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Abstract

Simian Foamy Virus (SFV) can be transmitted from non-human primates (NHP) to humans. However, there are no
documented cases of human to human transmission, and significant differences exist between infection in NHP and human
hosts. The mechanism for these between-host differences is not completely understood. In this paper we develop a new
Bayesian approach to the detection of APOBEC3-mediated hypermutation, and use it to compare SFV sequences from
human and NHP hosts living in close proximity in Bangladesh. We find that human APOBEC3G can induce genetic changes
that may prevent SFV replication in infected humans in vivo.
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Introduction

Simian foamy viruses (SFV) comprise a subfamily of retrovi-

ruses that naturally infect all primates examined with the notable

exception of humans. In non-human primates (NHP), they show

strong evidence of co-evolution with their hosts [1]. Persistent

infection with SFV is ubiquitous in populations of free-ranging

NHP [2], [3] and is not thought to be pathogenic in the natural

host. However, recent work shows increased morbidity and

mortality for macaques infected with SFV and SIV (simian

immunodeficiency virus) compared to those infected with SIV

alone [4]. SFV has been zoonotically transmitted to humans on

more independent occasions than any other simian-borne

retrovirus [5], [6]. There are no documented cases of human

to human SFV transmission, including between discordant

couples [7], [8]. The factors underlying the apparent lack of

human-to-human transmission are not well understood. Howev-

er, the apparent lack of viral replication in humans is probably an

important factor [7], [9]. In NHP, SFV is believed to be

transmitted through saliva, primarily through biting. This

conclusion is supported by studies that have shown high levels

of viral RNA in the oral mucosa of NHP, indicative of replication

at that site [10], [11]. The large number of NHP infected with

SFV and relatively frequent zoonotic transmission allow study of

the roles that viral strain variation and host immune response

may play in preventing SFV from becoming an endemic human

virus.

There have been no direct experimental infections of a

susceptible host with SFV or any other foamy virus. However,

blood transfusions from an SFV positive NHP to an SFV negative

NHP have been reported [12], [13]. From these studies, a model

for the events that occur after SFV infection has been proposed.

Briefly, initial infection is of PBMCs. Viral DNA integrations are

found in these cells, but replication is not detectable. When a

latently infected PBMC migrates to the oral mucosa, an unknown

process occurs that leads to infection of superficial epithelial cells,

in which the virus can replicate [10], [11]. Infections are

persistent, but the only cells that have been found to replicate

virus are in the oral mucosa. However, almost all organs in an

infected NHP contain latent proviruses at levels suggesting there

are many other cell types other than PBMCs that can be latently

infected.

Host-viral interactions are better understood for SIV, an NHP-

borne lentivirus, than for SFV. In particular the innate immune

system is known to play an important role in limiting lentiviral

inter-species transmission. Host factors such as SAMHD1,

tetherin, and APOBEC3 [14] are known to restrict lentiviruses,

which in turn have evolved viral protein antagonists to counter

these specific host factors. Cross-species transmission of lentiviruses

can be limited by the specificity of these viral antagonists for the
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host species to which the virus has adapted [15]. The APOBEC3

family of proteins are cytidine deaminases that act on negative

strand single-stranded DNA, which is created during reverse

transcription. Deamination changes C to U, which then appears as

G to A mutations on the positive strand [14]. The importance of

APOBEC3G as a barrier to cross-species transmission of SIV has

recently been highlighted by Etienne et al [16], who provide

evidence that the ability of SIVcpz Vif to adapt to restrict

chimpanzee APOBEC3G was more important than its ability to

counter SAMHD1 with another viral gene, vpx.

Human APOBEC3 has also been shown to be a potent SFV

restriction factor in tissue culture [17]. Some G to A mutations

have also been observed in SFV sequences derived from human

hosts [17]. These authors suggested that the observed mutations

may have been due to APOBEC3 hypermutation, but they noted

that strain-level polymorphisms, random retroviral mutations, or

other processes could not be excluded as alternative explanations.

Also, current methods for detecting and quantifying APOBEC3-

mediated hypermutation have limited sensitivities at low rates of

hypermutation. Thus, new methods are needed to resolve how

APOBEC3 proteins might protect humans from zoonotic trans-

mission of retroviruses.

APOBEC3 activity against retroviruses can be inferred via the

local sequence specificity of these editing enzymes. In general,

APOBEC3 activity is detectable as an overall excess of plus-strand

G to A mutations, however, the various members of the

APOBEC3 gene family each have their own local nucleotide

context specificity [18]. Much of the work on this specificity has

focused on the dinucleotide pair formed by a G and the nucleotide

immediately following on the positive strand. For example, human

APOBEC3G is known to induce mutation in a GG context. Thus

the level of activity of a given APOBEC3 enzyme can be

characterized using the counts of G to A mutations in and out of

context for that enzyme. Continuing the APOBEC3G example, by

comparing the number of GG dinucleotide context G to A

mutations to the number of such mutations outside this context,

one can detect APOBEC3G hypermutation. Similarly, hypermu-

tation by other APOBEC3 proteins can be inferred by G to A

mutations in other dinucleotide contexts.

Currently, the most popular approach, as implemented in the

widely used HYPERMUT program [19], is to use a Fisher test to

determine if the in context mutations statistically exceed the out of

context mutations. This application of the Fisher test has three

shortcomings: first, when testing the equality of two binomial

distributions, the nominal p-value of the Fisher test does not

correspond to the actual rejection rate under the null [20]–[23].

Indeed, by simulating under the null in parameter regimes

relevant to hypermutation analysis we show that it does indeed

deviate from the nominal p-value, and importantly that the level of

deviation depends on the parameters and thus cannot be

ameliorated by a simple global change of cut off. However, we

also find that the ‘‘mid-P’’ variant [24] does show significantly

better performance than the classical Fisher test in this respect.

Second, the Fisher test does not provide an estimate of the relative

probability of mutation (i.e. the effect size). Third, because the

Fisher test requires a strict segregation of sites into ‘‘in context’’

and ‘‘out of context,’’ it does not provide a foundation for further

generalization to incorporate subtleties such as varying ‘‘strengths’’

of hypermutation contexts.

In this paper, we employ a Bayesian method to detect and

quantify hypermutation by estimating the relative probability,

along with uncertainty estimates, of G to A mutation in a given

APOBEC3-associated context versus a control context. In addition

to providing a more sensitive test, the Bayesian methodology

provides an integrated means to estimate effect size (i.e.,

hypermutation strength) and significance (to decide whether

hypermutation is occurring). The risk ratio (described below) is a

natural choice to report alongside the Fisher p-value for effect size

estimation, as HYPERMUT does. Our approach does a better job

of effect size estimation than the risk ratio for a range of parameter

values spanning the data sets we have analyzed. Finally, the

Bayesian approach can be directly generalized to situations such as

different strengths of various hypermutation contexts.

Using this Bayesian approach, we examined the hypermutation

patterns of 1097 blood proviral DNA sequences from 169 rhesus

macaques, as well as 152 buccal swab RNA sequences from 30 of

these animals, and compared them to the hypermutation patterns

of 77 SFV proviral DNA sequences detected in blood obtained

from 8 zoonotically infected humans sampled from the same

geographic areas as the macaques [3], [25], [9]. The buccal swabs

are important for our analysis as they represent SFV as it is

actively replicating rather than latently present in blood.

For our studies of SFV variation, we have examined 1125

nucleotides of the gag gene [3]. This region of the genome was

chosen for our studies because in FV, the gag sequence is the most

variable of those encoding virion associated proteins [26]. This is

unlike the case of orthoretroviruses, where the env gene is the most

variable. The 1125 nucleotides were also chosen because this

region contains only one short motif (PSAP) that is known to be

required for FV replication. We reasoned that the relatively high

variability in this region of gag would allow us to define viral

strains. Since we had a large data set from this region of gag [3],

[25], [9], we used these sequences to determine potential

APOBEC3 mediated hypermutation of SFV.

Although we found evidence of hypermutation in SFV

sequences from both humans and macaques, the relative

frequency and intensity of SFV gag hypermutation differed

significantly between macaques and humans, as did the dinucle-

otide contexts, suggestive of different host APOBEC3 activities.

Moreover, by comparing macaque buccal swab RNA sequences to

those obtained from human whole blood, we conclude that the

signature of hypermutation in human host SFV sequences is not

present in the viruses shed from monkey oral mucosal tissues, but

likely arose after at least one round of replication in the human

host. Taken together, our results indicate that human APO-

BEC3G is at least one mechanism that protects humans from

extensive replication of some SFV strains.

Author Summary

Simian Foamy Virus (SFV) is a very common retrovirus in
monkeys. When an infected monkey bites a human it can
transmit the virus to the human; however, there are no
documented cases of human to human transmission.
There also appear to be significant differences between
infection in monkey and human hosts. The reason for
these differences in the two hosts is not completely
understood. In this paper we show that a family of host
defense enzymes called APOBEC3 may prevent replication
of SFV in humans. They do this by changing the genome of
the virus so that it cannot replicate. Although this same
process also happens in monkeys, it appears to happen
less than in humans, and the changes that the monkey
APOBEC3 enzymes make are less likely to prevent the virus
from replicating. We are able to make these inferences by
seeing characteristic types of mutations in a collection of
virus DNA sequences sampled in Bangladesh. We develop
new statistical methodology to do this analysis.

Hypermutation Inactivates Some SFV Strains In Vivo
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Results

Relative probability ratio estimation to detect APOBEC3-
mediated hypermutation

To ameliorate the issues with applying the Fisher test described

in the introduction, we developed a Bayesian approach to use the

in-context versus out-of-context mutation counts to statistically

identify hypermutation and quantify its strength (Figure 1). Our

method uses the same data as the Fisher test to describe the ratio,

with uncertainty estimates, of the probability of G to A mutation in

a dinucleotide context of interest compared to the corresponding

probability in a control context. We call this ratio the relative

probability ratio. The uncertainty estimates associated with the

relative probability ratio are crucial. For instance, if we see

mutation in one out of four context X positions, and two mutations

out of four context Y positions, then we can guess that the relative

probability ratio is 1/2. However, one can make this statement

with much higher certainty if we have 1000 out of 4000 X context

mutations and 2000 out of 4000 Y context mutations.

This notion of an estimate with uncertainty can be formalized

using Bayesian statistics as the posterior distribution of a model

parameter given the data. In our setting, the model parameter of

interest is the relative probability of G to A mutation in a

dinucleotide context associated with a particular APOBEC

activity, the focus context, to the probability of the same mutation

elsewhere, the control context. This relative probability will be simply

quantified as the ratio of the probabilities that we will call the

relative probability ratio.

We use two summaries of the posterior distribution of the

relative probability ratio. The first is the location of the 0.05

quantile, which we abbreviate Q05. Q05 signifies the level for

which, with posterior probability 0.95, the analysis predicts that

the true relative probability ratio is greater than or equal to Q05.

In casual terms, if Q05 is equal to 2, then we are 95% sure

mutations in the focus context occur at least twice as frequently as

those in the control context. We call the sequence as hypermutated

in a given context when the corresponding Q05 value of the

posterior distribution for the probability ratio exceeds 1.

The other summary used is the Maximum A Posteriori (MAP)

value for the relative probability. The MAP is the most likely

value, or mode, of the posterior distribution. As such it represents

our best estimate of the relative probability ratio. It is important to

note that the MAP of this ratio, the object of interest to us, is not

the same as the ratio of the MAP numerator and MAP

denominator. The difference between the two is especially

apparent when the distributions on the numerator and denomi-

nator have substantial skew, as is often the case in our setting

where the bulk of the probability can be on one side of the MAP

Figure 1. An overview of calculating the relative probability ratio (RPR). Top row: starting with a prior distribution and then adding data, we
get a posterior distribution of the mutation probability given that data. Bottom row: we can do this in the focus context (a nucleotide context
associated with hypermutation) and a control context (one that is not). Taking the ratio of the corresponding random variables gives the posterior on
the ratio of the mutation probabilities. Using this distribution we estimate the 0.05 quantile (Q05) and the Maximum A Posteriori (MAP) estimates of
the RPR.
doi:10.1371/journal.pcbi.1003493.g001

Hypermutation Inactivates Some SFV Strains In Vivo
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value for each distribution. Indeed, the difference between the

MAP of the ratio of two Beta-distributed random variables and the

corresponding ratio of the MAP values can get arbitrarily large

(Figure S1).

Note that we will be testing ‘‘overlapping’’ contexts such as GG

and GR (G followed by a G or an A). When GR is preferred over

GG, for example, this means that the combination of mutation in

the GG and GA contexts was more significant than considering

GG sites alone. For each sequence identified as hypermutated in

more than one context, the context with the highest Q05 value was

identified as the call pattern. The call pattern thus represents the

context in which evidence of hypermutation is strongest.

Validations were carried out on mutation counts simulated from

a range of relative probability ratios and background mutation

probabilities (see Materials and Methods). Ideally, according to the

definition of the p-value, one would get a uniform distribution of

p-values under the null. Although it is not possible to get an exactly

uniform distribution under the null in a discrete setting such as the

Fisher test, it is desirable to have this distribution as close to

uniform as possible (e.g., [24]). Under a variety of simulation

conditions, we find that the classical Fisher test is far from having a

uniform distribution under the null in that the observed p-value is

consistently smaller than the nominal p-value. Thus, we confirm in

this parameter regime the observations of others that the Fisher

test is consistently ‘‘conservative.’’ These simulations showed that

our method is more sensitive than the Fisher exact test (Table 1),

and that the sensitivity of the classical Fisher test cannot be

improved by a simple predetermined change of cutoff (Supple-

mentary Figures S2 & S3). We note that our method is slightly

‘‘liberal’’ for some parameter regimes (in particular for testing the

range between 0.05 and 0.1) and conservative for others.

Additionally, the simulations allowed us to directly compare our

MAP estimates to the true relative probability ratios used to

generate the simulated data. Typically researchers have calculated

effect size (hypermutation strength) by the risk ratio (RR, also

known as relative risk), as is done on the HYPERMUT web site

(see Materials and Methods). For most of the parameter domain,

MAP estimates were consistently closer to the relative probability

ratios used for simulation than were the RR estimates in terms of

mean squared error (Figure 2). The simulation parameter regime

for this figure was chosen to span the range observed in the SFV

and HIV sequences used in this study.

The ‘‘mid-P’’ variant of the Fisher exact test (reviewed in [24])

splits the probability of the observed contingency table in half, and

assigns one half of the probability to the ‘‘more extreme table’’

category and half to the ‘‘less extreme table’’ category. This

variant performed significantly better than the classical Fisher test

in generating an appropriate p-value distribution (Supplementary

Figures S2 & S3). For the simulations performed in this paper, this

effectively corrected the issues of p-value cutoff observed with the

classical Fisher test. However, the current methodology for

hypermutation detection uses the classical Fisher test, rather than

the mid-P version. Furthermore, in terms of the Receiver

Operating Characteristic (ROC) curve to judge the true positive

rate as parameterized by the false positive rate, the Bayesian

approach performs slightly better than the mid-P approach (Figure

S4).

We also validated our method using sequence data from an in

vitro study by Refsland et al. [27], which involved knocking out

members of the APOBEC3 family from human cell lines and

measuring the consequent levels of hypermutation. On the

Refsland data set, our methodology detected significantly more

positives when the corresponding APOBEC was present, and the

two tests had equal false positive rates when it was not. (Table S1).

Using simulations based on the Refsland sequences, with no

context-specificity to their mutations (see Materials and Methods),

we see that the median positive probability for our method is

below the expected 5% (Table S2).

In addition, we validated our method by applying it to sequence

data from a study by Land et al. [28] that found a significant

correlation between CD4 count and presence of strongly

hypermutated HIV virus. We performed a similar analysis as in

the original paper but with a slightly different bioinformatics

pipeline, (see Materials and Methods) and did not see a significant

effect when applying the Mann-Whitney test to compare CD4

counts between hypermutation positive and negative calls made by

either the Fisher test or our approach. However, when we added

the requirement that sequences considered positive for hypermu-

tation by Q05 also have a large effect size as measured by MAP (in

the top 25%) we did find a significant elevation in CD4 count

compared to the rest of the sequences (p = 0.026). However, we

did not see a significant effect when taking sequences that were

positive according to mid-P and in the top 25% of effect size

according to risk ratio (p = 0.31). Additionally, when restricting to

the sequences found to be hypermutated, we find a much more

significant nonparametric positive correlation between effect size

and CD4 count using our method (Kendall tau p = 0.0026) than

using mid-P together with the risk ratio (p = 0.060). These findings

emphasize the importance of accurate effect size estimation, which

forms an important part of our analyses of SFV sequences below.

Thus, a Bayesian framework to directly estimate the relative

probability of mutation in or out of a given APOBEC3 context

Table 1. The positive rate of Fisher test (before/), mid-P test (between/), and our methodology (after/) under various simulated
relative probability ratios.

Simulated relative probability

Cutoff 1 2 4 8 16

0.0125 0.001/0.004/0.025 0.008/0.023/0.072 0.097/0.168/0.22 0.472/0.575/0.616 0.956/0.968/0.976

0.025 0.004/0.004/0.03 0.023/0.029/0.094 0.169/0.205/0.315 0.575/0.676/0.725 0.97/0.984/0.989

0.05 0.009/0.031/0.035 0.047/0.096/0.119 0.274/0.339/0.389 0.718/0.756/0.81 0.989/0.992/0.994

0.1 0.031/0.062/0.118 0.096/0.183/0.274 0.339/0.475/0.553 0.756/0.862/0.898 0.992/0.997/1

The rows show a variety of different statistical cutoffs, and columns show a variety of relative probability ratios. The rejection frequency of our method is closer to the
cutoff under the null hypothesis, and is more frequently able to find a difference when one exists. These simulations were based on simulated sequences of 1200 bp,
with 1/16 of sequence positions in the focus context, and 3/16 in a control context, and with a background (control context) G to A mutation probability of 0.008.
doi:10.1371/journal.pcbi.1003493.t001
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avoids problems associated with applying the Fisher test and

provides a more accurate means for quantifying the level of

hypermutation than previously described. The corresponding code

is already publicly available (http://github.com/fhcrc/hyperfreq;

see Materials and Methods for details) and will be made available

as a web tool in the near future.

More human host SFV sequences are hypermutated, and
to a higher degree than macaque host SFV sequences

In order to investigate whether APOBEC3 activities alter SFV

in macaques and/or humans infected with the virus, and to

compare the levels of APOBEC3 activities in humans and

macaques, we analyzed SFV gag sequences from a diverse

collection of human blood samples as well as macaque blood

and buccal samples collected across multiple urban and forested

locations in Bangladesh [3], [25], [9]. Overall, 50 out of 77

(,65%) human host SFV sequences obtained were found to be

affected by hypermutation (Table 2). SFV from all but one of the 8

humans showed evidence of APOBEC3G hypermutation in at

least one sequence. The exception was one individual (BGH150),

whose 6 SFV clones showed no evidence of G to A hypermutation

in any context. We note that the BGH150 sequences were similar

to those detected in the macaques from the same region, indicating

that the sequences were not amplified from contaminating

plasmid. In two of our human subjects, both of whom were

Figure 2. Comparison of MAP to mid-P and RR effect size estimates based on mutation count simulations of 600 bp (A) and
1200 bp (B) length sequences. The ratio of the mean squared error (MSE) of the RR estimate to that of the MAP estimator is plotted for each
simulation parameter set. Points are grouped into lines and colored by control context mutation probability. The x-axis shows the relative probability
ratio used for simulation. MSE ratio values greater than one indicate parameter regimes where MAP estimator does better than the RR or the mid-P
estimator. Note that because RR isn’t necessarily well-defined when one of the counts is zero, pseudocounts were added (see Materials and Methods).
Arrows label simulations in the parameter regime of the indicated study.
doi:10.1371/journal.pcbi.1003493.g002

Table 2. Hypermutation activity by strain, presented on both a sequence by sequence and host by host basis.

Species Strain # positive seqs Seq count # positive hosts Host count

human bormi1 12 17 2 2

human bormi2 21 31 4 4

human charmaguria 0 5 0 1

human dhamrai 4 4 1 1

human dokhola 2 2 1 1

human karamjal 0 7 0 2

monkey bormi1 7 117 3 23

monkey bormi2 1 102 1 24

monkey charmaguria 5 157 5 27

monkey dhamrai 26 274 15 51

monkey dokhola 7 138 5 29

monkey karamjal 1 66 1 10

These counts are only for core strains. Additionally, since both monkeys and humans are frequently infected with more than one strain, the host counts for a given strain
represent the total number of animals infected with that strain, even if infected with other strains as well.
doi:10.1371/journal.pcbi.1003493.t002
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infected by more than one SFV strain, we observed hypermutation

in clones corresponding to only one of the viral strains. Although

buccal swabs were taken from the humans sampled as part of this

study, none of these tested positive for SFV.

In contrast, only 82 out of 1097 (,8.1%) of SFV sequences from

monkey blood were found to be hypermutated, and only 42 of the

169 monkeys sampled had at least one hypermutation-positive

sequence. Hypermutation was more prevalent in human blood

sequences than monkey blood sequences (Fisher p = 1.3610232).

Defining a sample to be hypermutated if at least one sequence

obtained from the sample was hypermutated, hypermutation was

more prevalent in human blood samples compared to monkey blood

samples (Fisher p = 1.761024). Additionally, the distribution of

relative probability ratio across all sequences, irrespective of inferred

hypermutation status, was higher for human host SFV sequences

than for monkey host sequences (Figure 3). Furthermore, sequences

marked as hypermutated showed a higher relative probability ratio of

hypermutation in human blood than in monkey blood (Bonferroni-

corrected Wilcoxon p = 1.961026). Different context patterns were

observed between human and monkey sequences (Figure 4).

Of the 152 sequences obtained from the 30 macaque buccal

swab samples, only 8 – from 5 samples – were found to be

hypermutated. Thus, hypermutation was also more prevalent in

human blood sequences than monkey buccal sequences (Fisher

p = 2.3610222). Similarly, more human blood samples had

evidence of some hypermutation than monkey buccal samples

(Fisher p = 4.361024). Furthermore, the MAP relative probability

ratios of monkey buccal sequences were significantly lower than

those of the GG positive human blood sequences (Figure 5;

Bonferroni-corrected Wilcoxon p = 0.023). While the frequency of

hypermutation observed in monkey blood samples is higher than

that of monkey buccal samples, no statistical significance was

found for this relationship.

Thus, overall, with a high degree of statistical significance, more

human host SFV sequences were found to be hypermutated than

monkey host SFV sequences, and human host SFV sequences had

a higher level of hypermutation than the SFV sequences from the

macaque host.

Hypermutation dinucleotide context is significantly
different between human host and macaque host SFV

Hypermutation of human host sequences in these data was most

frequently associated with the GG and GR (i.e. GG or GA)

dinucleotide contexts (45 out of 50 sequences; 90%), consistent

Figure 3. Histogram of the Maximum A Posteriori (MAP) of relative probability ratios for all sequences in the study. The distribution of
the 8 human whole blood (WB) samples is to the right (towards larger values) compared to the 169 WB and 30 buccal swab (BS) samples from monkeys.
The maximum of the relative probability ratio density for monkey WB samples is about 4, but the y axis of this figure was truncated for clarity.
doi:10.1371/journal.pcbi.1003493.g003

Hypermutation Inactivates Some SFV Strains In Vivo
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Figure 4. Viral sequences show distinct hypermutation profiles in the two host species, congruent with activity observed in other
studies. Box and whisker plots on the same data are overlaid, where the thick horizontal bar shows the median value of the observations and the
rectangle spans the first and third quartiles; points are randomly ‘‘jittered’’ horizontally within a species to avoid superimposed points. Panels labeled
by target context using IUPAC degenerate notation, thus ‘‘R’’ designates A or G, and ‘‘M’’ designates A or C.
doi:10.1371/journal.pcbi.1003493.g004

Figure 5. Comparison of GG context hypermutation signal in human blood, monkey blood and monkey buccal sequences. Box and
whisker plots are shown as in Figure 3. The strongest hypermutation signal is observed in the human sequences.
doi:10.1371/journal.pcbi.1003493.g005
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with APOBEC3G activity as well as combined APOBEC3G and

APOBEC3F activity [27]. In contrast, monkeys exhibited a

significant amount of GA and GM (i.e. GA or GC) context

hypermutation (37 out of 82 sequences; 45%). GM context

hypermutation was also observed in a study that examined

hypermutation of the XMRV retrovirus in macaques [29].

Overall, hypermutation in human host sequences was more likely

to be called in GG and GR contexts than for monkey host

sequences (Fisher p = 1.361025). Furthermore, human blood SFV

sequences identified as hypermutated in GG and GR contexts

exhibited higher MAP relative probabilities than macaque blood

SFV sequences (Bonferroni-corrected Wilcoxon p = 4.861028 and

p = 3.761024, respectively for the two contexts), corresponding to

stronger action of APOBEC3G. The GM context, characteristic of

macaque APOBEC3DE hypermutation [29], showed elevated

levels in SFV from macaque samples (Figure 4). While the 8

monkey buccal sequences (out of 152) marked as hypermutated all

exhibited the strongest hypermutation signal in a GG context, as

mentioned above, the strength and abundance of this hypermuta-

tion signal was significantly lower in monkey buccal samples than

human blood samples.

There are more stop codons in human host SFV
sequences than in monkey host SFV sequences

Of the 77 human blood sequences, 36 (46.8%) contained stop

codons within the coding region when the sequences were

translated. These stop codons were ‘‘in-frame’’ in that they were

the result of a point mutation rather than insertion or deletion and

a consequent frame shift. In contrast, only 63 of the 1097 (5.7%)

monkey blood sequences had such stop codons. Thus, such stop

codons are more likely in blood samples from humans than those

from monkeys irrespective of whether the entire sequences were

called hypermutated by any test (Fisher p = 2.2610216). When

considering only sequences called hypermutation positive, this

statistical relationship held (Fisher p = 6.5610213). The same was

true when looking at only GG context positive sequences (Fisher

p = 1.0610212). Stop codons were correlated with presence of

hypermutation activity in humans: all human sequences with stop

codons were classified as hypermutated, and only 15 human host

sequences called hypermutation positive lacked stop codons. Thus

we find that the number of stop codons in sequences from human

host blood samples is statistically significantly higher than in

monkey host blood sequences.

6 of the 152 (3.9%) monkey buccal swab sequences had in-

frame stop codons. Thus, stop codons are also significantly more

prevalent in human blood sequences than they are in monkey

buccal sequences (Fisher p = 1.1610214). While the empirical

frequency of stop codons is higher in monkey blood samples than

in buccal samples, this relationship was not found to be statistically

significant.

Overall, by applying Bayesian analysis we show that hypermu-

tation is statistically more prevalent, stronger and in distinct

dinucleotide contexts in the human host sequences, and correlates

with the presence of stop codons in a coding region for gag that

would preclude virus replication (Figure 6).

Discussion

Methodology for detection and quantification of
hypermutation

We have developed Bayesian methodology to test for and

quantify the strength of hypermutation. Our motivation for doing

so was to quantify the relative probability of mutation in various

nucleotide contexts. This Bayesian method tidily formalizes this

idea as estimation, with uncertainty, of the ratio of probability of

mutation in two contexts as a ratio of beta-distributed random

variables. This enables a unified approach to significance testing

(hypermutation detection) and effect size (hypermutation strength)

estimation. We show that the Bayesian effect size estimate

performs better than the classically-used risk ratio (henceforth

RR) over a range of parameter values (Figure 2). Additionally, it is

recognized in the statistics community that the Fisher test is only

appropriate when the ‘‘marginals’’, i.e. the row (in this study the

number of mutants versus not) and column (in this study the

number of sites in dinucleotide context versus not) sums, are fixed

in advance [21]. This is not the case for hypermutation detection.

A number of statistical papers have highlighted problems with

applying the Fisher test when this assumption is violated [20]–[23].

For example, by direct enumeration of tables, D’Agostino et al.

[20] have shown that the Fisher test does not produce appropriate

p-values when testing the equality of two binomial distributions. In

our simulated data we also find that the classical Fisher test is less

sensitive than our method (Tables 1 and S1), and that this lack of

sensitivity cannot be easily remedied by considering alternate

globally-applied cut-offs (Figures S2 & S3). However, the ‘‘mid-P’’

variant of the Fisher test does generate a null distribution that is

significantly closer to the uniform than the classical Fisher test and

consequently is more sensitive. This variant should be preferred to

the classical Fisher test when sensitive detection of hypermutation

is desired using a Fisher-type test.

Others have proposed alternate means of investigating hyper-

mutation. One approach is to test ratios derived from k-mer motif

frequencies in sequences with a Hotelling T2 test [30]. This

method has the advantage of not needing to have every sequence

paired with a putatively non-hypermutated sequence, however, it

requires long sequences to get sufficient power (in that paper they

used whole HIV genomes). Another group [31] has made a

software package to investigate potential hypermutation using

plots, but did not formalize a statistical methodology.

Using validation and an application to real data, we have shown

that the Bayesian framework is an appropriate way to analyze

hypermutation-by-context data and that it avoids issues associated

with applying the Fisher exact test in this setting for significance

testing. We also show that the effect size estimates, which follow

naturally from our framework, are more accurate than the

standard risk ratio estimator.

A further advantage of the Bayesian framework proposed here is

that it can incorporate diverse sources of information as well as

uncertainty of ‘‘hidden’’ variables in a principled way. We will take

advantage of this feature in future work. Specifically, our next step

will be to account for a variety of ‘‘strengths’’ of k-mer context

specificities. We are motivated by observations that some contexts

are more strongly associated with hypermutation than others [32],

[18], [33]. Thus it is not possible to strictly segregate motifs into

‘‘hypermutation associated’’ versus not, making it impossible to

apply tests such as the Fisher exact test.

This flexibility comes at the cost of some non-trivial computa-

tion. Indeed, although we are able to employ a closed form

expression for the probability density function in a ratio of Beta

distributions, this expression involves hypergeometric functions

that take work to evaluate beyond standard implementations of

these functions. This is in contrast with the FET and the RR

estimators, which are easily implemented and computationally

efficient.

The code used to evaluate sequences for hypermutation using

our posterior estimation framework is available at http://github.

com/fhcrc/hyperfreq. This program, as well as the routines to

perform clustering to find representative non-hypermutated
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sequences, will be made into a more user-friendly form released

within the next year and linked to from the same hyperfreq website.

Hypermutation in Simian Foamy Virus
Using this methodology we found that hypermutation in SFV

latent proviral sequences from zoonotically infected humans is

common, strong, and primarily in the GG dinucleotide context

with some in GA and GR (i.e. GG and GA combined). This

corresponds primarily to APOBEC3G activity, perhaps combined

with activity of another APOBEC3. In contrast, the hypermuta-

tion signal observed in macaques is rare, generally much weaker,

and in a distinct set of dinucleotide contexts. A relatively small

number of these sequences exhibit very strong GM (i.e. G followed

by A or C) and GA context hypermutation, suggestive of rhesus

macaque APOBEC3DE activity [29].

By quantifying the strength, frequency, and context specificity of

APOBEC3 acting on SFV, we show that it is likely an important

restriction factor that acts in vivo to limit replication of some SFV

strains in the human host (Figure 6). This is true not only when

comparing hypermutation levels between proviruses present in

human blood and monkey blood, but also when comparing SFV

sequences present in human blood and monkey buccal swabs. This

is important, as oral mucosal tissues are the apparent source of

infectious virus. APOBEC3G-mediated inhibition of replication in

humans could explain the lack of human to human transmission of

these strains.

The differences in hypermutation context and strength suggest

that the observed hypermutation in human host sequences could

not have originated in macaques prior to transmission, and must

instead be occurring within human hosts. Other researchers have

shown human APOBEC3 to be a potent SFV restriction factor in

vitro [17]. These researchers also observed G to A mutations in

SFV sequences derived from four bushmeat hunters from

Southern Cameroon [17]. These individuals were persistently

infected with gorilla SFV from 10 to 30 year old bites, and viral

loads in PBMCs were described as being low. Several G to A

mutations were observed, some of which were in GG and GA

contexts, which may be explained by APOBEC3G or APOBEC3F

activity that targeted the viruses. However, the authors of that

study did not take a statistical approach and stated that they could

not rule out alternate causes for the observed mutations. Thus the

present study is the first to clearly show human APOBEC3 activity

against SFV in vivo.

There are conflicting data on whether or not there is an SFV

viral antagonist to APOBEC3 analogous to lentiviral Vif. While

some researchers [34]–[36] report that the nonstructural protein

Figure 6. Overview of sequences found to be hypermutated. Every sequence found to be hypermutated in our data set has a column (51 of
77 human sequences, and 105 of 1097 monkey blood sequences and 8 of 152 monkey buccal sequences). The top plot represents hypermutation
intensity, where the dot shows the Maximum A Posteori (MAP) value for the relative probability ratio and the lower limit of the line shows the 0.05
quantile. Sequences colored by species and sample type (whole blood (WB) or buccal swab (BS)). The call pattern is the context in which the
strongest dinucleotide hypermutation signal was found (using IUPAC degenerate nucleotide notation). ‘‘Stops’’ signifies the presence of in frame
stop codons.
doi:10.1371/journal.pcbi.1003493.g006
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Bet can counteract APOBEC3 activity, others [17] have not been

able to detect a difference between restriction of wild-type viruses

and viruses lacking Bet. However, it is possible that viruses can

evade APOBEC3 using other mechanisms. For example, murine

leukemia virus does this via modification of the Gag protein rather

than through a specific viral antagonist [37], [38]. In either case,

our data support a model where some strains of SFV are sensitive

to inactivation by human APOBEC3G.

APOBEC3 enzymes work on ssDNA during reverse transcrip-

tion. Unlike HIV, SFV primarily undergoes reverse transcription

prior to infection of new cells, and only the DNA already present

in the virion gets incorporated into new cells [39], [40]. Thus,

evidence of human APOBEC activity acting on SFV implies at

least one round of replication within the human host. This study

provides the first evidence, although indirect, supporting SFV

replication in humans. However, this conclusion is in contrast to

other work failing to detect SFV replication in human oral or

blood cells using other methods [7]. Indeed, in a companion study

[9] we were unable to detect SFV RNA in buccal swab samples

from the same seropositive humans. This suggests that the level of

replication in humans may be below the limit of detection, which

is consistent with the overall low proviral titers observed in human

blood.

Almost half of the human host SFV gag sequences in this study

contained in-frame stop codons within the coding region, which

would prevent further replication. Although there are likely to be

replication competent proviruses in humans, our studies have

failed to detect any SFV transcripts. We cannot say there are no

transcripts, only that our RT-PCR methods have failed to detect

these.

We also could not exclude the possibility that there is a strain- or

host-level effect on hypermutation frequency. In Feeroz et al. [3]

we demonstrated that SFV gag sequences from free-ranging rhesus

macaques in Bangladesh primarily cluster into six strains, and that

these strains have a strong correspondence with sampling location

and/or origin of the animal. Here we observe that some of these

SFV strains show more evidence of hypermutation than others

(Table 2). Two humans and 10 monkeys were infected with the

karamjal strain, a strain characteristically found in animals that

originate from the Karamjal region of Bangladesh. Only one out

of the 73 sequences of the karamjal strain was found to be

hypermutated, and that one hypermutated sequence was from a

macaque. Additionally, no hypermutated sequences were found in

a human infected with the charmaguria strain, a strain detected in

the macaques in the town of Charmaguria. On the other hand, 22

of the 31 sequences in bormi2 sequenced from human hosts (see

[25] for terminology) were positive for hypermutation, and every

human of the four infected with bormi2 had at least one

hypermutated sequence. This contrasts with only one sequence

of the 102 bormi2 sequences obtained from monkey hosts being

positive for hypermutation. Additional data are required to

understand how viral strain and host response influence

hypermutation.

Materials and Methods

Data set
The data set is completely described in [3], [25]. The human

study population consisted of eight human subjects who were

found to be positive for SFV by PCR as part of a larger study, as

well as 169 free-ranging macaques (M. mulatta). The macaques and

humans were sampled in regions of Bangladesh where they come

into close contact in the context of daily life. RT-PCR was

performed to clone partial gag sequences (1125 bp) from buccal

swab RNA of 30 macaques [9], while gag proviral sequences were

PCR amplified and sequenced from blood of macaques and

humans. An average of six clones per sample were sequenced.

Computational analysis
Clustering methods. Both strain classification and the

hypermutation analysis methods described below require robust

clustering methods. It was found that, particularly with higher

clustering thresholds, UCLUST v1.1 [41] produced poor cluster-

ing results due to the greedy nature of the algorithm. An iterative

recentering algorithm, suggested by the UCLUST author at

http://drive5.com/usearch/manual/recenter.html, was imple-

mented which helped with this issue. For each round of clustering,

consensus sequences from the prior round were added to the top of

an ungapped alignment, in order of cluster size from greatest to

least; during that iteration, clustering was carried out using

cluster_smallmem, producing new consensus sequences and

clusters. This process was repeated twice. Cluster assignments

were further fine-tuned by a script that found the true centroid of

each cluster, as defined by the sequence with minimal average

normalized Hamming distance to every other sequence in the

cluster. Each sequence was checked by this script to make sure that

it clustered with the centroid to which it was closest (again, as

defined by normalized Hamming distance), and reassignments

were made as necessary.

Characterization of hypermutation. Methods of hyper-

mutation evaluation typically compare sequences of interest to

some putatively non-hypermutated sequence, which we refer to as

the reference sequence. The authors of the HYPERMUT tool

suggest using subtypes. Because subtypes are not defined for SFV

we used an iterative clustering algorithm to obtain appropriate

reference sequences and minimize the effect of phylogenetic signal

on these comparisons (Figure S5).

During the first iteration, each sequence was compared to a

consensus of all of the sequences. As described below, sequences

were flagged as hypermutation positive or negative relative to

several hypermutation patterns. For sequences marked as positive

in any of these patterns, the sites marked as of hypermutated were

removed from this global alignment, producing a draft hypermu-

tation negative alignment.

The algorithm then proceeds iteratively from this starting point.

For each successive iteration, sequences from the previous

iteration’s draft hypermutation-negative alignment were run

through a clustering algorithm. The original sequences were then

compared to the consensus sequence of its cluster as a reference

sequence. The first step in clustering was to run the iterative

recentering clustering algorithm described above at a 98.8%

identity. To avoid potential issues induced by small clusters

composed mostly of hypermutated sequences being compared to

their consensus sequences which reflect this hypermutation,

clusters with fewer than 15 sequences were merged with the

closest cluster, as defined by the distance between cluster centroids,

until no clusters smaller than 15 sequences remained. Distances

were computed using the ape package’s dist.dna [42] under the

K80 [43] model.

The 98.8% clustering threshold for obtaining reference

sequences was chosen to partition sequences based on sub-strain

phylogenetic structure. Lower thresholds led to false positive

identification of hypermutation in entire small clades. These clades

were separated from the dhamrai strain by phylogenetic signal

derived in part by a number of GG to GA mutations. These

mutations occurred in similar locations in the sequences obtained

from several distinct specimens with their correspondingly

different sequences. We did not observe such positional hypermu-
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tation similarity across multiple sequences in the rest of the data,

nor did we see entire clades being marked as hypermutation

positive. This suggested that the mutations defining these clades

occurred in the common ancestor of the sequences rather than

being the result of recent hypermutation. At 98.8% we did not

observe this phenomenon.

The entire process of hypermutation evaluation and cluster-

ing was repeated for 5 iterations. Hypermutation results from

the final iteration were taken as the definitive results for the data

set.

Bayesian method of hypermutation quantification. The

statistical question underlying hypermutation detection is formu-

lated as follows. Assume we have two different contexts A and B,

and some number of trials is performed in each context; each trial

has some probability of success. We are interested in comparing

the probability of success in context A to that in B. In our

application, we consider contexts as nucleotide contexts, trials as

the number of such contexts, and successes as G to A mutations in

a context.

Here we apply Bayesian perspective to estimate the posterior

distribution of the relative probability of mutations in two

nucleotide contexts of interest. We will do so by considering the

mutation probability in each of the two nucleotide contexts as

random variables and taking their ratio to get the relative

probability ratio. In the Bayesian framework, one starts with a

so-called prior distribution on the model parameter representing a

vague posterior in the absence of data. Then using this prior and

data, one is able to obtain an informed distribution estimate of the

model parameter called the posterior distribution. In our setting,

because the priors on the individual mutation probabilities are

identical, the resulting prior for the ratio places equal prior

probability on the relative probability being greater than one and

less than one.

We consider the number of mutations in each context to be

independent binomially-distributed random variables where r and

s are the number of successes and failures, respectively:

P(rDh,rzs)~
rzs

r

� �
hr(1{h)s

We model the probability of success for the binomial random

variable with a beta distribution. The beta distribution is a classical

distribution Beta on [0,1] parameterized by a and b with density

dbeta(h,a,b)~
C(azb)

C(a)C(b)
ha{1(1{h)b{1:

For example, Beta(1,1) is the uniform distribution. If the prior

distribution is Beta(a,b), then given the observation of r successes

and s failures under a binomial model, the posterior distribution is

Beta(rza,szb) [44].

The probability distribution function (PDF) for the ratio w of

two beta-distributed random variables (denoted h above) was

found in 2000 by Pham-Gia [45] in terms of hypergeometric and

beta functions. The PDF uses the hypergeometric function

2F1(a,b; c; w)~
X
k§0

a
�kkb

�kk

c
�kk

wk

k!

where d
�kk : ~d(dz1) . . . (dzm{1) is the kth rising power of a.

Theorem (Pham-Gia, 2000): Assume that Xi*Beta(ai,bi) for

i~1,2. Then the density of X1=X2 for 0vwƒ1 is

f{(a1,a2,b1,b2; w)~

B(a1za2,b2)wa1{1
2F1(a1za2,1{b1; a1za2zb2; w)=C

and for w§1 is

fz(a1,a2,b1,b2; w)~

B(a1za2,b1)w{(1za2)
2F1(a1za2,1{b2,a1za2zb1; 1=w)=C

where B(a,b) is the beta function, 2F1 is the hypergeometric

function, and C~B(a1,b1)B(a2,b2).
We will denote the probability distribution corresponding to this

density as BetaRat(a1,a2,b1,b2).

If we run two experiments 1 and 2 with a’i successes and b’i
failures for experiment i, then the posterior on the ratio of h1=h2

will be that of the above theorem with ai~�aaza’i and bi~�bbzb’i,
assuming a prior distribution of Beta(�aa,�bb) for each experiment. In

summary, with count priors �aa and �bb, and a’i successes and b’i
failures for experiment i, the relative probability ratio will have the

distribution

BetaRat(�aaza’1,�aaza’2,�bbzb’1,�bbzb’2):

As one might expect, there is a symmetry in the theorem when the

subscripts 1 and 2 are exchanged and w inverted. Specifically,

f{(a1,a2,b1,b2; w)~

fz a2,a1,b2,b1;
1

w

� �

w2
for 0ƒwƒ1

and

fz(a1,a2,b1,b2; w)~

f{ a2,a1,b2,b1;
1

w

� �

w2
for w§1:

It turns out for some parameter regimes the calculation of f{ and

fz is especially difficult, and we can use these equations to move

into a different regime.

Care is required in evaluating 2F1 in the regime of interest here.

Specifically, we are interested in evaluating 2F1(a,b; c; w) in the

case where a, b, and c can be in the hundreds in magnitude, and w

is near one. Using the implementation of the hypergeometric

function in the GNU Scientific Library, Mathematica, scipy or R

resulted in numerical instability for this domain. In fact, a direct

summation using the above definition leads to problems when w is

close to or greater than one because the rising factorial powers and

the factorial can compensate for each other:

2F1(a,b; c; w)~1z
ab

c
wz

a(az1)b(bz1)

c(cz1)2!
w2z

a(az1)(az2)b(bz1)(bz2)

c(cz1)(cz2)3!
w3z � � �

When this is the case, the convergence of the series depends on the

powers of w.

Others in the applied mathematics community have encoun-

tered difficulties calculating hypergeometric functions when w is

close to 1; for example [46] proposes a complex system of

equations for evaluating 2F1 when w is close to 1 and other

challenging situations. However, even this does not consistently

result in numerically stable solutions when a and b are relatively
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large without employing high/multiple precision arithmetic, as used

in the python mpmath library’s implementation of the function.

In the special case of only moderately negative, integral values

of b (recall that b is either 1{b1 or 1{b2 in our setting), the case

for the majority of our domain, we profit from applying the

recursively factored form

2F1(a,b; c; w)~

1z
a

1

b

c
w 1z

az1

2

bz1

cz1
w 1z

az2

3

bz2

cz2
w 1z � � �ð Þ

� �� �
:

For such values of b, this potentially infinite product is in fact finite.

When the counts are moderately large, direct evaluation is

feasible. A simple C language implementation of this product

employing the GMP library is approximately an order of

magnitude faster than mpmath in cases of moderate magnitudes

of b (on the order of a couple hundred). As the magnitude of b

increases, the number of iterations needed to compute the

recursively factored form becomes large and this approach

becomes less efficient. We have the option of switching to the

mpmath implementation in these cases.

The prior chosen for these analyses is based on a Beta(0.5, 1.0)

distribution, which has an expectation of 1/3. This distribution

represents our prior belief that mutations are generally rare within

any given context. This Beta distribution translates to a relatively

uninformative BetaRat(0.5, 0.5, 1.0, 1.0) prior of the Beta ratio

distribution. We note that this prior does not bias us towards either

the focus or control context, and was found to push the ratio

towards 1 in the case of sparse information better than a

BetaRat(1.0, 1.0, 1.0, 1.0) prior.

Using these implementations we can apply direct numerical

quadrature to get the MAP value and 95% confidence interval of

the posterior.

Hypermutation quantification with Fisher’s test and the

risk ratio. Here we review our use of these classical methods for

clarity. Given ai G sites mutated to A and bi G sites not mutated to

A for context i = 1,2(corresponding to in-context and out of

context respectively in our setting), we apply the Fisher exact test

to the contingency table

a1 a2

b1 b2

� �
:

These tests were computed using the fisher python library

[https://pypi.python.org/pypi/fisher/]. The mid-P variant of this

test was computed using a form of the ormidp.test function from

the R epitools package [http://cran.r-project.org/web/packages/

epitools/index.html] modified to allow for computation of P-

values for a strict one-tailed alternative hypothesis.

The basic formula for the risk ratio in this setting is

RR~
a1

a1zb1

�
a2

a2zb2

:

To avoid the case where the denominator is zero, we can add

pseudocounts of �aa and �bb to obtain

RR~
a1z�aa

a1zb1z�bb

�
a2z�aa

a2zb2z�bb
:

(We note that the output of the HYPERMUT website shows an

equation that is labeled ‘‘rate ratio’’ but appears to be the formula

for the odds ratio. By trying example sequences it becomes clear

that they are computing the risk ratio.)

Hypermutation evaluation: Implementation. Note that

the context for a given G to A mutation is defined to be the context

on the potentially hypermutated sequence, not the context on the

reference sequence; this is also the default setting with HYPER-

MUT. These context patterns will be referred to by their focus

context in terms of degenerate IUPAC codes. For brevity, hA3X

denotes a human APOBEC3X enzyme, while rhA3X denotes a

rhesus APOBEC3X enzyme.

The GG, GA and GR patterns correspond to the hypermuta-

tion patterns used in HYPERMUT [19] to evaluate for presence

of hypermutation associated with primarily APOBEC3G activity,

primarily APOBEC3F activity and combined A3G/A3F activity

(respectively). It was found that several of the most hypermutated

sequences from macaques bore a high number of mutations not

only in a GA context, but also in a GC context. This context

matches that observed in rhesus macaque A3DE (rhA3DE)

hypermutation, as ascertained by transfection studies [29]. In

order to more effectively detect this type of activity, we evaluated

sequences for the GM mutation pattern. Additionally, in order to

detect hypermutation resulting from combined rhA3F (or possibly

other GA-context rhA3) and rhA3DE activity, we added the GH

(G followed by anything but a G) pattern.

We called the sequence as hypermutated in a given context

when the corresponding Q05 (the 0.05 quantile as described

above) value of the posterior distribution for the probability ratio

exceeded 1. For each sequence identified as hypermutated in more

than one context, the context with the highest Q05 value was

identified as the call pattern. The call pattern therefore represents

the context in which evidence of hypermutation is strongest.

The hypermutation analysis was carried out using our

implementation of the above method, called hyperfreq, which is

publicly accessible at http://github.com/fhcrc/hyperfreq. The

core component responsible for evaluation of the BetaRat

distributions is available as a separate module at http://github.

com/fhcrc/betarat.

Simulation validation. For the first validation, mutation

counts were simulated from an array of control context mutation

probabilities and relative probability ratios in a parameter regime

mimicking that observed for the SFV sequences. For each control

context probability and relative probability ratio pair, mutation

counts for the control and focus contexts were generated by

sampling from the corresponding binomial distributions. The

number of focus and control context positions – 75 and 225,

respectively – were chosen to approximate the number of GG vs

GH (G followed by something other than a G) positions we would

expect from a SFV gag sequence of length 1200. To mimic the

HIV data that was used for real-data validation (see below), we

also simulated sequences of length 600. Additional sequence

lengths were simulated for supplementary figures. 1000 count-

based simulations were done in this manner for each parameter set

to compare hypermutation detection methods, and 5000 were

done for the effect size comparison. From these counts, MAP

estimates were computed and compared to the corresponding

relative probability ratio used for simulation, as were RRs.

Pseudocounts were added to the observations to avoid division by

zero for the RR. For fairness, we employed pseudocounts

corresponding to the prior used in the Bayesian analysis: given

mutation counts a and b in the focus and control contexts,

respectively, the RR was computed as ((a+0.5)/76)/((b+0.5)/226)

for the 1200 bp simulations and ((a+0.5)/39)/((b+0.5)/113) for the

600 bp simulations. The mean squared error (MSE) was

computed for each estimator and parameter set, and used to
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calculate the ratio of the MSE for the RR and mid-P to that of the

MAP estimator (Figure 2). The ROC curves (Figure S4) were

generated by a custom R script and aggregated across various

simulation parameters (control or background mutation probabil-

ity, sequence length, and true RPR).

For the second validation of our hypermutation detection

framework, we developed a simulation framework using the

bppsuite programs [47]. First, a phylogenetic tree from the [27]

sequences was built using FastTree [48] and a maximum

likelihood mutation matrix was derived for the corresponding

alignment using the Bio++ library [49] under the HKY85 model

[50], yielding model parameters kappa = 56.74, theta = 0.3145,

theta1 = 0.7385, theta2 = 0.5263. Sequences were simulated using

that mutation matrix and nucleotide distribution, creating a

simulated data set with compositional and mutational similarity to

the Refsland et al. [27] data. However, because these sequences

were made from a random process that simulates each nucleotide

position independently, there is no dinucleotide specificity and so

any detection of hypermutation is a false positive.
Real data validation. For the Refsland data, we had the

original, unmutated sequences so we didn’t have to do clustering

and unmutated sequence inference. Otherwise the analysis was the

same.

To process the Land et al. [28] data, we used HIV subtype

reference sequences for comparison in order to find hyper-

mutation. Specifically, for each sequence evaluated, we took the

best BLAST hit of that sequence on the LANL subtype reference

sequences from 2010 (in HXB2 range 5979–6576; http://www.

hiv.lanl.gov/content/sequence/NEWALIGN/align.html) and

used that as the un-mutated ancestor. We chose this fully-

automated approach rather than a similar but semi-automated

approach used in the original paper, which required expert

knowledge. BLAST hits and query sequences were aligned

together using MUSCLE v3.8.31 [51] and trimmed with trimal

v1.3.rev14 [52] using the –gappyout setting, and the resulting

sequences were used as input to hyperfreq. As in the original

study, only the single directly sequenced PCR product for

each patient was analyzed with respect to that individual’s

CD4 count. For the risk ratio computations we used (1, 1)

pseudocounts.

Supporting Information

Figure S1 A simple example showing how the ratio of MAP

values for two Beta distributions is not the same as the MAP value

of the corresponding BetaRat distribution. The MAP ratio

calculated is MAP(Beta(2.0, x))/MAP(Beta(x, 2.0)), while the

BetaRat MAP calculated is MAP(BetaRat(2.0, x, x, 2.0)).

(TIFF)

Figure S2 Comparison of P-value cumulative density functions

(CDFs) under the null for the Fisher exact test, mid-P, and BetaRat

methods. Individual plots are faceted by sequence length (rows)

and control context mutation probability (columns). In the

frequentist paradigm, p-values should be uniformly distributed

on the unit interval under the null hypothesis, corresponding to the

y = x line for the CDF. The classical Fisher P-value is consistently

conservative, while the mid-P and BetaRat CDFs are much closer

to what would be expected under the null, especially for the

range,0.05.

(TIFF)

Figure S3 Comparison of P-value (PPF for BetaRat) cumulative

density under the various true RPRs (rows) for Fisher exact test,

mid-P, and BetaRat methods. Plot columns correspond to

increasing control context mutation probabilities. Both the mid-

P and BetaRat methods are consistently more powerful than the

Fisher exact test, with P-value distributions closer to the null, as

also supported in Figure S2.

(TIFF)

Figure S4 Aggregated Receiver Operating Characteristic

(ROC) curves for three methods of assessing significance under

simulation. Numbers in the plot show the actual relative

probability ratio used for simulation. These curves show the

trade-off between sensitivity and specificity, in that a point

represents the true positive rate that can be achieved given a

certain level of false positive rate by adjusting the cutoff. Note

that these curves say nothing about selecting these cut-offs,

which is addressed in the other plots. Our formulation ‘‘br_cdf’’

has the highest line in each category, and thus has the best such

tradeoff.

(TIFF)

Figure S5 Flow of data throughout the analysis, from the

original alignment, through iterative hypermutation analysis,

strain clustering and other downstream analyses.

(TIFF)

Figure S6 Highlighter (http://www.hiv.lanl.gov/content/

sequence/HIGHLIGHT/highlighter.html) plot showing muta-

tions in a number of bormi2 SFV sequences obtained from both

monkeys and humans. The labeling of mutations as being

APOBEC-associated or not was made by the Highlighter tool

and may or may not correspond to what we find with our

methodology.

(TIFF)

Table S1 Our methodology (denoted Q05) is more sensitive

than the Fisher test on the Refsland data set and does not increase

the false positive rate. GG and GA were used as focus context for

the tests on data from both normal cells along with A3F (GA

context) and A3G (GG context) knockouts. The numerical entries

show the percent of viral sequences called hypermutated. Here A3

is used as an abbreviation for APOBEC3.

(DOCX)

Table S2 Statistics on the percentage of sequences called

hypermutated by Q05 on data sets simulated without hypermuta-

tion from the Refsland sequences (see Materials and Methods). All

entries of the equivalent table for the Fisher test at a 5%

significance level were zero. Thus the median positive probability

for Q05 is closer to 5% than for Fisher, although it was still

conservative for this data set.

(DOCX)
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