete. Fundamental knowledge regarding these com-
ponents is desirable, not only to better understand MSC bi-
ology but also to improve the translational potential of these
cells.

The current dogma is that developing physiologically
relevant artificial models capable of instructing stem cells

will require a more accurate recapitulation of their native
niche.7,8 In an attempt to reconstruct the stem cell microen-
vironment that more closely mimics in vivo conditions, many
investigators are exploring the use of three-dimensional (3D)
culture systems. Recent studies suggest that MSCs main-
tained in two-dimensional (2D) culture systems gradually
lose their proliferative potential, colony-forming efficiency,
and differentiation capacity with time.9–11 While the evi-
dence that 3D culture methods provide a cellular environ-
ment more consistent with that in vivo is persuasive,12–17

there is still a need for optimized culture models for large-
scale long-term expansion of stem cells with uniform prop-
erties that are capable of differentiating into selected mature
cell types with high efficiency and purity.18 Furthermore, the
development of efficient methods to safely extract these cells
from 3D tissue culture is important, both to meet the high
cell volumes required for therapeutic applications and to
characterize how cells grown in 3D models are regulated by
various components of an artificial niche.

In this particular study, we focused on MSC encapsulation
within fibrin, in part, because fibrin is a widely used
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material,19 which has been shown to promote cell survival
and proliferation both in vitro and in vivo.20–23 There is
compelling evidence that fibrin supports the delivery of stem
cells, such as bone marrow mononuclear cells24,25 and hu-
man MSCs,20,26,27 and stimulates the MSC differentiation
toward osteogenic and chondrogenic differentiation.27–29 In
our own work, we have used fibrin extensively as an extra-
cellular matrix analog capable of supporting capillary mor-
phogenesis in vitro30–33 and neovascularization in vivo.31,34

We have also shown that cocultures of MSCs and endothelial
cells in 3D fibrin hydrogels readily form pericyte-invested
capillary networks,32,35,36 which have prompted our efforts
to better understand how the perivascular location of MSCs
may influence their phenotype.35 However, our efforts were
limited, in part, by the lack of a simple yet effective method
to safely recover and characterize MSCs residing within the
fibrin hydrogels.

Recovery of cells from collagen hydrogels and collagen-
based tissues can readily be achieved using collagenase, but
no comparably simple method to retrieve viable cells from 3D
fibrin culture models exists, to the best of our knowledge. In
most cases, commonly used proteolytic enzymes, including
trypsin and collagenase, have been used for primary cell
isolation from a variety of tissue types.37–40 However, when
used to dissolve fibrin for in vitro models, these enzymes do
not yield a single-cell suspension effectively. Furthermore,
longer incubation times with these enzymes required for
dissolving the gels may damage the cells harvested for sub-
cultivation or other studies. Previous studies have used 3D
fibrin gels as biomimetic substrates for the isolation of stem
cells residing in various tissues.41,42 Using urokinase, cells
outgrown from these tissues were isolated by selective deg-
radation of the 3D fibrin gels. In this article, we used natto-
kinase, a bacillus-derived serine protease that is known for its
potent fibrinolytic activity,43–45 to recover encapsulated MSCs
from 3D fibrin gels. Compared with other fibrinolytic en-
zymes, such as urokinase and plasmin, nattokinase is re-
portedly more efficient in degrading fibrin gels.44 We
demonstrated that nattokinase yields significantly higher
MSC recovery compared with other proteolytic enzymes,
including trypsin and TrypLE. In addition, we found that this
enzyme-mediated recovery is not harmful, as assessed by the
cellular proliferation and viability in 3D culture. Finally, us-
ing our extraction protocol, we showed that cells recovered
from 3D hydrogels were capable of differentiating into oste-
ogenic and adipogenic lineages. This extraction method is an
effective system that could potentially be used to safely and
efficiently harvest a variety of cell types from 3D fibrin cul-
tures for subsequent use in numerous applications, including
expansion, bioassays, and in vivo implantation.

Materials and Methods

Cell culture

Human bone marrow-derived MSCs were obtained from a
commercial source (Lonza) at passage 2. As part of the
manufacturer’s quality control, these MSCs were tested for
purity by flow cytometry and for their ability to differentiate
into osteogenic, chondrogenic, and adipogenic lineages. Cells
are positive for the cell surface markers CD105, CD166, CD29
(integrin b1), and CD44 and negative for CD14, CD34, and
CD45. MSCs were maintained in the high glucose (4.5 g/L)

Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen)
supplemented with 10% fetal bovine serum (FBS; Invitro-
gen). All cultures were incubated at 37�C and 5% CO2. Media
were changed every 2 days. MSCs were routinely expanded
in 2D cultures and harvested with 0.05% trypsin–ethylene-
diaminetetraacetic acid (EDTA) (Invitrogen). Cells were used
before passage 8 for differentiation experiments and before
passage 11 for viability and cell extraction experiments. For
2D controls to the 3D experiments described below, MSCs
were cultured for 1, 7, or 14 days. We identify these times as
preculture, indicating the culture time before harvesting and
subsequent analysis.

Construction of the 3D culture model

MSCs were encapsulated within 3D fibrin gels through
methods similar to those used previously to create a 3D co-
culture model of capillary morphogenesis.32 In brief, 5 · 104

MSCs were mixed within a 2.5, 5, or 10 mg/mL fibrinogen
solution (Sigma-Aldrich; Lot No. 069K7636v, 65%–85% pro-
tein). Five hundred microliters of this solution containing
MSCs was combined with 10 mL of thrombin (50 U/mL;
Sigma) in a single well of a 12-well plate to make one gel
construct. This process was repeated until the desired num-
ber of gels was constructed. Constructs were left undisturbed
for 5 min to allow partial gelation before incubating for an
additional 25 min at 37�C and 5% CO2. Gels were then cul-
tured in the DMEM supplemented with 10% FBS. Media
were changed every 2 days. Cells were retrieved from 3D
fibrin gels on days 1, 7, and 14 postassembly. We identify the
time of culture in 3D fibrin gels as preculture, indicating the
culture time before retrieval and subsequent analysis.

Retrieving viable cells from 3D fibrin gel constructs

MSCs embedded in 3D fibrin gels were recovered using
one of three methods: our novel recovery technique (Fig. 1)
involving the fibrinolytic enzyme nattokinase or the methods
involving 0.05% trypsin-EDTA (Gibco) or 100% TrypLE
(Invitrogen). In our new method, a fibrinolytic solution was
prepared by dissolving 50 FU/mL (fibrin degradation units)
of nattokinase (NSK-SD; Japan Bio Science Laboratory Co.,
Ltd) in phosphate-buffered saline (PBS) containing 1 mM
EDTA (Fisher Scientific). The gels were washed with PBS
before dislodging them from the well siding using a small
spatula. The gels were subsequently dissolved by adding
500mL of the fibrinolytic solution and incubating at 37�C for
30 min (for the 2.5 mg/mL fibrin gels) or 60 min (for the 5
and 10 mg/mL fibrin gels). These incubation times were
determined empirically based on the observations of gel
dissolution. Upon dissolution, the contents of each well were
collected and centrifuged. Cells were then washed with cold
PBS before subsequent procedures. The same dissolution
conditions, as described above, were implemented in the
methods involving trypsin-EDTA or TrypLE.

Quantitative polymerase chain reaction

The multilineage potential of MSCs recovered following
fibrinolysis was determined, in part, through quantitative
polymerase chain reaction (qPCR) to assess the expression of
genes associated with osteogenic and adipogenic differenti-
ation. In brief, MSCs cultured for up to 14 days were either

FIBRINOLYSIS FOR CELL RECOVERY 253



retrieved from 3D fibrin gels using our novel nattokinase-
based recovery method or collected from 2D cultures
through standard trypsinization. Harvested cells were then
subjected to standard adipogenic or osteogenic induction
protocols (described below) in 2D culture for 7 and 21 days,
respectively.46–50 Total RNA was isolated from cells using
the SV Total RNA Isolation System (Promega). The RNA
concentration and the purity of each sample were deter-
mined by A260/A280 absorptions using a Nanodrop ND-
1000 (Thermo Scientific) spectrometer. Equal amounts of
total RNA from each sample were used to create the first-
strand cDNA using the ImProm-II Reverse Transcription
System (Promega). The PCR amplification was performed
with the KAPA SYBR� Fast Universal Master Mix (Kapa
Biosystems) on a 7500 Fast Real-Time PCR System (Applied
Biosystems) in a final volume of 20mL using cycling pa-
rameters (3 min, 95�C; 3 s, 95�C; 20 s, 60�C with the latter two
steps repeated for 40 times). Each reaction was performed in
triplicate, and the DDCT method was used for the gene ex-
pression analysis.51 The gene encoding for peptidylprolyl
isomerase (PPIA) was used as the housekeeping gene as it
has been shown to have the most stable expression levels of a
variety of housekeeping gene candidates under different
conditions.52 The primer sequences of the genes for qPCR are
provided in Table 1.

Quantification of cell viability through
fluorescent-activated cell sorting

To assess the viability, cells were retrieved from 3D cultures
6 h after initial cell seeding by incubating the gels in the nat-
tokinase fibrinolytic solution, as described above. For these

assays, the 3D fibrin gels were incubated in the fibrinolytic
solution for 90 min. Cells were then resuspended in ice-cold
PBS, pelleted by centrifugation at 2000 rpm at 4�C for 5 min,
and then incubated with a 3mM solution of propidium iodide
(PI; Invitrogen) in PBS (pH 7.2) for 15 min at room tempera-
ture. Samples were then washed twice and resuspended in 2%
FBS in PBS for flow cytometry analysis. Unstained cell sus-
pensions were prepared in parallel as control samples.

Multilineage differentiation protocols

After preculture on 2D substrates or in 3D fibrin gels,
MSCs were tested for their differentiation capacity. For adi-
pogenic differentiation, MSCs retrieved from 2D cultures or
extracted from a 3D fibrin gel were reseeded at 20,000 cells/
cm2 in a 24-well plate for functional assays or in a 6-well
plate for gene expression assays through qPCR. Cells were
maintained in either adipogenic growth media (AGM, a
control), consisting of aMEM (Minimum Essential Medium,
alpha modification; Gibco), 10% FBS, 1% penticillin/strep-
tomycin (CellGro), and 5 mg/mL gentamicin (Gibco), or
adipogenic induction media (AIM), consisting of AGM, 1mM
dexamethasone (Sigma-Aldrich), 0.5 mM 3-isobutyl-1-methyl-
xanthine (Acros Organics), 10mg/mL insulin (Gibco), and
0.2 mM indomethacin (Sigma-Aldrich).48,53

For osteogenic differentiation, MSCs precultured on 2D
substrates or in 3D fibrin gels for up to 14 days were retrieved
and subsequently reseeded at 5000 cells/cm2 in a 24-well plate
for functional assays or in a 6-well plate for qPCR. Cells were
maintained in osteogenic growth media (OGM), consisting of
aMEM (Gibco), 20% FBS, 2 mM L-glutamine (CellGro), 1%
penticillin/streptomycin, and 5 mg/mL gentamicin, or in

FIG. 1. Illustration depicting the
method by which mesenchymal
stem cells (MSCs) were extracted
from three-dimensional (3D) fibrin
gels. In this study, we developed a
simple new method for efficiently
retrieving MSCs encapsulated
within 3D fibrin hydrogels. Cells
were cultured within the fibrin gels
for 1, 7, or 14 days before retrieval.
The key component of the extrac-
tion process is a fibrinolytic en-
zyme, nattokinase. Treatment of the
cell-seeded hydrogels with nattoki-
nase for 30 min (longer incubations
required for more concentrated
gels) results in a single-cell suspen-
sion, which can be collected and
concentrated through centrifuga-
tion and then subsequently used in
additional assays or for different
applications. Color images
available online at www
.liebertpub.com/tec
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osteogenic base media (OBM), consisting of OGM, 10 mM
b-glycerol phosphate (Sigma-Aldrich), and 50mg/mL L-
ascorbic acid (Fisher Scientific). After 14 days in OBM, cells
were cultured in osteogenic mineralization media [OMM,
containing OBM + 100 nM dexamethasone (Sigma-Aldrich)],
as previously reported.48,53 For simplicity, OBM and OMM
will be referred to as osteogenic induction media (OIM).

Oil Red O staining, imaging, and quantification

Adipogenic differentiation was assessed, in part, by
staining cultures with Oil Red O and quantifying, as de-
scribed above.48,54 Briefly, a 12.2 mM stock solution of Oil
Red O dye (Sigma) was dissolved in isopropanol. Cells were
fixed in 4% paraformaldehyde at 4�C for 30 min after 7 and
14 days of culture in the AIM. Cells were then rinsed in PBS
at least twice. Stock Oil Red O solution was added to PBS at a
ratio of 3:2 to create the working solution. The working so-
lution was filtered with a 0.22-mm filter (Millipore) before
use. Each well was immersed in the Oil Red O working so-
lution for 20 min. After staining, each well was quickly
rinsed 3 · in a 60/40 isopropanol/PBS solution to remove
excess Oil Red O. The wells were then rinsed 2 · in PBS and
imaged on an Olympus microscope IX81 equipped with a
DP25 color camera. After imaging, 4% IGEPAL-CA630
(Sigma) in isopropanol was added to each well and protected
from light for 15 min. Each well was then analyzed with a
Thermo Scientific Multiskan Spectrum spectrophotometer at
520 nm to determine the absorbance of each well. The ab-
sorbance of Oil Red O was normalized to the total cell
number in each well as determined by nuclei counting using
DAPI staining.55 Three images per condition were analyzed
to determine the number of cells per well. Four wells per
condition were used to quantify the levels of Oil Red O.

von Kossa staining

Cells were rinsed in PBS 2 · and then fixed in 4% para-
formaldehyde at 4�C for 30 min after 14 and 21 days in the
OIM. After fixation, cells were rinsed in double distilled (DD)
water 3 · and then immersed in 5% silver nitrate (Sigma) and
subjected to ultraviolet (UV) light (*365 nm) for 40 min.
After UV exposure, cells were rinsed 3 · in DD water. The
cells were then rinsed in sodium thiosulfate (Sigma) for 3 min
and rinsed in DD water 3 · . Images were taken on an
Olympus IX81 with a DP25 color camera.

Calcium quantification

The calcium content in osteogenic cultures was quantified
using the ortho-cresolphthalein complexone (OCPC) method,
as previously described.49,50 Cells were washed in PBS twice
before incubation in 1 mL of 1 N acetic acid overnight. The

OCPC solution was prepared by adding OCPC to DD water
with 1 N potassium hydroxide (KOH) and 1 N acetic acid.
The dissolved solutions (10mL per replicate) were then mixed
with a working solution (300mL per replicate) of the OCPC
solution and ethanolamine/boric acid/8-hydroxyquinoline
buffer [all from Sigma, except KOH (Acros)]. The absorbance
values were recorded using a Thermo Scientific Multiskan
Spectrum spectrophotometer at 570 nm. The calcium values
were quantified by a standard curve from 0 to 150mg/mL.
Samples and standards were assayed in triplicate.

Statistical analyses

Statistical analyses were carried out using GraphPad Prism
software. Data are reported as means – standard deviations.
All statistical comparisons were made by performing a one-
way analysis of variance, followed by Tukey’s multiple
comparison tests to judge significance between two data sets
at a time. P values < 0.05 were considered statistically signif-
icant. Statistics for qPCR were performed on DDCT values.

Results

Nattokinase efficiently degrades 3D fibrin gels
without damaging cells

In this study, we developed and applied a new method
(Fig. 1) to recover cells encapsulated within 3D fibrin hy-
drogels based on nattokinase, a powerful fibrinolytic enzyme
that is mostly known for its blood-thinning effects. To vali-
date the method, we first quantified the percentage of cells
extracted from 3D fibrin gels (Fig. 2A). Six hours after initial
cell encapsulation, fibrin gels were degraded using trypsin,
TrypLE, or our nattokinase solution. A 30-min incubation in
the nattokinase solution enabled nearly 100% recovery of the
cells entrapped in 2.5 mg/mL fibrin gels. By comparison, a
significantly lower percentage of the encapsulated MSCs
were retrieved from the gels using either trypsin or TrypLE.
A 60-min incubation with nattokinase was optimal for the
more concentrated 5 and 10 mg/mL fibrin gels, resulting in
an efficient cell retrieval comparable to that attained with
nattokinase in lower concentration gels and significantly
better than that attained with 60-min incubations with Try-
pLE (Fig. 2A). Furthermore, the quantification of PI staining
through flow cytometry revealed similar levels of viability
when comparing cells recovered from 2.5 mg/mL 3D fibrin
gels (cultured for 14 days) digested using nattokinase to
those recovered from 2D cultures (Fig. 2B). The viability of
the cells was maintained even when the cell-seeded gels were
incubated in the nattokinase solution for 90 min (Fig. 2B), but
anecdotally, we observed no changes in the viability after
incubation times up to 2 h (data not shown). In addition, we
also cultured the MSCs within 2.5 mg/mL of 3D fibrin gels

Table 1. Primer Sequences Designed by Primer-Blast and Used for Quantitative Polymerase Chain Reaction

Gene Sense primer Antisense primer

BGLAP 5¢-AGGCACCCTTCTTTCCTCTTC-3¢ 5¢-TTCCTCTTCTGGAGTTTATTTGGGA-3¢
CEBPA 5¢-ATGCAAACTCACCGCTCCAAT-3¢ 5¢-GAGGCAGGAAACCTCCAAATAAA-3¢
PPARG 5¢-ATTACGAAGACATTCCATTCACAAG-3¢ 5¢-CTCAGAATAATAAGGTGGAGATGC-3¢
PPIA 5¢-GTCTTGTGTGTTGTCTGGTTA-3¢ 5¢-ATGTTTGATGTTTATTTCCACCTTG-3¢
RUNX2 5¢-CAGAAGGGAGGAGATGTGTGTA-3¢ 5¢-TTGCTAATGCTTCGTGTTTCCA-3¢
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for up to 14 days and quantified the number of cells retrieved
by nattokinase to assess their proliferation rates. Data
showed that MSCs proliferated at comparable rates in both
2D and 3D (Fig. 2C). Looking across time points, these data
also suggest that our nattokinase-based method is effective
for recovering cells encapsulated within 3D fibrin gels across
a range of cell densities.

MSCs retrieved from 3D fibrin gels maintain
their adipogenic potential

To assess the adipogenic differentiation potential of MSCs
precultured for 1, 7, or 14 days in fibrin gels and subse-
quently retrieved by nattokinase, harvested cells were grown
in media with various factors known to induce adipogenic
differentiation followed by staining for the presence of lipid
deposits with Oil Red O. Lipid deposits were detected 7 and
14 days after induction (Fig. 3C, D). Quantitative assessment
of Oil Red O levels (Fig. 3E–G) showed that MSCs retrieved
from 3D fibrin gels by nattokinase were readily induced to
form lipid droplets in the presence of soluble adipogenic
supplements, with the levels of Oil Red O comparable to
those in cells cultured exclusively in 2D. These data suggest
that nattokinase extraction of MSCs from fibrin does not
diminish their ability to differentiate into adipocytes.

MSCs retrieved from 3D fibrin gels maintain
their osteogenic potential

To assess the osteogenic differentiation potential of MSCs
precultured for up to 14 days in fibrin gels and subsequently
extracted by nattokinase, harvested cells were cultured in the
OIM and compared to those grown exclusively on tissue
culture polystyrene (TCPS) as a control. Mineral deposition
was visualized by the common von Kossa phosphate stain-
ing protocol. MSCs differentiated in the OIM after growth on
2D TCPS or recovered from 3D fibrin gels stained positive for
phosphates after 14 and 21 days (Fig. 4C, D). In parallel, the
amounts of calcium deposited by the MSCs were quantified
by the OCPC method. Cells cultured in the OIM showed
elevated calcium levels (compared to noninduced controls),
regardless of whether or not they were grown exclusively in
2D or were first extracted from 3D fibrin gels by nattokinase
(Fig. 4E–G). Specifically, cells precultured for 14 days in 3D
fibrin gels, recovered with nattokinase, and then differenti-
ated for 14 additional days showed equivalent calcium levels
compared to cells grown on a 2D surface [*220mg]. Col-
lectively, these data qualitatively and quantitatively suggest
that nattokinase extraction of MSCs from fibrin does not
reduce their osteogenic differentiation potential.

MSCs retrieved from 3D fibrin gels express genes
associated with osteogenic and adipogenic lineages

Finally, we quantified the expression of several genes as-
sociated with adipogenic and osteogenic differentiation to
further assess how well MSCs precultured for 1, 7, and 14
days and subsequently extracted from 3D fibrin gels by
nattokinase sustain their multipotency. Specifically, for Oil
Red O, von Kossa, and calcium assays described above,
MSCs were first grown on 2D TCPS or within 3D fibrin gels
for up to 14 days, recovered, and subjected to the appro-
priate induction media favorable for differentiation. Gene

FIG. 2. Enzyme-assisted extraction of MSCs from two-di-
mensional (2D) and 3D cultures. (A) Nattokinase (NK) yiel-
ded a significantly higher percentage of MSCs extracted from
3D fibrin gels relative to the other proteolytic enzymes
[trypsin (TR) and TrypLE (TRPLE)]. To quantify the per-
centage of cells recovered, MSC-seeded fibrin gels were
dissolved 6 h after initial cell seeding (50K cells/gel). For
2.5 mg/mL fibrin gels, cells were efficiently retrieved after a
30-min incubation in the nattokinase-based fibrinolytic so-
lution; 5 and 10 mg/mL gels were incubated for 60 min.
Retrieved cells were pooled together from a total of three gels
for each technical sample. *** indicates that all of the groups
under the line are significantly different from those groups
not under the line ( p £ 0.001). (B) After 14 days of preculture
in 3D fibrin gels, nearly 100% of the MSCs extracted from
nattokinase were viable, as quantified by propidium iodide
staining and flow cytometry. (C) After 1, 7, or 14 days of
preculture, MSCs were retrieved from 3D fibrin gels (using
nattokinase) or harvested from 2D cultures (using trypsin).
The number of cells retrieved from the cultures was com-
parable at all time points for both culture conditions.
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expression analysis was performed on cells after 7 and 21
days in adipogenic- and osteogenic-specific culture condi-
tions, respectively. Similar levels of PPARc and CEBPa were
detected in cells cultured in adipogenic media for 7 days (Fig.
5A, B), regardless of whether they had first been cultured in
3D fibrin gels and recovered with nattokinase or cultured
exclusively on 2D TCPS. However, control cultures grown in
the baseline medium did not show adipogenic differentia-
tion. Likewise, qPCR analysis confirmed that MSCs retrieved
from 3D fibrin gels by nattokinase were also able to upre-
gulate the gene expression levels of Runx2 and BGLAP in
response to osteogenic inductive media (Fig. 5C, D). These
findings collectively suggest that nattokinase extraction of

MSCs from 3D fibrin gels does not negatively impact their
ability to express key genes associated with adipogenic and
osteogenic differentiation.

Discussion

In an effort to recapitulate the structural and functional
characteristics of in vivo microenvironments, significant em-
phasis in the tissue engineering and biomaterials communi-
ties has been placed on the development of the 3D cell
culture systems.56 However, analytical assays and tools
commonly used to assess cell phenotypes in 2D cultures are
typically more complicated in 3D and, generally, require that

FIG. 3. MSCs maintain the potential to become adipogenic after extraction from 3D fibrin gels. Micrographs represent MSCs
grown on 2D tissue culture polystyrene (A, C) or in 3D fibrin gels (B, D) for 7 days of preculture and then extracted and
maintained in growth media (A, B) or differentiated in adipogenic media (C, D) for 14 additional days in 2D culture. Cells
were stained using the Oil Red O method. Scale bar represents 200mm. (E, F, G) MSCs were grown for periods of 1 (E), 7 (F),
or 14 days (G) in either 2D or 3D environments, extracted using trypsin (2D) or nattokinase (3D) and subsequently replated in
2D cultures. These cultures were then subjected to either growth media or adipogenic induction media for up to 14 days.
Relative Oil Red O levels were generated by dividing the measured values first by the number of cells in each well and then
normalized to the baseline levels expressed by MSCs cultured in 2D growth media after 1 day of preculture (i.e., the first data
point on the bar graph in E). These data show that the presence of soluble adipogenic supplements and prolonged culture
times in these supplements generally enhance adipogenic differentiation of the MSCs, as expected. They also show that MSCs
retrieved from 3D fibrin gels using nattokinase have no apparent deficits in adipogenesis. *p £ 0.05, **p £ 0.01, ***p £ 0.001 for
statistical significance. Color images available online at www.liebertpub.com/tec
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cells first be retrieved from the 3D environment. The recov-
ery of viable cells from 3D cultures has been limited by the
lack of suitable methods to retrieve encapsulated cells. In our
own previous work, we have extensively used fibrin to in-
vestigate capillary morphogenesis in vitro and neovascular-
ization in vivo.32,35,57 However, despite our experience with
fibrin, we lacked a simple yet effective method to recover
cells encapsulated within fibrin hydrogels for further char-
acterization. Here, we have presented a safe and efficient
protocol for the isolation of cells from 3D fibrin gels based on
the strong fibrinolytic enzyme, nattokinase, a serine protease
of the subtilisin family that has a strong fibrinolytic activity.

To validate this method, we first assessed the efficiency of
nattokinase for retrieving cells from fibrin gels compared to
other commonly used proteolytic enzymes, trypsin (another
serine protease)58 and TrypLE� (a recombinant fungal
trypsin-like protease).59,60 Using MSCs as a model cell type,

we showed that nattokinase was > 4 · more efficient than
TrypLE for cell extraction (Fig. 2A). The number and via-
bility of MSCs extracted from fibrin by nattokinase were also
nearly equivalent to cells harvested from 2D tissue culture
plastic by trypsin (Fig. 2B, C), suggesting that MSCs prolif-
erate to a comparable extent in 3D fibrin as they do on 2D
polystyrene and that nattokinase does not compromise their
plasma membranes.

We next investigated the effects of cell extraction using
nattokinase on the multilineage potential of MSCs harvested
from 3D fibrin gels. Traditional adipogenic and osteogenic
differentiation assays were performed in 2D cultures using
MSCs that were first propagated within and retrieved from
3D fibrin gels and compared to cells that were grown and
then differentiated entirely in 2D. The analysis of Oil Red O
levels, an indicator of lipid formation, showed that MSCs
extracted from 3D fibrin gels through nattokinase extraction

FIG. 4. MSCs maintain the potential to become osteogenic after extraction from 3D fibrin gels. Micrographs represent MSCs
grown on 2D TCPS (A, C) or in 3D fibrin gels (B, D) for 7 days of preculture and then extracted and maintained in growth media
(A, B) or differentiated in osteogenic media (C, D) for 21 additional days in 2D culture. Cells were stained using the von Kossa
method. Scale bar represents 200mm. (E, F, G) MSCs were grown for periods of 1 (E), 7 (F), or 14 days (G) in either 2D or 3D
environments, extracted using trypsin (2D) or nattokinase (3D) and subsequently replated in 2D cultures. These cultures were
then subjected to either growth media or osteogenic induction media for up to 21 days. Total calcium levels were then quantified
as an indication of osteogenic differentiation as described in the ‘‘Materials and Methods’’ section. These data show that the
presence of soluble osteogenic supplements and prolonged culture times in these supplements generally enhance osteogenic
differentiation of the MSCs, as expected. They also show that MSCs retrieved from 3D fibrin gels using nattokinase have no
apparent deficits in osteogenesis. ***p £ 0.001 for statistical significance. Color images available online at www.liebertpub.com/tec
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were equally capable of adipogenic differentiation as con-
trols from 2D cultures (Fig. 3). Furthermore, qPCR analyses
of the genes encoding for PPARc, a key regulator of adipo-
genesis, and CEBPa, a positive feedback loop regulator of
PPARc expression,46,61,62 suggested that nattokinase extrac-
tion after 14 days of preculture in 3D fibrin gels followed by
7 days of exposure to adipogenic differentiation media did
not alter the adipogenic potential of MSCs (Fig. 5A, B). Si-
milarly, von Kossa staining and the quantification of calcium
levels revealed qualitatively and quantitatively that nattoki-
nase did not alter the ability of MSCs to synthesize a matrix
capable of mineralization (Fig. 4). Quantitative PCR analysis
confirmed that cells extracted from fibrin using nattokinase
were capable of osteogenic gene expression. The expression
of BGLAP (the gene encoding for osteocalcin) in cells ex-
tracted from 3D was elevated with respect to cells grown on

2D surfaces (Fig. 5D), suggesting that priming the cells for a
period of time in 3D fibrin gels before induction may, in fact,
enhance the osteogenic phenotype. Differences in Runx2
gene expression, an early marker of osteogenic differentia-
tion,63 showed similar trends (Fig. 5C), but were not signif-
icantly different in MSCs induced down an osteogenic
lineage for 21 days preceded by 14 days of growth in 3D
fibrin gels relative to cells cultured exclusively in 2D. Col-
lectively, these data illustrate that nattokinase extraction
does not diminish the potential of MSCs to undergo subse-
quent adipogenesis or osteogenesis or to express genes
characteristic of these two phenotypes. Although we did not
explicitly subject the retrieved MSCs to a chondrogenic dif-
ferentiation protocol, we anticipate that the MSCs recovered
through this method would indeed be capable of undergoing
chondrogenesis. Since many studies have explored the

FIG. 5. Quantitative polymerase chain reaction (qPCR) analysis of adipogenic and osteogenic marker gene expression levels
in MSCs retrieved from culture conditions. MSCs were recovered from 2D (by trypsin) and 3D cultures (by nattokinase) after
14 days of preculture and then subjected to either adipogenic or osteogenic induction media for either an additional 7 or 21
days, respectively. Total RNA was extracted from the cells and subjected to qPCR analysis to assess the expression levels of
(A) PPARc, (B) CEBPa, (C) Runx2, and (D) BGLAP. Statistics were performed on DDCT values and are indicated as shown
(**p £ 0.01, ***p £ 0.001). Collectively, these data showed that MSCs precultured in 3D fibrin gels and subjected to nattokinase
extraction were capable of subsequently expressing genes consistent with osteogenic and adipogenic differentiation poten-
tials.
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ability of fibrin-based materials to support the formation of
cartilaginous tissues both in vitro and in vivo,64–67 the method
we have developed here may enable other researchers to
retrieve MSCs undergoing chondrogenesis to better under-
stand the process.

In the human body, fibrinolysis is achieved mainly by the
serine protease plasmin68 and can also be achieved by matrix
metalloproteinases in certain circumstances.69,70 Plasmin is
generated by enzymatic cleavage of plasminogen, either by
the urokinase plasminogen activator (uPA) or by the tissue
plasminogen activator (tPA). The activation by uPA requires
initial binding of uPA to the cell membrane-anchored uPA
receptor, thereby sequestering plasmin activation and pro-
teolysis to the immediate vicinity of the cell surface. Con-
versely, the activation by tPA does not require prior binding
to a cell surface receptor and results in a global activation of
plasmin. Given these mechanisms, a reasonable enzyme to
extract cells from 3D fibrin gels would be plasmin or the
activators of plasmin, uPA or tPA. In fact, prior studies have
used purified urokinase to isolate stromal cells from 3D fi-
brin gel cultures.41,42 In those studies, the authors dissolved
their fibrin gels in a solution consisting of the medium con-
taining serum (the source of the plasminogen) and 5000 units
of urokinase. However, we did not compare these enzymes
side-by-side in this study primarily due to their high cost rel-
ative to nattokinase. Achieving the comparable levels of fibri-
nolytic activity by purified urokinase would be *300 · more
expensive than nattokinase, whereas plasmin would cost
nearly 42,000 · more. Other possible enzymes were also con-
sidered, including proteinase K, collagenase, and Accutase;
however, since none of these are specific for fibrin,71–73 we
reasoned that they would not be as efficient.

Trypsin is commonly used to passage cells during 2D cell
culture, but our data show that retrieving cells from 3D fibrin
gels using trypsin is very inefficient, even when the gels are
exposed to the enzyme for 30 min. As prolonged exposure to
trypsin causes an upregulation in proteins that regulate ap-
optosis,74 we concluded that incubation times longer than
30 min would be undesirable. We speculate that the in-
creased efficiency of cell retrieval and the high degree of cell
viability achieved with 30 min of nattokinase are likely due
to its high affinity and fibrinolytic specificity to cross-linked
fibrin.43–45 Although we are unaware of direct comparisons
of the relative affinities of nattokinase and trypsin to fibrin,
trypsin has a markedly lower affinity to fibrin compared to
plasmin.75 Furthermore, a previous report suggested that
nattokinase has a higher affinity to cross-linked fibrin than
plasmin.76 Thus, it is reasonable to infer that nattokinase also
has a higher affinity to fibrin compared to trypsin.

MSCs from bone marrow and a variety of other adult
tissues are already the focus of numerous human clinical
trials77,78 and have shown enormous promise in preclinical
studies to facilitate bone regeneration,79 promote tissue
neovascularization,80–82 and reduce inflammation.83 Much of
their therapeutic benefits seem to be related to their trophic
effects, that is, through the secretion of numerous growth
factors.83 In the case of bone marrow, MSCs are relatively
rare cells (*0.01% of the nucleated cells from a low-density
Percoll gradient84) and are typically isolated based on their
adherent properties.84 Comparatively, a large number of
cells (*107) are needed for therapeutic applications, in part,
because the number of cells that actually engraft within

target tissues may be quite low.85 As a result, MSCs are
typically expanded using standard 2D cell cultures. How-
ever, it has previously been shown that culturing MSCs on
2D surfaces, over time, diminishes the expression levels of
surface markers commonly associated with MSCs (e.g.,
VCAM-1, ICAM-1, and CD157)86 and adversely affects their
proliferation and telomere length.9,10 A quasi-3D fibrin cul-
ture, where cells were grown on fibrin gels, retained multi-
potentiality of MSCs,87 but it is unclear if a protocol
consisting entirely of 3D culture would be even better in
terms of maintaining MSC multipotency. With the simple
enzymatic method to digest fibrin without harming the cells
that we have described here, the possibility now exists that
MSCs can be cultured exclusively in 3D from the time of
harvest (or perhaps, the first passage, to exploit their ad-
herent properties to isolate them from other cell types) to the
time of therapeutic application. Furthermore, cultures of
multiple cell types could now theoretically be grown in 3D
fibrin gels, extracted by nattokinase, and subsequently sorted
through fluorescent-activated cell sorting for subsequent
analyses or applications. In our own work, we expect that
this methodology will enable our efforts to better understand
cross talk between MSCs and endothelial cells in the peri-
vascular niche.35

Conclusion

Retrieving viable cells with high efficiency from 3D envi-
ronments is nontrivial. We described here a simple yet ef-
fective method to harvest MSCs encapsulated within 3D
fibrin gels using a powerful fibrinolytic enzyme, nattokinase.
Our data show that MSCs recovered from 3D fibrin gels
using nattokinase are not only viable but also retain their
proliferative and multilineage potential. Demonstrated for
MSCs, this method will likely be useful to also retrieve other
cell types from 3D fibrin gels for subsequent applications,
including expansion, bioassays, and in vivo injection.
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