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Control of Seasonal and Pandemic Influenza

Seasonal influenza is an acute respiratory illness caused by influ-
enza virus. This disease has a strong impact on public health 
worldwide causing, annually, 3 to 5 million cases of severe ill-
ness and between 250 000 and 500 000 deaths, mainly among 
children, elderly, and immune-suppressed individuals (http://
www.who.int/mediacentre/factsheets/fs211/en/). The best way 
to fight the impact of this disease is to vaccinate the population. 
Available vaccines are mostly inactivated ones, with a smaller 
proportion of live attenuated vaccines. Inactivated vaccines are 
produced mainly in embryonated chicken eggs and to a lesser 
extent in cell culture.1,2 Influenza vaccines induce protection in 
immunized individuals through the generation of neutralizing 
antibodies, mainly directed against the viral envelope glycopro-
tein hemagglutinin (HA). Virus antigenic variants arise con-
stantly due to the high variability of the gene encoding the HA. 
Given the high rate of antigenic variation of the HA, antibod-
ies that neutralize a subtype are often ineffective to neutralize 
other subtypes, and consequently the strains included in seasonal 
vaccines must be constantly updated. Vaccine efficiency severely 
diminishes when new strains emerge with antigenic changes in 
the virus envelope proteins, and situations where the antigenic 
matching between vaccine strains and the new circulating ones 
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In pursuit of better influenza vaccines, many strategies are 
being studied worldwide. An attractive alternative is the 
generation of a broadly cross-reactive vaccine based on the 
induction of cytotoxic T-lymphocytes (CTL) directed against 
conserved internal antigens of influenza A virus. The feasibility 
of this approach using recombinant viral vectors has recently 
been demonstrated in mice and humans by several research 
groups. However, similar results might also be achieved 
through immunization with viral proteins expressed in a 
prokaryotic system formulated with the appropriate adjuvants 
and delivery systems. This approach would be much simpler 
and less expensive. Recent results from several laboratories 
seem to confirm this is as a valid option to be considered.
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is sub-optimal are not exceptional. On rare occasions, com-
pletely new pandemic influenza variants arise, to which most of 
the human population has not been exposed. Under these cir-
cumstances, population immunity is low or null, allowing for an 
accelerated transmission of the new strain worldwide, which can 
have devastating consequences in terms of human lives. A recent 
analysis of the effectiveness of influenza vaccines holds that the 
immunity generated during certain seasons is at best moderate, 
when not significantly low or absent. In the ideal situation when 
antigenic matching between vaccines and circulating strains is 
optimal, average effectiveness was 69%.3 During an outbreak of 
a pandemic strain there is a risk that the development of a vaccine 
for the emerging strain be too slow and, when available, come 
too late.

Improving the Performance of Current Vaccines

Much effort has been devoted to the improvement of current 
vaccines using different strategies, such as exploring new routes 
of vaccine administration, like oral,4 intranasal,5 or intradermal 
immunization,6 new delivery systems like micro-needles7 or 
addition of adjuvants which might allow for an increase in the 
humoral and cellular responses,8,9 and a significant decrease in 
the dose of protective antigen needed.10 It has also been reported 
that variations in the method of inactivation can significantly 
improve vaccine efficacy.11,12

Development of New Generation Vaccines

The main line of work in this field is focused on generating totally 
new vaccines using genetic engineering techniques. Conspicuous 
examples of this are: expression of the viral HA by means of 
recombinant vectors,13-15 production of virus-like particles (VLP) 
of influenza containing the influenza proteins HA and Matrix1 
(M1),16 production of recombinant HA subunit vaccines in insect 
cells through the baculovirus system,17 and production of recom-
binant HA or its fusion with flagellin in Escherichia coli.18,19 DNA 
vaccines and peptide based vaccines have already been assayed in 
humans with promising results.20,21 While many of these strate-
gies proved to be very efficient and in some cases induced signifi-
cant increases in cross-reactive immune responses, they did not 
completely solve the problems derived from the high antigenic 
variability of influenza virus.
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their functional role during the viral replication cycle. It is well 
known that while they cannot induce neutralizing antibodies 
in infected or immunized animals, they are capable of induc-
ing strong cellular immunity. For many years it has been known 
that mice recovering from infection with a certain subtype of 
influenza A virus have some protection against lethal challenge 
with a heterologous strain, and that the immunological basis of 
this phenomenon is mediated mainly by anti-influenza specific 
CTLs.33,34 These CTLs recognize highly conserved amino acid 
sequences of certain viral proteins, mainly proteins within the 
virus particle, exposed by the MHC class I pathway on the sur-
face of infected cell.35-38 Although it has not been clearly estab-
lished yet, there is some evidence of correlation between CTLs 
and protection, in humans.39,40

The cross-reactivity of polyclonal virus-specific CD8+ T-cell 
populations (obtained from european subjects), which target 
cells pulsed with H5N1-derived peptides or NP gene-transfected 
cells of the same avian influenza virus, demonstrates that human 
CTL response displays a high degree of cross-reactivity for very 
diverse influenza virus subtypes.41

The concept that a vaccine formulated with a recombinant 
antigen unable to induce neutralizing antibodies can protect 
immunized mice from a lethal viral challenge was validated in 
the early 90s. Earlier experiences with a NP-based T-cell vaccine 
using purified recombinant NP (rNP) as a vaccine antigen indi-
cated the validity of this concept,42 which was further confirmed 
with a genetic vaccine containing a NP gene-carrying plasmid, 
which was able to protect mice against lethal challenges with an 
heterologous influenza virus.43

Recombinant Vector Based T-Cell Vaccine  
for Influenza

Very recently, the use of recombinant adenovirus vectors express-
ing viral proteins NP and M2 (full length or M2e), showed that 
a T-cell vaccine against influenza could be extremely effective in 
mice.44,45 Furthermore, in a similar approach in a Phase I clinical 
trial, a modified Vaccinia virus Ankara (MVA) vector, encoding 
NP and M1, generated potent T-cell CD8+ specific immunity 
in immunized humans.46 A Phase II clinical trial, conducted in 
healthy volunteers showed the efficacy of this vaccine to protect 
against flu symptoms after a challenge with live virus.47

Development of a T-Cell Vaccine Based  
on Adjuvanted rNP Produced in a Prokaryotic System

Although influenza vaccine candidates based on recombinant 
vectors are very promising, it should be noted that safety trials 
for this strategy will take a long time before they are approved 
and massively available in the market. Furthermore, its produc-
tion involves the handling of sophisticated and expensive tech-
nology not available in many developing countries. Therefore, it 
would be important to develop vaccines able to produce the same 
results but using simpler and less expensive production systems. 
Recently published results suggest that a NP based T-cell vaccine 
against influenza A could also be achieved using the recombinant 

A Universal Vaccine for Influenza

This line of work is pursuing a “universal” type of vaccine, that 
is, a vaccine that can protect against almost all known subtypes 
of influenza, including pandemic strains.22 In this regard three 
main strategies are being pursued:

Induction of neutralizing antibodies against highly conserved 
regions of the HA. The dogma that the influenza virus neutraliza-
tion is mediated only by antibodies that bind to the globular head 
of the HA protein has been recently challenged. Several laborato-
ries worldwide have generated broad spectrum human monoclo-
nal antibodies capable of neutralizing the virus by binding to a 
highly conserved region of the HA (the stem or stalk domain).23 
Some of these monoclonal antibodies are capable of reacting with 
all the known specificities of HA, and it has been demonstrated 
that passive transfer of this kind of antibodies to mice and fer-
rets may protect against a challenge with heterologous strains.24 
However, it is difficult to find the appropriate antigen capable of 
efficiently inducing such antibodies in vivo after immunization.25

An influenza A vaccine based on the ectodomain of the 
Matrix2 protein. The M2 protein (encoded in the same gene 
as the M1 protein) is a tetramer, functioning as an ion channel, 
and is present in very low amounts on the viral particle surface. 
The N-terminus of this protein (known as ectodomain or M2e) 
is highly conserved among strains of almost any origin. Based on 
this, M2e has been postulated as a very good candidate for the 
development of a universal vaccine. This assumption has been 
thoroughly demonstrated in pre-clinical models using various 
strategies.26,27 It was demonstrated that alveolar macrophages 
and Fc-receptors are fundamental for anti-M2e IgGs-mediated 
protection to occur.28 Currently, the potential of an M2e-based 
universal vaccine is also being analyzed in human clinical tri-
als.29,30 Although a vaccine based on the induction of anti-M2e 
antibodies is very promising, it will probably need to be com-
bined with other conserved influenza antigens, able to elicit an 
adequate cellular response for a fully protective immunity.

A T-cell vaccine for influenza. The goal of a T-cell vaccine is 
to induce a strong response of specific CD4+ and CD8+ lympho-
cytes which may contribute to pathogen clearance by recognition 
and elimination of infected cells. For several important human 
infectious diseases, the efficacy of T cells to induce therapeutic 
or prophylactic vaccines based on the use of replication-deficient 
viral vectors has already been established.31 In the particular case 
of influenza, the generation of a non-sterilizing cellular based 
immunity is being sought; an immunity which would substan-
tially decrease morbidity and mortality induced by the infection. 
cytotoxic T lymphocytes (CTL) are very effective in killing tar-
get cells by different mechanisms, thus eliminating the viruses 
from the infected organisms. In the case of influenza, it has been 
demonstrated that this type of immunity can protect mice from 
a lethal challenge with influenza A virus.32

Candidate Proteins for a T-Cell Vaccine for Influenza

Unlike surface glycoproteins, proteins located within the influ-
enza virion such as the NP and M1 are highly conserved due to 



©
20

13
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te

376	 Bioengineered	V olume 4 Issue 6

It has also been effective in decreasing the minimum antigen 
dose required to obtain protection after pulmonary delivery of 
an influenza vaccine.59 In mice, it was shown that IMX greatly 
improves the efficiency of a commercial vaccine increasing 
hetero-subtypic protection and CTL response.60 In humans, a 
trivalent inactivated influenza vaccine formulated with IMX, 
elicited a sharp increase in the CTL response compared with 
those individuals that received the unadjuvanted vaccine.61,62 
Rimmelzwaan et al.62 found that IMX significantly increases 
the anti-HA CTL response, but not an anti-NP CTL response. 
This is different from what happens in vivo, where after infec-
tion with influenza virus, the anti NP CTL response is domi-
nant. In our experience, analysis of the values of IgG subtypes 
and interleukins in the sera of mice that had been immunized 
with IMX-formulated rNP clearly indicated that the response 
obtained had a strong Th1 profile.63 These experiments also 
showed the generation of high titers of IgG anti-NP. This should 
be also taken into account, since it has been demonstrated that 
specific high titers obtained after immunization of mice with 
rNP contributed to a rapid antibody-dependent elimination of 
the year 2009 H1N1 pandemic virus strain and that high anti 
NP titers correlated with an increase in the CD8+ response.64,65 
These results strongly suggest that antibodies induced by immu-
nization with rNP-IMX could also contribute, significantly, to 
a T-cell vaccine.

Are Adjuvanted Split Virus Vaccines Able  
to Induce a T-Cell Response?

As mentioned previously, Rimmelzwaan et al.62 found that, con-
trary to what happens in infected individuals, the formulation 
of a split trivalent inactivated vaccine with IMX promotes the 
generation of CTL specific to HA but not NP. Lamere et al.64 
found that the lack of immunological reactivity of the endog-
enous NP contained in the split trivalent inactivated vaccine in 
mice, may be slightly improved by adding lipopolysaccharides to 
the vaccine formulation. In humans, preceding titers of specific 
anti NP IgG can be boosted in only few cases in subjects immu-
nized with conventional trivalent vaccines.64 In a similar way, 
Savard et al.66 found that NP and M1 proteins present in split 
virion seasonal flu vaccine, are not immunogenic in immunized 
mice. However they showed that immunization of mice and fer-
rets with the same vaccine adjuvanted with papaya mosaic virus 
nanoparticles triggered a cell-mediated immune response to NP 
and M1, and long-lasting protection in animals challenged with 
a heterosubtypic influenza strain. Based on the above mentioned 
facts, there is some evidence that the endogenous NP contained 
in split influenza vaccines can be stimulated to produce a CTL 
response. However, the current processes of vaccine manufactur-
ing are not validated to assess the content of NP in each batch, 
nor is it certain that the NP complexed with the genomic RNA 
in whole inactivated virus will be the most suitable antigen. On 
this basis it is tempting to hypothesize that for the purpose of 
generating an influenza specific CTL response, it would be more 
convenient to use recombinant NP, combined with a seasonal 
subunit vaccine.

protein produced in E. coli, which would be a far more simple 
and inexpensive system. In our laboratory, we have confirmed 
other group’s results, that is that the NP protein can be easily 
produced and purified in large quantities at low cost in E. coli

.
48-50 

The same appears true for other influenza proteins which are also 
candidates for a T-cell vaccine, such as M1 and M2.50,51

The main limitation of this approach is the difficulty to 
induce a strong CTL response in animals immunized with an 
exogenous protein.31 However, exogenous proteins may induce 
a CTLs response by the phenomenon known as cross presenta-
tion,52 and it is known that cross-presentation of an exogenous 
protein can be greatly stimulated with certain adjuvants which 
favor this process.53 Recently, several reports confirmed the effec-
tiveness of vaccines formulated with adjuvanted rNP to protect 
vaccinated animals against a lethal challenge of homologous or 
heterologous virus. Intranasal administration of cholera toxin 
combined with rNP protected against multiple viral subtypes.49 
The combination of recombinant NP and M2 formulated as 
liposomes stimulated a marked increase of specific CTLs and 
protected the vaccinated mice from a lethal challenge with the 
H5N1 avian strain.50 A vaccine formulated with rNP and a TLR3 
ligand, induced specific CTLs and protection against lethal chal-
lenge from influenza virus.54 Fortunately, the knowledge on the 
possibilities of increasing the CTL responses to a recombinant 
protein is constantly increasing. A priori, there are multiple 
potential formulations that could lead to the optimization of a 
T-cell based rNP vaccine for influenza. In the pursuit of such a 
strategy, our laboratory has recently begun a systematic search 
of adjuvants able to promote a strong CTL response in animals 
vaccinated with rNP.

Iscomatrix Adjuvanted Influenza Vaccines

Iscomatrix (IMX) adjuvant is an immunostimulating system 
which also optimizes the process of antigen delivery, and is very 
efficient in obtaining a strong CTL response after immuniza-
tion with exogenous protein.55,56 IMX consists of nanoparticles 
of about 40–50 nm in diameter with a strong negative charge, 
generated by the self assembly of phospholipids, cholesterol and 
saponins.55 The negative charge of these particles favors their 
interaction with basic proteins such as the NP.57 After immuni-
zation, the nanoparticles containing the antigen migrate to the 
draining lymph nodes, where they are captured and internalized 
by lymphoid resident dendritic cells (DC). IMX favors the pro-
cess of extracellular antigen translocation from the endosome 
to the cytosol for proteasomal degradation. The processed pep-
tides can then enter the major histocompatibility complex class 
I (MHC I) pathway, favoring the mechanism of cross presenta-
tion and the generation of CD8+ lymphocytes. The DCs that 
have taken up the particles are also activated, releasing many 
cytokines and lymphokines which stimulate the magnitude of 
the immune response. On the other hand, this system also has a 
strong stimulating activity on the humoral arm of the immune 
response.56 This system has been successful when combined 
with inactivated influenza vaccines. It has proven very effec-
tive in stimulating mucosal immunity by the intranasal route.58 
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laboratory we are currently developing delivery systems which 
include rNP in adjuvant loaded nanoparticles. In our work we 
have used rNP alone, however it is clear that the inclusion of 
other proteins with similar properties such as M1 and M2 is 
desirable. The production of vaccines based on this technology 
would be inexpensive due to their simplicity, and the technol-
ogy could be certainly implemented in developing countries, 
which are now almost completely dependent on external sources 
of production. A vaccine of this type should be combined with 
the seasonal vaccine to elicit both robust influenza-specific anti-
body and CTL responses for maximal protection.

Disclosure of Potential Conflicts of Interest
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Conclusions

In recent years the trend in the field of recombinant vaccines 
development has been the use of viral vectors when looking for a 
strong cellular response31 and purified proteins when looking for 
a humoral response.67 The use of purified recombinant proteins 
for the development of vaccines against infectious agents that 
require a strong cellular response has been virtually neglected. 
However, our results and those of other laboratories confirm 
that it is possible to induce cell-mediated immune responses 
with purified proteins formulated with the appropriate adju-
vants. Such formulations may even be improved by using par-
ticulate delivery systems. This type of methodology has been 
developed extensively in recent years and has also proved to be a 
very powerful method of inducing cellular immunity.68-70 In our 

References
1.	 Osterhaus A, Fouchier R, Rimmelzwaan G. Towards 

universal influenza vaccines? Philos Trans R Soc Lond B 
Biol Sci 2011; 366:2766-73; PMID:21893539; http://
dx.doi.org/10.1098/rstb.2011.0102.

2.	 Dormitzer PR, Tsai TF, Del Giudice G. New technolo-
gies for influenza vaccines. Hum Vaccin Immunother 
2012; 8:45-58; PMID:22251994.

3.	 Osterholm MT, Kelley NS, Sommer A, Belongia 
EA. Efficacy and effectiveness of influenza vaccines: 
a systematic review and meta-analysis. Lancet Infect 
Dis 2012; 12:36-44; PMID:22032844; http://dx.doi.
org/10.1016/S1473-3099(11)70295-X.

4.	 Quan FS, Compans RW, Kang SM. Oral vacci-
nation with inactivated influenza vaccine induces 
cross-protective immunity. Vaccine 2012; 30:180-8; 
PMID:22107852; http://dx.doi.org/10.1016/j.vac-
cine.2011.11.028.

5.	 Okamoto S, Matsuoka S, Takenaka N, Haredy AM, 
Tanimoto T, Gomi Y, et al. Intranasal immunization 
with a formalin-inactivated human influenza A virus 
whole-virion vaccine alone and intranasal immuniza-
tion with a split-virion vaccine with mucosal adjuvants 
show similar levels of cross-protection. Clin Vaccine 
Immunol 2012; 19:979-90; PMID:22552600; http://
dx.doi.org/10.1128/CVI.00016-12.

6.	 Dhont PA, Albert A, Brenders P, Podwapinska A, Pollet 
A, Scheveneels D, et al. Acceptability of Intanza® 15 μg 
intradermal influenza vaccine in Belgium during the 
2010-2011 influenza season. Adv Ther 2012; 29:562-
77; PMID:22678831; http://dx.doi.org/10.1007/
s12325-012-0025-9.

7.	 Kang SM, Song JM, Kim YC. Microneedle and muco-
sal delivery of influenza vaccines. Expert Rev Vaccines 
2012; 11:547-60; PMID:22697052; http://dx.doi.
org/10.1586/erv.12.25.

8.	 O’Hagan DT, Ott GS, De Gregorio E, Seubert A. The 
mechanism of action of MF59 - an innately attrac-
tive adjuvant formulation. Vaccine 2012; 30:4341-8; 
PMID:22682289; http://dx.doi.org/10.1016/j.vac-
cine.2011.09.061.

9.	 Scheifele DW, Ward BJ, Dionne M, Vanderkooi 
OG, Loeb M, Coleman BL, et al.; PHAC/CIHR 
Influenza Research Network (PCIRN). Compatibility 
of ASO3-adjuvanted H1N1pdm09 and seasonal tri-
valent influenza vaccines in adults: results of a ran-
domized, controlled trial. Vaccine 2012; 30:4728-32; 
PMID:22652402; http://dx.doi.org/10.1016/j.vac-
cine.2012.05.029.

10.	 Cox RJ, Pedersen G, Madhun AS, Svindland S, Sævik 
M, Breakwell L, et al. Evaluation of a virosomal H5N1 
vaccine formulated with Matrix M™ adjuvant in 
a phase I clinical trial. Vaccine 2011; 29:8049-59; 
PMID:21864624; http://dx.doi.org/10.1016/j.vac-
cine.2011.08.042.

11.	 Budimir N, Huckriede A, Meijerhof T, Boon L, 
Gostick E, Price DA, et al. Induction of heterosubtypic 
cross-protection against influenza by a whole inacti-
vated virus vaccine: the role of viral membrane fusion 
activity. PLoS One 2012; 7:e30898; PMID:22303469; 
http://dx.doi.org/10.1371/journal.pone.0030898.

12.	 Furuya Y, Regner M, Lobigs M, Koskinen A, 
Müllbacher A, Alsharifi M. Effect of inactivation 
method on the cross-protective immunity induced 
by whole ‘killed’ influenza A viruses and commercial 
vaccine preparations. J Gen Virol 2010; 91:1450-
60; PMID:20147516; http://dx.doi.org/10.1099/
vir.0.018168-0.

13.	 Hessel A, Schwendinger M, Holzer GW, Orlinger KK, 
Coulibaly S, Savidis-Dacho H, et al. Vectors based 
on modified vaccinia Ankara expressing influenza 
H5N1 hemagglutinin induce substantial cross-clade 
protective immunity. PLoS One 2011; 6:e16247; 
PMID:21283631; http://dx.doi.org/10.1371/journal.
pone.0016247.

14.	 Schwartz JA, Buonocore L, Suguitan A Jr., Hunter M, 
Marx PA, Subbarao K, et al. Vesicular stomatitis virus-
based H5N1 avian influenza vaccines induce potent 
cross-clade neutralizing antibodies in rhesus macaques. 
J Virol 2011; 85:4602-5; PMID:21325423; http://
dx.doi.org/10.1128/JVI.02491-10.

15.	 Steitz J, Barlow PG, Hossain J, Kim E, Okada K, 
Kenniston T, et al. A candidate H1N1 pandemic influ-
enza vaccine elicits protective immunity in mice. PLoS 
One 2010; 5:e10492; PMID:20463955; http://dx.doi.
org/10.1371/journal.pone.0010492.

16.	 Hossain MJ, Bourgeois M, Quan FS, Lipatov AS, Song 
JM, Chen LM, et al. Virus-like particle vaccine con-
taining hemagglutinin confers protection against 2009 
H1N1 pandemic influenza. Clin Vaccine Immunol 
2011; 18:2010-7; PMID:22030367; http://dx.doi.
org/10.1128/CVI.05206-11.

17.	 Treanor JJ, El Sahly H, King J, Graham I, Izikson R, 
Kohberger R, et al. Protective efficacy of a trivalent 
recombinant hemagglutinin protein vaccine (FluBlok®) 
against influenza in healthy adults: a randomized, 
placebo-controlled trial. Vaccine 2011; 29:7733-9; 
PMID:21835220; http://dx.doi.org/10.1016/j.vac-
cine.2011.07.128.

18.	 Khurana S, Verma S, Verma N, Crevar CJ, Carter 
DM, Manischewitz J, et al. Bacterial HA1 vaccine 
against pandemic H5N1 influenza virus: evidence 
of oligomerization, hemagglutination, and cross-pro-
tective immunity in ferrets. J Virol 2011; 85:1246-
56; PMID:21084473; http://dx.doi.org/10.1128/
JVI.02107-10.

19.	 Taylor DN, Treanor JJ, Sheldon EA, Johnson C, 
Umlauf S, Song L, et al. Development of VAX128, a 
recombinant hemagglutinin (HA) influenza-flagellin 
fusion vaccine with improved safety and immune 
response. Vaccine 2012; 30:5761-9; PMID:22796139; 
http://dx.doi.org/10.1016/j.vaccine.2012.06.086.

20.	 Ledgerwood JE, Wei CJ, Hu Z, Gordon IJ, Enama 
ME, Hendel CS, et al.; VRC 306 Study Team. DNA 
priming and influenza vaccine immunogenicity: two 
phase 1 open label randomised clinical trials. Lancet 
Infect Dis 2011; 11:916-24; PMID:21975270; http://
dx.doi.org/10.1016/S1473-3099(11)70240-7.

21.	 Atsmon J, Kate-Ilovitz E, Shaikevich D, Singer Y, 
Volokhov I, Haim KY, et al. Safety and immuno-
genicity of multimeric-001--a novel universal influ-
enza vaccine. J Clin Immunol 2012; 32:595-603; 
PMID:22318394; http://dx.doi.org/10.1007/s10875-
011-9632-5.

22.	 Roose K, Fiers W, Saelens X. Pandemic preparedness: 
toward a universal influenza vaccine. Drug News 
Perspect 2009; 22:80-92; PMID:19330167; http://
dx.doi.org/10.1358/dnp.2009.22.2.1334451.

23.	 Yewdell JW. Viva la revolución: rethinking influenza 
a virus antigenic drift. Curr Opin Virol 2011; 1:177-
83; PMID:22034587; http://dx.doi.org/10.1016/j.
coviro.2011.05.005.

24.	 Corti D, Voss J, Gamblin SJ, Codoni G, Macagno 
A, Jarrossay D, et al. A neutralizing antibody selected 
from plasma cells that binds to group 1 and group 2 
influenza A hemagglutinins. Science 2011; 333:850-
6; PMID:21798894; http://dx.doi.org/10.1126/sci-
ence.1205669.

25.	 Wang TT, Tan GS, Hai R, Pica N, Ngai L, Ekiert 
DC, et al. Vaccination with a synthetic peptide from 
the influenza virus hemagglutinin provides protection 
against distinct viral subtypes. Proc Natl Acad Sci U S A 
2010; 107:18979-84; PMID:20956293; http://dx.doi.
org/10.1073/pnas.1013387107.

26.	 Schotsaert M, De Filette M, Fiers W, Saelens X. 
Universal M2 ectodomain-based influenza A vaccines: 
preclinical and clinical developments. Expert Rev 
Vaccines 2009; 8:499-508; PMID:19348565; http://
dx.doi.org/10.1586/erv.09.6.

27.	 Shim BS, Choi YK, Yun CH, Lee EG, Jeon YS, Park 
SM, et al. Sublingual immunization with M2-based vac-
cine induces broad protective immunity against influ-
enza. PLoS One 2011; 6:e27953; PMID:22140491; 
http://dx.doi.org/10.1371/journal.pone.0027953.

28.	 El Bakkouri K, Descamps F, De Filette M, Smet A, 
Festjens E, Birkett A, et al. Universal vaccine based 
on ectodomain of matrix protein 2 of influenza A: Fc 
receptors and alveolar macrophages mediate protection. 
J Immunol 2011; 186:1022-31; PMID:21169548; 
http://dx.doi.org/10.4049/jimmunol.0902147.

29.	 Talbot HK, Rock MT, Johnson C, Tussey L, Kavita 
U, Shanker A, et al. Immunopotentiation of triva-
lent influenza vaccine when given with VAX102, 
a recombinant influenza M2e vaccine fused to the 
TLR5 ligand flagellin. PLoS One 2010; 5:e14442; 
PMID:21203437; http://dx.doi.org/10.1371/journal.
pone.0014442.



©
20

13
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te

378	 Bioengineered	V olume 4 Issue 6

59.	 Wee JL, Scheerlinck JP, Snibson KJ, Edwards S, 
Pearse M, Quinn C, et al. Pulmonary delivery of 
ISCOMATRIX influenza vaccine induces both system-
ic and mucosal immunity with antigen dose sparing. 
Mucosal Immunol 2008; 1:489-96; PMID:19079216; 
http://dx.doi.org/10.1038/mi.2008.59.

60.	 Sambhara S, Kurichh A, Miranda R, Tumpey T, 
Rowe T, Renshaw M, et al. Heterosubtypic immu-
nity against human influenza A viruses, including 
recently emerged avian H5 and H9 viruses, induced 
by FLU-ISCOM vaccine in mice requires both cyto-
toxic T-lymphocyte and macrophage function. Cell 
Immunol 2001; 211:143-53; PMID:11591118; http://
dx.doi.org/10.1006/cimm.2001.1835.

61.	 Ennis FA, Cruz J, Jameson J, Klein M, Burt D, 
Thipphawong J. Augmentation of human influenza 
A virus-specific cytotoxic T lymphocyte memory by 
influenza vaccine and adjuvanted carriers (ISCOMS). 
Virology 1999; 259:256-61; PMID:10388649; http://
dx.doi.org/10.1006/viro.1999.9765.

62.	 Rimmelzwaan GF, Nieuwkoop N, Brandenburg A, 
Sutter G, Beyer WE, Maher D, et al. A randomized, 
double blind study in young healthy adults comparing 
cell mediated and humoral immune responses induced 
by influenza ISCOM vaccines and conventional vac-
cines. Vaccine 2000; 19:1180-7; PMID:11137255; 
http://dx.doi.org/10.1016/S0264-410X(00)00310-8.

63.	 Cargnelutti DE, Sanchez MV, Alvarez P, Boado L, 
Glikmann G, Mattion N, et al. Improved immune 
response to recombinant influenza nucleoprotein for-
mulated with ISCOMATRIX. J Microbiol Biotechnol 
2012; 22:416-21; PMID:22450799; http://dx.doi.
org/10.4014/jmb.1106.06021.

64.	 Lamere MW, Moquin A, Lee FE, Misra RS, Blair PJ, 
Haynes L, et al. Regulation of antinucleoprotein IgG 
by systemic vaccination and its effect on influenza virus 
clearance. J Virol 2011; 85:5027-35; PMID:21367900; 
http://dx.doi.org/10.1128/JVI.00150-11.

65.	 LaMere MW, Lam HT, Moquin A, Haynes L, Lund 
FE, Randall TD, et al. Contributions of antinucleopro-
tein IgG to heterosubtypic immunity against influenza 
virus. J Immunol 2011; 186:4331-9; PMID:21357542; 
http://dx.doi.org/10.4049/jimmunol.1003057.

66.	 Savard C, Guérin A, Drouin K, Bolduc M, Laliberté-
Gagné ME, Dumas MC, et al. Improvement of the 
trivalent inactivated flu vaccine using PapMV nanopar-
ticles. PLoS One 2011; 6:e21522; PMID:21747909; 
http://dx.doi.org/10.1371/journal.pone.0021522.

67.	 Duthie MS, Raman VS, Piazza FM, Reed SG. The 
development and clinical evaluation of second-gener-
ation leishmaniasis vaccines. Vaccine 2012; 30:134-41; 
PMID:22085553; http://dx.doi.org/10.1016/j.vac-
cine.2011.11.005.

68.	 Tacken PJ, Zeelenberg IS, Cruz LJ, van Hout-Kuijer 
MA, van de Glind G, Fokkink RG, et al. Targeted 
delivery of TLR ligands to human and mouse den-
dritic cells strongly enhances adjuvanticity. Blood 
2011; 118:6836-44; PMID:21967977; http://dx.doi.
org/10.1182/blood-2011-07-367615.

69.	 Nembrini C, Stano A, Dane KY, Ballester M, van der 
Vlies AJ, Marsland BJ, et al. Nanoparticle conjuga-
tion of antigen enhances cytotoxic T-cell responses 
in pulmonary vaccination. Proc Natl Acad Sci U S A 
2011; 108:E989-97; PMID:21969597; http://dx.doi.
org/10.1073/pnas.1104264108.

70.	 Foged C, Hansen J, Agger EM. License to kill: 
Formulation requirements for optimal priming of 
CD8(+) CTL responses with particulate vaccine 
delivery systems. Eur J Pharm Sci 2012; 45:482-
91; PMID:21888971; http://dx.doi.org/10.1016/j.
ejps.2011.08.016.

45.	 Zhou D, Wu TL, Lasaro MO, Latimer BP, Parzych 
EM, Bian A, et al. A universal influenza A vaccine 
based on adenovirus expressing matrix-2 ectodomain 
and nucleoprotein protects mice from lethal challenge. 
Mol Ther 2010; 18:2182-9; PMID:20877342; http://
dx.doi.org/10.1038/mt.2010.202.

46.	 Berthoud TK, Hamill M, Lillie PJ, Hwenda L, Collins 
KA, Ewer KJ, et al. Potent CD8+ T-cell immunogenic-
ity in humans of a novel heterosubtypic influenza A 
vaccine, MVA-NP+M1. Clin Infect Dis 2011; 52:1-
7; PMID:21148512; http://dx.doi.org/10.1093/cid/
ciq015.

47.	 Lillie PJ, Berthoud TK, Powell TJ, Lambe T, Mullarkey 
C, Spencer AJ, et al. Preliminary assessment of the 
efficacy of a T-cell-based influenza vaccine, MVA-
NP+M1, in humans. Clin Infect Dis 2012; 55:19-
25; PMID:22441650; http://dx.doi.org/10.1093/cid/
cis327.

48.	 Ye Q, Krug RM, Tao YJ. The mechanism by which influ-
enza A virus nucleoprotein forms oligomers and binds 
RNA. Nature 2006; 444:1078-82; PMID:17151603; 
http://dx.doi.org/10.1038/nature05379.

49.	 Guo L, Zheng M, Ding Y, Li D, Yang Z, Wang H, 
et al. Protection against multiple influenza A virus 
subtypes by intranasal administration of recombi-
nant nucleoprotein. Arch Virol 2010; 155:1765-75; 
PMID:20652335; http://dx.doi.org/10.1007/s00705-
010-0756-3.

50.	 Thueng-in K, Maneewatch S, Srimanote P, Songserm 
T, Tapchaisri P, Sookrung N, et al. Heterosubtypic 
immunity to influenza mediated by liposome adju-
vanted H5N1 recombinant protein vaccines. Vaccine 
2010; 28:6765-77; PMID:20688037; http://dx.doi.
org/10.1016/j.vaccine.2010.07.065.

51.	 Ebrahimi SM, Tebianian M, Aghaiypour K, Nili H, 
Mirjalili A. Prokaryotic expression and characteriza-
tion of avian influenza A virus M2 gene as a candidate 
for universal recombinant vaccine against influenza A 
subtypes; specially H5N1 and H9N2. Mol Biol Rep 
2010; 37:2909-14; PMID:19809890; http://dx.doi.
org/10.1007/s11033-009-9851-5.

52.	 Neefjes J, Sadaka C. Into the intracellular logis-
tics of cross-presentation. Front Immunol 2012; 
3:31; PMID:22566915; http://dx.doi.org/10.3389/
fimmu.2012.00031.

53.	 Dresch C, Leverrier Y, Marvel J, Shortman K. 
Development of antigen cross-presentation capacity 
in dendritic cells. Trends Immunol 2012; 33:381-8; 
PMID:22677187; http://dx.doi.org/10.1016/j.
it.2012.04.009.

54.	 Jelinek I, Leonard JN, Price GE, Brown KN, Meyer-
Manlapat A, Goldsmith PK, et al. TLR3-specific dou-
ble-stranded RNA oligonucleotide adjuvants induce 
dendritic cell cross-presentation, CTL responses, and 
antiviral protection. J Immunol 2011; 186:2422-9; 
PMID:21242525; http://dx.doi.org/10.4049/jimmu-
nol.1002845.

55.	 Wilson NS, Yang B, Morelli AB, Koernig S, Yang 
A, Loeser S, et al. ISCOMATRIX vaccines mediate 
CD8+ T-cell cross-priming by a MyD88-dependent 
signaling pathway. Immunol Cell Biol 2012; 90:540-
52; PMID:21894173; http://dx.doi.org/10.1038/
icb.2011.71.

56.	 Morelli AB, Becher D, Koernig S, Silva A, Drane D, 
Maraskovsky E. ISCOMATRIX: a novel adjuvant for 
use in prophylactic and therapeutic vaccines against 
infectious diseases. J Med Microbiol 2012; 61:935-
43; PMID:22442293; http://dx.doi.org/10.1099/
jmm.0.040857-0.

57.	 McBurney WT, Lendemans DG, Myschik J, Hennessy 
T, Rades T, Hook S. In vivo activity of cationic 
immune stimulating complexes (PLUSCOMs). 
Vaccine 2008; 26:4549-56; PMID:18585421; http://
dx.doi.org/10.1016/j.vaccine.2008.06.024.

58.	 Coulter A, Harris R, Davis R, Drane D, Cox J, Ryan 
D, et al. Intranasal vaccination with ISCOMATRIX 
adjuvanted influenza vaccine. Vaccine 2003; 21:946-9; 
PMID:12547607; http://dx.doi.org/10.1016/S0264-
410X(02)00545-5.

30.	 Turley CB, Rupp RE, Johnson C, Taylor DN, 
Wolfson J, Tussey L, et al. Safety and immuno-
genicity of a recombinant M2e-flagellin influenza 
vaccine (STF2.4xM2e) in healthy adults. Vaccine 
2011; 29:5145-52; PMID:21624416; http://dx.doi.
org/10.1016/j.vaccine.2011.05.041.

31.	 Gilbert SC. T-cell-inducing vaccines - what’s the future. 
Immunology 2012; 135:19-26; PMID:22044118; 
http://dx.doi.org/10.1111/j.1365-2567.2011.03517.x.

32.	 Mbawuike IN, Zhang Y, Couch RB. Control of muco-
sal virus infection by influenza nucleoprotein-specific 
CD8+ cytotoxic T lymphocytes. Respir Res 2007; 8:44; 
PMID:17597533; http://dx.doi.org/10.1186/1465-
9921-8-44.

33.	 Effros RB, Doherty PC, Gerhard W, Bennink J. 
Generation of both cross-reactive and virus-specific 
T-cell populations after immunization with sero-
logically distinct influenza A viruses. J Exp Med 
1977; 145:557-68; PMID:233901; http://dx.doi.
org/10.1084/jem.145.3.557.

34.	 Yap KL, Ada GL, McKenzie IF. Transfer of spe-
cific cytotoxic T lymphocytes protects mice inocu-
lated with influenza virus. Nature 1978; 273:238-9; 
PMID:306072; http://dx.doi.org/10.1038/273238a0.

35.	 Wraith DC, Askonas BA. Induction of influenza 
A virus cross-reactive cytotoxic T cells by a nucleo-
protein/haemagglutinin preparation. J Gen Virol 
1985; 66:1327-31; PMID:3874261; http://dx.doi.
org/10.1099/0022-1317-66-6-1327.

36.	 Hurwitz JL, Hackett CJ, McAndrew EC, Gerhard W. 
Murine TH response to influenza virus: recognition of 
hemagglutinin, neuraminidase, matrix, and nucleopro-
teins. J Immunol 1985; 134:1994-8; PMID:3155776.

37.	 Yewdell JW, Bennink JR, Smith GL, Moss B. Influenza 
A virus nucleoprotein is a major target antigen for 
cross-reactive anti-influenza A virus cytotoxic T lym-
phocytes. Proc Natl Acad Sci U S A 1985; 82:1785-
9; PMID:3872457; http://dx.doi.org/10.1073/
pnas.82.6.1785.

38.	 Taylor PM, Askonas BA. Influenza nucleoprotein-
specific cytotoxic T-cell clones are protective in vivo. 
Immunology 1986; 58:417-20; PMID:2426185.

39.	 McMichael AJ, Gotch FM, Noble GR, Beare PA. 
Cytotoxic T-cell immunity to influenza. N Engl J 
Med 1983; 309:13-7; PMID:6602294; http://dx.doi.
org/10.1056/NEJM198307073090103.

40.	 Epstein SL. Prior H1N1 influenza infection and suscep-
tibility of Cleveland Family Study participants during 
the H2N2 pandemic of 1957: an experiment of nature. 
J Infect Dis 2006; 193:49-53; PMID:16323131; 
http://dx.doi.org/10.1086/498980.

41.	 Kreijtz JH, de Mutsert G, van Baalen CA, Fouchier RA, 
Osterhaus AD, Rimmelzwaan GF. Cross-recognition 
of avian H5N1 influenza virus by human cytotoxic 
T-lymphocyte populations directed to human influenza 
A virus. J Virol 2008; 82:5161-6; PMID:18353950; 
http://dx.doi.org/10.1128/JVI.02694-07.

42.	 Tite JP, Hughes-Jenkins C, O’Callaghan D, Dougan 
G, Russell SM, Gao XM, et al. Anti-viral immunity 
induced by recombinant nucleoprotein of influenza 
A virus. II. Protection from influenza infection and 
mechanism of protection. Immunology 1990; 71:202-
7; PMID:2172156.

43.	 Ulmer JB, Donnelly JJ, Parker SE, Rhodes GH, Felgner 
PL, Dwarki VJ, et al. Heterologous protection against 
influenza by injection of DNA encoding a viral protein. 
Science 1993; 259:1745-9; PMID:8456302; http://
dx.doi.org/10.1126/science.8456302.

44.	 Price GE, Soboleski MR, Lo CY, Misplon JA, Quirion 
MR, Houser KV, et al. Single-dose mucosal immu-
nization with a candidate universal influenza vac-
cine provides rapid protection from virulent H5N1, 
H3N2 and H1N1 viruses. PLoS One 2010; 5:e13162; 
PMID:20976273; http://dx.doi.org/10.1371/journal.
pone.0013162.




