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Introduction

Major depressive disorder (MDD), a highly disabling mental
illness, is one of the leading causes of disease burden world-
wide.1 The clinical evaluation of MDD relies on the documen-
tation of a minimum number of symptoms that substantially
impair functioning for a certain duration.2 However, the use

of such a symptom-based approach may result in diagnostic
inconsistencies that may hinder the interpretation of genome-
wide association, neuroimaging and postmortem investiga-
tions.3 Moreover, the accurate detection of subtle clinical ab-
normalities in the early stage of the disorder requires skilled
personnel in highly specialized mental health services. Thus
a more objective and reliable method, such as structural
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Background: Major depressive disorder (MDD) is one of the most disabling mental illnesses. Previous neuroanatomical studies of MDD
have revealed regional alterations in grey matter volume and density. However, owing to the heterogeneous symptomatology and complex
etiology, MDD is likely to be associated with multiple morphometric alterations in brain structure. We sought to distinguish first-episode,
medication-naive, adult patients with MDD from healthy controls and characterize neuroanatomical differences between the  groups using
a multiparameter classification approach. Methods: We recruited medication-naive patients with first-episode depression and healthy con-
trols matched for age, sex, handedness and years of education. High-resolution T1-weighted images were used to extract 7 morphometric
parameters, including both volumetric and geometric features, based on the surface data of the entire cerebral cortex. These parameters
were used to compare patients and controls using multivariate support vector machine, and the regions that informed the discrimination
between the 2 groups were identified based on maximal classification weights. Results: Thirty-two patients and 32 controls participated in
the study. Both volumetric and geometric parameters could discriminate patients with MDD from healthy controls, with cortical thickness in
the right hemisphere providing the greatest accuracy (78%, p ≤ 0.001). This discrimination was informed by a bilateral network comprising
mainly frontal, temporal and parietal regions. Limitations: The sample size was relatively small and our results were based on first-
episode, medication-naive patients. Conclusion: Our investigation demonstrates that multiple cortical features are affected in medication-
naive patients with first-episode MDD. These findings extend the current understanding of the neuropathological underpinnings of MDD
and provide preliminary support for the use of neuroanatomical scans in the early detection of MDD.
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 magnetic resonance imaging (MRI), might be helpful for de-
tecting this disorder in its early stage and characterizing its
complex and distributed neuroanatomical correlates.

Conventional structural neuroimaging studies of patients
with MDD and healthy controls have primarily focused on
regional alterations in grey matter volume or density; these
studies have been successful in revealing significant differ-
ences between these groups, especially in the orbitofrontal
cortex,4–6 anterior5–7 and posterior cingulate,8 precuneus,6,8 in-
sular cortex,9 hippocampus10 and temporal and parietal re-
gions.6,8,11 However, morphometric alteration in patients
with MDD may not be limited to regional alterations but
may also involve features derived from the shapes of the
brains.12 For instance, both volumetric features (e.g., cortical
thickness, regional area) and geometric features (e.g., sulcal
depth, Jacobian metric distortion) have been reported to be
altered in several neuropsychiatric disorders, including
schizophrenia, autism and Alzheimer disease.13–15 Given the
heterogeneous symptomatology and complex etiology of
MDD, it is likely that its neuroanatomical alterations are not
confined to a single morphological parameter but affect
multiple volumetric and geometric features. However, to
our knowledge, there have been no studies of MDD that
have examined curvature, Jacobian metric distortion or sur-
face area based on surface characteristics.

Most structural neuroimaging studies of MDD have exam-
ined morphometric differences between patients and controls
using a univariate analytical approach that considers each
voxel independently. This approach is advantageous in iden-
tifying region-specific differences between groups16 but is not
sensitive to detect differences in the spatial correlation be-
tween regions. Furthermore, univariate analytical methods
are based on average differences between groups and there-
fore do not allow inferences at the level of the individual. For
these reasons in recent years there has been increasing inter-
est in the application of multivariate pattern analysis to
neuro imaging data.17 This approach involves the application
of pattern classification algorithms to extract spatial and/or
temporal patterns from neuroimaging data, and the use of
this information to categorize individual observations into
different categories.18 Compared with the traditional mass-
univariate approach, multivariate pattern analysis allows in-
ferences at the level of the individual rather than the group,
and therefore has greater potential translational value in clin-
ical practice. Furthermore, in contrast to mass-univariate ap-
proaches, multivariate pattern analysis takes interregional
correlations into account and therefore may be more sensitive
to subtle and spatially distributed differences.19

Support vector machine (SVM)20,21 is a multivariate pattern
analysis technique that has emerged as a powerful tool in a
wide range of biomedical applications owing to its ability to
learn to categorize complex, high-dimensional training data
and generalize the learned classification rules to unseen
data.22 In recent years it has been widely used to classify vari-
ous neuropsychiatric and neurologic disorders, such as
Alzheimer disease,23 autism24 and schizophrenia25 (see the re-
view article by Orrù and colleagues20). Support vector ma-
chine typically involves a training phase and a testing phase.

In the training phase, a well-characterized sample is used to
develop a “decision function” or “hyperplane” that best dis-
tinguishes the 2 experimental groups of interest (e.g., patients
and controls). In the testing phase, this decision function is
used to predict the group to which a new observation be-
longs. The application of SVM to structural neuroimaging
data from patients with MDD has yielded promising results;
for instance, there is preliminary evidence that SVM could be
used to identify individuals with the disorder26 and predict re-
sponse to antidepressant medication.27 However, these studies
were based on grey matter volume and density and therefore
reflected a single aspect of the cortex; the use of multidimen-
sional brain measurements may provide a more comprehen-
sive characterization of the neuropathology of MDD.

In the present study we compared medication-naive adults
with first-episode MDD and healthy controls at the individ-
ual level using SVM. Specifically, we used a multiparameter
classification approach based on surface construction, which
has been used successfully in a previous investigation of pa-
tients with autism,24 to characterize the complex and subtle
neuroanatomical alterations of MDD in terms of both volu-
metric and geometric features. Our aims in the present study
were, first, to explore whether these features would allow ac-
curate discrimination between patients with MDD in its early
and untreated stage and healthy controls, and second, to ex-
amine which regions would provide the greatest contribution
to such discrimination.

Methods

Participants

We recruited medication-naive patients with first-episode MDD
from the Mental Health Center of our university-affiliated hos-
pital. The diagnosis of MDD was confirmed by 2 experienced
psychiatrists using the Structured Clinical Interview for DSM-IV
Axis I disorders (SCID). Comorbidity was also assessed using
the SCID. Any potential participants meeting the criteria for
other psychiatric disorders based on DSM-IV were excluded.
Patients were also excluded if they had a history of seizures,
 major head trauma, dementia, neurologic surgery, depression
with psychotic symptoms or cardiovascular disease, or if they
were younger than 18 or older than 60 years. We recruited
healthy controls from the community using poster advertise-
ments. To be included in the study, controls must have had no
personal history of psychiatric illness, as determined using the
SCID — Nonpatient edition, and no known psychiatric illness in
first-degree relatives. All controls were individually matched
with patients for age, sex, handedness and years of education.
The Ethical Committee of West China Hospital of Sichuan Uni-
versity approved our study protocol, and we obtained written
informed consent from all participants.

MRI data acquisition

Scanning was carried out on a 3.0 T MRI scanner (EXCITE, GE
Signa). Participant were fitted with soft earplugs, positioned
comfortably in the coil, and instructed to relax and remain



still. Head motion was minimized with foam pads. High-
 resolution 3-dimensional (3D) T1-weighted images were ac-
quired with a spoiled gradient recalled (SPGR) sequence with
the following parameters: repetition time 8.5 ms, echo time 3.4
ms, flip angle 12°, 156 axial slices with 1 mm thickness, axial
field of view 24 × 24 cm2 and matrix 256 × 256.

Image processing

The reconstruction of cortical surfaces was based on 3D
SPGR images using the FreeSurfer (http ://surfer .nmr .mgh
.harvard .edu/) software, which has been demonstrated to
show good test–retest reliability, particularly with different
scanners, manufacturers and field strength.28 This method
uses automated surface reconstruction, transformation and
high-resolution interparticipant alignment procedures to
accurately and rapidly measure the morphometric param -
eters of the entire cortex.29 The detailed procedure for sur-
face reconstruction with FreeSurfer has been described and
validated previously.28,30–34

In brief, this processing includes motion correction, re-
moval of nonbrain tissue using a hybrid watershed/surface
deformation procedure,31 automated Talairach transforma-
tion, segmentation of the subcortical white matter and deep
grey matter volumetric structures,32,34 intensity normal -
ization,35 tessellation of the grey matter and white matter
boundary, automated topology correction,33,36 and surface
deformation following intensity gradients to optimally
place the grey matter–white matter and grey  matter–
cerebrospinal fluid borders at the location where the great-
est shift in intensity defines the transition to the other tis-
sue class.29,37

Once the cortical models are complete, a number of de-
formable procedures can be performed for further data pro-
cessing and analysis: surface inflation;38 registration to a
spherical atlas using individual cortical folding patterns to
match cortical geometry across participants;39 parcellation of
the cerebral cortex into units based on gyral and sulcal struc-
tures;29 and creation of a variety of surface-based data, includ-
ing maps of curvature, sulcal depth and Jacobian metric dis-
tortion. We manually corrected inaccurate segmentation after
visual inspection on 23 patients and 18 controls with most re-
gions needing manual correction located in the temporal lobe.
We implemented quality control through visual inspection
 according to the criteria specified in the FreeSurfer user man-
ual  (http ://surfer .nmr .mgh .harvard .edu /fswiki /FsTutorial
/ControlPoints). Among these criteria are the requirements
that the pial surface boundary and white matter surface
boundary should not cross and that white matter should be
excluded from the surface. To improve the ability to detect
population changes, we blurred each participant’s morpho-
metric parameter map using a 25 mm full-width at half-
 maximum surface-based Gaussian kernel.40,41 As a previous
study has shown that cortical thickness and surface are influ-
enced by distinct genetic mechanisms,12 and since cortical grey
matter volume is related to both parameters, we extracted
3 volumetric parameters (i.e., volume, cortical thickness, pial
area) to examine their contribution to the identification of pa-

tients with MDD from healthy controls. Finally, we used a set
of 7 morphometric parameters — cortical thickness, volume,
pial area, area (i.e., the area of grey matter–white matter inter-
face), curvature, sulcal depth and Jacobian metric distortion
per vertex on a common average surface (163 842 cortical ver-
tices per hemisphere) — as input to the multimodal classifier.
For completeness, group differences in total brain volume, as
estimated by FreeSurfer, were assessed using t tests for in -
dependent samples before classification. This revealed that
there were no differences in total brain volume between the
MDD and control group (p = 0.93).

Classification and support vector machine

In the present study, we used SVM,42 as implemented in the
PROBID software package (http ://www .brainmap .co .uk
/probid .htm), to investigate the diagnostic potential of
7 morphometric parameters extracted from whole brain
structural MRI scans based on surface construction with
FreeSurfer. The PROBID software was originally designed to
support pattern recognition analysis of structural and func-
tional MRI data but can be applied to non-neuroimaging
data. It has been successfully used to distinguish between
trauma survivors with and without posttraumatic stress
disorder;43 predict responses to antidepressant medica-
tions;27 and identify ultra–high risk and first-episode psych -
osis based on neuroimaging, cognitive and genetic data.44

The PROBID software allows for a linear kernel matrix
(which measures the similarity between all pairs of brain
images) to be precomputed and supplied to the classifier.
This approach affords a substantial increase in computa-
tional efficiency and permits whole brain classification
without requiring explicit dimensionality reduction.45 We
used a “leave-one-out” cross-validation method that in-
volved excluding a single participant from each group and
training the classifier using the remaining participants; we
then used the excluded participant pair to test the ability of
the classifier to reliably distinguish between categories (i.e.,
MDD v. control). This procedure was repeated for each
participant pair to assess the overall accuracy of the SVM.
The statistical significance of the overall classification accu-
racy was determined by permutation testing that involved
repeating the classification procedure 1000 times with a dif-
ferent random permutation of the training group labels and
counting the number of permutations achieving greater
sensitivity and specificity than the true labels. As the SVM
analysis is multivariate, not mass- univariate, this means
that Bonferroni or modified Bonferroni correction is not ap-
propriate. In the absence of established methods for cor-
recting for dependent comparisons in the context of multi-
ple SVM analyses, we used a conservative value of p < 0.01.

We repeated this procedure for the 7 morphometric par -
am eters of each hemisphere separately to assess the predict -
ive power of each morphometric parameter. We then integ -
rated the 7 morphometric parameters of each hemisphere
within the different model to examine their combined dis-
criminative power for the left and right hemisphere respect -
ively. Finally we integrated all the morphometric parameters
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of the 2 hemispheres within a single model to examine the
discriminative power resulting from the combination of the
2 hemispheres.

To enable the visualization of the discriminating pattern
for each image modality, the weight vectors with values
higher than 30% of the maximum value of the discrimina-
tion map46 were overlaid onto the high-dimensional average
brain surface (i.e., voxel space). This arbitrary threshold pre-
dominantly eliminates noise components, thus enabling bet-
ter visualization of the most discriminating regions.

Results

Thirty-two medication-naive patients with first-episode
MDD (mean age 34.9 ± 11.1 yr) and 32 healthy controls
(mean age 35.0 ± 11.2 yr) took part in this study. The
demo graphic and clinical characteristics of these groups
are summarized in Table 1. All participants were Chinese
Han (the most common race in China and the world at
large). All depressed patients had a score of at least 18
(mean 24.3 ± 5.1) points on the 17-item Hamilton Rating
Scale for Depression, and disease duration ranged from 2
to 60 (mean 15.2 ± 18.0) weeks. The groups were matched
for age (within 2 years), there were 9 men and 23 women
in each group, and all participants were right-handed.

In the right hemisphere, the right cortical thickness was
the individual parameter with the highest diagnostic accu-
racy (sensitivity, specificity and accuracy 78%, p ≤ 0.001).
The other morphometric parameters extracted from the
right hemisphere, including volume, pial area, area and
 Jacobian metric distortion, also showed above-chance
diag nostic accuracy (all p < 0.01). The combination of all
right hemisphere parameters resulted in a significant accu-
racy of 72% (sensitiv ity 75%, specificity 69%, p ≤ 0.001).

In the left hemisphere, only cortical thickness (sensitiv-
ity 69%, specificity 75%, accuracy  72%, p ≤ 0.001) and pial
area (sensitivity, specificity and accuracy 69%, p ≤ 0.003)
yielded significant diagnostic accuracy. The combination
of all left hemisphere parameters did not result in signifi-
cant accuracy (59%, p = 0.07).

Classification accuracy, sensitivity and specificity for the
7 morphometric parameters in each hemisphere and their
integration are listed in Table 2.

Discrimination maps of MDD-specific abnormalities

The spatial maps of the brain regions that contributed to the
discrimination between patients with MDD and controls are
shown in Figure 1, and summary descriptions can be found
in Tables 3–6. The discrimination maps show that different
morphometric parameters were associated with different
weight vector spatial patterns. The spatial distribution of the
weight vectors provides information about which brain re-
gions contributed to classification and, in this case, suggests a
distributed pattern of alterations in patients with MDD com-
pared with controls.

Regions that contributed to the identification of patients
with MDD (i.e., MDD > control) in the cortical thickness dis-
crimination map included the right caudal middle frontal
gyrus, right anterior cingulate cortex, right temporal pole, left
middle temporal gyrus, precentral gyrus and lateral occipital
gyrus. In contrast, regions that contributed to the identifica-
tion of controls (i.e., control > MDD) were mainly located in
bilateral temporal and frontal regions, the right precuneus
and the left fusiform. The discriminative pattern for surface
area and volume was also composed of regions in both hemi-
spheres and overlapped with the discrimination maps based
on cortical thickness.

Table 1: Demographic and clinical characteristics of patients with 
MDD and controls 

 Group; mean ± SD  

Characteristic MDD, n = 32 Controls, n = 32 p value* 

Age, yr 34.9 ± 11.1 35.0 ± 11.2 0.90 

Sex, male:female 23:9 23:9 > 0.99 

Education, yr 11.9 ± 3.2 12.5 ± 2.9 0.78 

Illness duration, wk 15.2 ± 18.0   
HAM-D score 24.3 ± 5.1   

HAM-D = Hamilton Rating Scale for Depression; MDD = major depressive disorder; 
SD = standard deviation. 
*Obtained using 2-sample, 2-tailed t tests. 

Table 2: Results of SVM classification of patients with MDD and 
controls using different brain morphometric features 

 Morphometric feature, %  

Brain region Sensitivity Specificity Accuracy p value 

Left hemisphere     

Cortical thickness 69 75 72 0.001 

Volume 59 63 61 0.06 

Pial area 69 69 69 0.003 

Area 69 56 63 0.025 

Curvature 44 56 50 0.53 

Sulcal depth 56 63 59 0.08 

Jacobian 63 56 59 0.07 

Combined LH  
   parameters 

63 56 59 0.07 

Right hemisphere     

Cortical thickness 78 78 78 0.001 

Volume 69 75 72 0.001 

Pial area 66 66 66 0.008 

Area 69 66 67 0.003 

Curvature 63 59 61 0.05 

Sulcal depth 59 59 59 0.08 

Jacobian 69 66 67 0.004 
Combined RH 
parameters 

75 69 72 0.001 

Combined LH and RH     

Cortical thickness 66 72 69 0.002 

Volume 63 69 66 0.005 

Pial area 69 69 69 0.001 

Area 66 53 59 0.10 

curvature 47 50 48 0.63 

Sulcal depth 56 59 58 0.12 

Jacobian 63 72 67 0.002 
Combined LH and 
RH parameters 

69 69 69 0.002 

LH = left hemisphere; MDD = major depressive disorder; RH = right hemisphere; 
SVM = support vector machine. 



The discriminative pattern for Jacobian metric distortion
mainly involved the superior parietal lobule and superior tem-
poral gyrus. Figure 1 and Table 6 show the regions in detail.

Discussion

We sought to distinguish medication-naive adults with first-
episode MDD from healthy controls using a multiparametric
classification approach and characterize neuroanatomical dif-
ferences between the 2 groups. As far as we know, this is the
first study to investigate both morphometric and geometric
features in patients with MDD. Our results demonstrated a
complex and multidimensional pattern of alterations in pa-
tients compared with controls. However, cortical thickness
appeared to provide the greatest accuracy of discrimination
between the groups.

An interesting aspect of our findings is that the overall
classification accuracy was not the same between hemi-
spheres. Specifically almost all right hemisphere parameters
allowed accurate discrimination of patients from controls,
but this was not the case for most left hemisphere param -
eters. Thus, morphological alterations in patients with MDD
appear to be more evident in the right than the left hemi-
sphere. Consistent with our results, previous studies using a

range of methodological approaches have found that de-
pressed patients show abnormal right-hemisphere function-
ing.47,48 In addition, a recent structural neuroimaging investi-
gation has detected alterations of cortical thinning across the
lateral surface of the right rather than the left cerebral hemi-
sphere in people at high risk for MDD.49

Classification accuracy varied not only between hemi-
spheres but also across morphometric parameters. Of the
7 measurements, cortical thickness showed the greatest diag-
nostic accuracy for identifying patients with MDD from
healthy controls. This indicates that cortical thickness, as a
volumetric parameter, is already altered in the early stage of
MDD. Another volumetric parameter, the pial area, also
showed significant diagnostic accuracy for distinguishing pa-
tients with MDD from controls. The pial area, which repre-
sents the area of the brain surface and is closely related to
grey matter volume,50 has not, to our knowledge, been inves-
tigated before in patients with MDD. Our results provide
preliminary evidence that this parameter is also altered in the
early stage of MDD. The spatially distributed patterns of
alter ations were similar for cortical thickness, pial area and
volume, providing indirect evidence of a close association
among these 3 volumetric parameters. In addition, the white
matter surface area in the right hemisphere also produced
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Fig. 1: Discrimination maps for (A) cortical thickness, (B) pial area, (C) volume and (D) Jacobian metric distortion in
the right (R) and left (L) hemispheres. Colour maps represent the weight vector scores from the 4 modality classifica-
tions. Values higher in patients with major depressive disorder (MDD) than controls are displayed in red; values
higher in controls than patients with MDD are displayed in blue. See Tables 3–6 for the detailed information.
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above-chance classification accuracies between the groups.
The discriminative power of white matter surface area may
be related to the enlargement of regional white matter vol-
ume51 or an excess of white matter hyperintensity volume in
patients with MDD.52 At present, the precise physiopatho -

logical meaning of this alteration remains unclear, and fur-
ther research is required on this topic.

In the present study, only 1 geometric feature (i.e., Jacobian
metric distortion) allowed significant discrimination between
patients with MDD and controls, whereas the average con-
vexity and mean (radial) curvature did not provide accurate
discrimination. Geometric features, such as cortical folding
pattern, may reflect an abnormal pattern of intrinsic as well
as extrinsic connectivity.53 These geometric differences are
predominately linked with the development of neuronal con-
nections and are typically considered a marker for cerebral
development.53,54 The average convexity or concavity has been

Table 3: Regions displaying high discrimination weights between 
patients with MDD and controls for cortical thickness measures 

Brain region* 

Talairach coordinates 

W x y z 

MDD > control     

Left hemisphere     

Lateral occipital gyrus –18 –100 3 5.32 

Posterior cingulate gyrus –6 –30 27 5.93 

Superior frontal gyrus –22 9 49 4.59 

Inferiorparietal lobular –36 –75 38 6.27 

Supramarginal gyrus –56 –48 35 4.29 

Precentral gyrus –55 2 33 4.12 

Postcentral gyrus –64 –11 18 5.63 

Middle temporal gyrus –60 –13 –23 6.75 

Superior temporal gyrus –58 –5 –2 4.05 

Right hemisphere     

Rostral middle frontal 43 38 23 11.01 

Pars opercularis 55 24 14 5.47 

Caudalmiddlefrontal gyrus 41 18 47 4.45 

Precentral lobule 44 –10 42 7.00 

Temporal pole 44 7 –37 9.56 

Pars orbitalis 39 53 –8 6.06 

Lateral occipital gyrus 17 –94 17 5.45 

pericalcarine 16 –75 8 5.90 

Isthmus cingulate gyrus 8 –48 12 8.17 

Anterior cingulate gyrus 8 32 11 7.79 

Insular lobe 37 –15 2 4.57 

Paracentral lobule 8 –29 51 4.78 

Control > MDD     

Left hemisphere     

Precentral lobule –16 –22 73 –7.10 

Insular lobe –37 3 0 –6.37 

Superior temporal sulcus –42 –53 19 –5.41 

Precuneus –8 –49 52 –6.23 

Paracentral lobule –3 –36 67 –4.96 

Caudal anterior cingulate gyrus –4 6 28 –8.87 

Lingual gyrus –23 –62 –10 –6.09 

Fusiform gyrus –34 –47 –10 –10.01 

Lateral occipital gyrus –39 –81 –14 –9.27 

Rostral middle frontal gyrus –28 54 –11 –7.74 

Right hemisphere     

Precuneus 10 –61 46 –10.19 

Insular lobe 36 14 –2 –5.23 

Superior temporal gyrus 63 –7 –2 –7.20 

Entorhinal cortex 25 –9 –31 –7.05 

Lingual gyrus 20 –75 –10 –7.28 

Paracentral lobular 13 –45 73 –5.52 

Supramarginal gyrus 59 –25 30 –7.35 

Inferior temporal sulcus 60 –41 –13 –7.58 

Lateral occipital gyrus 41 –83 4 –4.43 
Superior frontal gyrus 14 62 12 –4.64 

MDD = major depressive disorder; W = weight vector value. 
*These regions were identified by setting the threshold at greater than 30% of the 
maximum value of the discrimination map. Positive weight vector values represent 
MDD > control; negative weight vector value represent control > MDD. 

Table 4: Regions displaying high discrimination weights between 
patients with MDD and controls for surface area measures 

Brain region 

Talairach coordinates 

W x y z 

MDD > control
Left hemisphere     

Superior frontal gyrus –10 3 67 9.61 

Medial orbitofrontal gyrus –10 40 –12 4.44 

27.51338–5–suenuC

Parahippocampal gyrus –22 –22 –25 5.38 

32.56195–5–suenucerP

Lateral occipital gyrus –29 –93 10 5.93 

Supramarginal gyrus –55 –46 38 5.13 

Precentral lobule –58 4 26 5.85 

erehpsimehthgiR

Superior parietal lobule 46 –66 32 5.57 

Lateral occipital gyrus 30 –87 12 5.28 

57.69053ebolralusnI

Rostral middle frontal gyrus 39 46 19 5.12 

Inferior temporal gyrus 54 –38 –22 7.23 

Postcentral lobule 51 –17 53 4.28 

Caudal middle frontal gyrus 35 12 53 5.24 

Superior frontal gyrus 16 12 60 6.02 

Parahippocampal gyrus 21 –32 –12 5.34 

69.37255–01suenucerP

Control > MDD
erehpsimehtfeL

Pars opercularis –53 15 14 –6.11 

Rostral middle frontal gyrus –35 49 9 –5.62 

Middle temporal gyrus –60 –26 –13 –5.37 

Superior parietal lobular –26 –58 60 –7.40 

Postcentral gyrus –43 –28 62 –6.55 

Lateral occipital gyrus –15 –97 –11 –5.05 

03.5–2–99–41–eniraclacireP

Medial orbitofrontal gyrus –6 15 –15 –6.25 

Rostral anterior cingulate gyrus –6 31 16 –4.12 

erehpsimehthgiR

Superior temporal gyrus 59 0 –7 –7.12 

Superior parietal lobule 16 –40 73 –5.11 

Precentral gyrus 39 –10 61 –5.01 

Supramarginal gyrus 56 –16 35 –4.73 

Lateral occipital gyrus 25 –91 –10 –6.11 

Middle temporal gyrus 56 –47 –7 –5.12 

Inferior temporal gyrus 43 –3 –37 –6.68 

Superior frontal gyrus 8 –4 41 –8.10 

Entorhinal cortex 20 –9 –32 –5.66 

MDD = major depressive disorder; W = weight vector value. 



used to quantify the primary folding pattern of a surface,38

whereas mean (radial) curvature has been used to assess
folding of the small secondary and tertiary folds in the sur-
face. Jacobian metric distortion provided an indication of the
degree of cortical folding calculated in terms of displacement
and convolution of the cortical surface relative to the average
template.38,55 To our knowledge, studies of geometric changes
in Jacobian metric distortion, average convexity and mean
(radial) curvature have not been reported so far for patients
with MDD, and our results suggest abnormal patterns of geo-
metric parameters may exist in early stages of MDD. Al-
though Jacobian metric distortion was better than average
convexity and mean (radial) curvature at discriminating be-
tween the 2 groups (i.e., metric distortion is more abnormal
than average convexity and mean (radial) curvature in pa-

tients with MDD), it is unclear whether this discrepancy is
due to quantitative differences in metric distortion or qualita-
tive aspects of the discriminating patterns (i.e., additional re-
gions). Direct formal comparisons of each geometric feature
may help to address this issue directly in future studies.

Though both volumetric and geometric features revealed
increased and decreased weight vector values in medication-
naive adults with first-episode MDD compared with healthy
controls, these patterns cannot be explained as morphological
increases or decreases in one group relative to the other, as
discriminative power reflects not only the regional difference
between groups but also the difference in the correlation be-
tween a region and other areas between groups. Thus, dis-
crimination maps should be interpreted as spatially distrib-
uted patterns rather than as individual regions. In this study,
the discrimination maps of cortical thickness, surface area
and volume appeared to be overlapping, especially in the
caudal middle frontal gyrus, temporal lobe, parietal lobe, cin-
gulate gyrus, insula and lateral occipital gyrus. In contrast,
Jacobian metric distortion was mainly altered in the parietal
lobule, superior temporal gyrus and superior frontal gyrus.
The above areas are part of the limbic–cortical system, which
mediates stress responsiveness, mood and emotional regula-
tion in people with MDD.56 Our results are therefore consist -
ent with existing evidence of dysfunction of the circuitry in-
volved in the processing of emotions in patients with MDD.

The application of multivariate pattern classification ap-
proaches to neuroanatomical data may have potential trans-
lational applications for clinical practice. As mentioned in the
introduction, at present the clinical assessment of depression
is not based on objective markers, but relies on the documen-
tation of a minimum number of symptoms. Although the
diag nostic accuracy reported in the present investigation is
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Table 5: Regions displaying high discrimination weights between 
patients with MDD and controls for volume measures 

Brain region 

Talairach coordinates 

W x y z 

MDD > control
Left hemisphere     

Middle temporal gyrus –54 –7 –28 5.65 

Precentral gyrus –63 –14 19 4.88 

Superior frontal gyrus –12 8 63 7.03 

Supramarginal gyrus –56 –49 33 5.83 

Lateral occipital gyrus –16 –94 18 6.59 
Rostral anterior cingulate 
gyrus –6 40 –3 8.41 

29.43256–7–suenucerP

Right hemisphere     

Temporal pole 38 16 –33 8.07 

Isthmus cingulate gyrus 7 –50 11 8.73 
Rostral anterior cingulate 
gyrus 7 31 10 8.43 

Superior frontal gyrus 14 15 60 6.26 

Precentral lobule 54 –2 42 5.29 

76.674–73ebolralusnI

Rostral middle frontal gyrus 40 36 27 9.58 

Control > MDD
erehpsimehtfeL

Caudal middle frontal gyrus –31 49 2 –6.77 

Pars opercularis –54 15 15 –5.41 

Superior temporal sulcus –49 –22 –8 –4.16 

Superior temporal gyrus –50 1 –14 –6.21 

Postcentral gyrus –44 –29 62 –6.75 

Superior parietal lobular –23 –60 58 –5.49 

Pericalcarine –16 –95 –2 –6.17 

Medial orbitofrontal gyrus –9 17 –17 –11.39 

Fusiform gyrus –27 –49 –15 –4.68 

Right hemisphere     

Middle temporal gyrus 62 –45 –5 –7.45 

Superior temporal gyrus 62 –7 –2 –5.51 

Supramarginal gyrus 57 –24 32 –8.03 

Paracentral lobule 14 –42 74 –8.85 

37.6–9495–6suenucerP

Lingual gyrus 16 –77 –11 –5.58 

Entorhinal cortex 26 –7 –32 –5.78 
96.4–6–4611eloplatnorF

MDD = major depressive disorder; W = weight vector value. 

Table 6: Regions displaying high discrimination weights between 
patients with MDD and controls for metric distortion measures 

Brain region 

Talairach coordinates 

W x y z 

MDD > control     

Left hemisphere     

Superior temporal gyrus –60 –11 0 4.34 

Superior parietal lobule –12 –68 55 4.76 

Lingual gyrus –14 –96 –13 4.09 

Right hemisphere     

Supramarginal gyrus 62 –39 28 5.81 

Superior temporal gyrus 64 –14 1 4.72 

Precuneus 5 –63 30 4.11 

Control > MDD     

Left hemisphere     

Superior frontal gyrus –18 –18 64 –6.21 

Caudal middle frontal gyrus –39 27 24 –4.41 

Right hemisphere     

Superior parietal lobule 16 –45 69 –6.68 

Postcentral gyrus 58 –13 38 –4.98 

Precentral gyrus 47 –7 51 –4.23 

Parahippocampal gyrus 17 –39 –7 –4.53 

Medial orbitofrontal gyrus 8 12 –14 –4.46 

MDD = major depressive disorder; W = weight vector value. 
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not very high, our results indicate that the application of mul-
tivariate pattern classification approaches to neuroanatomical
scans could inform the clinical assessment of MDD. Further-
more, diagnostic accuracy could be improved by integrating
neuroanatomical information with other types of data, such
as functional MRI, genotype and cognitive functioning.

Limitations

By recruiting medication-naive adults with first-episode
MDD, we were able to exclude a number of possible con-
founding effects, including comorbid diagnosis, exposure to
antidepressant medication and impact of chronicity. On the
other hand, our results are specific to patients with first-
episode MDD and may not be generalizable to populations
in later stages of the disorder. Further longitudinal studies in-
volving the same patient cohort or multicentre studies with
different types of patients would be required to establish the
generalizability of our findings. Another limitation of our
study is the relatively small sample size; this means that the
results of our investigation should be considered only as
“proof of concept.” Nevertheless, we note that our sample
size is larger than that in most previous studies that applied
multivariate pattern analysis to neuroimaging data from pa-
tients with MDD.20 Expanding our sample size further would
be required to assess the translational value of our results in
everyday clinical practice. Finally, current hypotheses on the
etiology of MDD involve gene–environment interactions;
 endo crine, immunological and metabolic mediators; and
 cellular, molecular and epigenetic forms of plasticity.3 At pre-
sent, however, it is unclear how and to what extent the multi-
ple morphological alterations detected in the present inves -
tigation are influenced by these factors. For example, a
previous study suggests that surface area and cortical thick-
ness reflect different neurobiological processes and are asso-
ciated with different genetic mechanisms.12

Conclusion

Our results demonstrate that multiple cortical features are af-
fected in medication-naive patients with first-episode MDD,
with the right cortical thickness providing the greatest accu-
racy of discriminaton. These findings extend the current
under standing of the neuropathological underpinnings of
MDD and provide preliminary support for the use of neuro -
ana tom ic al scans in the early detection of MDD.
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