Skip to main content
. 2014 Feb 5;5:6. doi: 10.1186/2041-1480-5-6

Table 7.

Disjoint corpus ensemble results on clinical + medical development set

 Strategy Normalize Abbr →Exp
Exp →Abbr
Syn
 Clinical
 Medical
 Clinical
 Medical
 Clinical
 Medical
RI_4
RI_4
RI_4
RI_8
RI_20
RI_20
RP_4_sw RP_4_sw RP_4_sw RP_8_sw RP_4_sw RP_2_sw
AVG
True
0.13
0.09
0.39
AVG
False
0.24
0.11
0.39
SUM
True
0.13
0.09
0.34
SUM
False
0.32
0.17
0.52
AVG →AVG
 
0.15
0.09
0.41
SUM →SUM
 
0.13
0.07
0.40
AVG →SUM
 
0.15
0.09
0.41
SUM →AVG   0.13 0.07 0.40

Results (P = weighted precision, R = recall, top ten) of the best models with and without post-processing on the three tasks. Dynamic # of suggestions allows the model to suggest less than ten terms in order to improve precision. The results are based on the application of the model combinations to the development data.