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Abstract

Dengue is a common and growing problem worldwide, with an estimated 70–140 million cases per year. Traditional,
healthcare-based, government-implemented dengue surveillance is resource intensive and slow. As global Internet use has
increased, novel, Internet-based disease monitoring tools have emerged. Google Dengue Trends (GDT) uses near real-time
search query data to create an index of dengue incidence that is a linear proxy for traditional surveillance. Studies have
shown that GDT correlates highly with dengue incidence in multiple countries on a large spatial scale. This study addresses
the heterogeneity of GDT at smaller spatial scales, assessing its accuracy at the state-level in Mexico and identifying factors
that are associated with its accuracy. We used Pearson correlation to estimate the association between GDT and traditional
dengue surveillance data for Mexico at the national level and for 17 Mexican states. Nationally, GDT captured approximately
83% of the variability in reported cases over the 9 study years. The correlation between GDT and reported cases varied from
state to state, capturing anywhere from 1% of the variability in Baja California to 88% in Chiapas, with higher accuracy in
states with higher dengue average annual incidence. A model including annual average maximum temperature,
precipitation, and their interaction accounted for 81% of the variability in GDT accuracy between states. This climate model
was the best indicator of GDT accuracy, suggesting that GDT works best in areas with intense transmission, particularly
where local climate is well suited for transmission. Internet accessibility (average ,36%) did not appear to affect GDT
accuracy. While GDT seems to be a less robust indicator of local transmission in areas of low incidence and unfavorable
climate, it may indicate cases among travelers in those areas. Identifying the strengths and limitations of novel surveillance
is critical for these types of data to be used to make public health decisions and forecasting models.
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Introduction

The global incidence of dengue has increased 30-fold between

1960 and 2010 [1], with a recent study estimating that there are

now 70–140 million cases per year [2]. Dengue is caused by

infection with any of the four dengue virus (DENV) serotypes; the

symptoms often include high fever, intense joint and muscle pain,

headaches, and skin rash. Some infections result in more serious

illness including hemorrhagic symptoms and death [3]. Endemic

in many Asian and Latin American countries, dengue has become

a leading cause of hospitalization and death among children in

these regions [4] and contributes to substantial economic loss for

governments and households [5]. Despite the health and economic

impacts of dengue, population-level control methods are limited,

resource intensive, and largely ineffective to date. Real-time dengue

surveillance, therefore, is critical for identifying areas where trans-

mission is ongoing or likely to occur so that interventions can be

optimized.

Traditional, healthcare-based, government-implemented den-

gue surveillance has several shortcomings. Often, it takes weeks to

aggregate surveillance data and publish related reports. This lag in

part reflects the time needed to collect and aggregate data at

different scales, from practitioners up to the Ministry of Health

level, but it can also be delayed or interrupted due to lack of

resources and bureaucratic or political changes [6,7]. Meanwhile,

as global Internet use has increased, novel disease monitoring tools

based on health-related search queries have emerged. Google

Dengue Trends (GDT) was developed by aggregating historical

logs of anonymous online Google search queries associated with

dengue using the methods developed for Google Flu Trends, a tool

created to estimate influenza rates [8]. Google queries have shown

to be a close proxy for national-level dengue surveillance in

multiple countries [9,10]. And because data are collected and

processed in near real-time, these tools produce surveillance data

much faster than traditional systems [8,11,12]. While GDT has this

significant advantage and well-demonstrated large-scale accuracy,

it remains unclear how well it works at smaller scales where

dengue transmission may be more heterogeneous.

Dengue transmission dynamics are sensitive to the environ-

mental factors that affect the vector mosquitoes [13]. Temperature

increases can decrease the length of the gonotrophic cycle [14],

increase the feeding frequency [15], increase the rate of mosquito

development, and reduce the length of the DENV incubation

period within the mosquito [16,17]. Mosquito survival also
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increases with temperature, but at a certain point, high tem-

peratures can also lead to high mosquito mortality [14,18,19].

Precipitation is also important to the spatial and temporal spread

of the mosquito vector [20–24]. Lastly, human behavior and

habitat modification can contribute to DENV transmission dy-

namics: the use of screens or air conditioning can reduce human-

vector contact [13]; water storage and trash disposal practices are

important determinants of larval habitat availability [25]; and a

high human population density provides more transmission

opportunities [26]. Therefore, information about relevant envi-

ronmental conditions can contribute to identifying the dengue risk.

Mexico provides a unique setting to assess the value of GDT

data; the climate varies widely across the country, dengue is

endemic in many areas yet largely absent in others, and

approximately 36% of the population has Internet access [27].

Here, we explore the relationship between GDT data and

traditional surveillance data for 17 states in Mexico and use

climate and socio-demographic data to investigate geographic

variation in GDT accuracy.

Methods

The GDT index was developed as a linear model to predict

reported dengue incidence from dengue-related Internet search

patterns [9]. Specifically, it incorporates weekly query volume for

key terms (normalized to overall search volume) and uses the

historical relationship between those terms and reported cases to

linearly predict (nowcast) dengue activity. We downloaded weekly

GDT data for 2003–2011 for Mexico as a country and for the

available years in that time range (2–8 years) for the 17 individual

states with available data: Baja California, Chiapas, Colima,

Distrito Federal, Estado de Mexico, Jalisco, Morelos, Nayarit,

Nuevo LeÓn, Oaxaca, Quintana Roo, Sinaloa, Sonora, Tabasco,

Tamaulipas, Veracruz and Yucatan [28] [9]. To create a monthly

GDT variable, we averaged GDT across all weeks beginning in

each month.

Traditional monthly dengue surveillance data for the same time

period - 2003–2011 - were obtained from the Mexican Secretariat

of Health (http://www.epidemiologia.salud.gob.mx/anuario/

html/anuarios.html) [29], Long-term (1941–2005) mean annual

precipitation (millimeters per year) and mean, minimum, and

maximum temperature (uC) data were obtained for each state

from the Mexican Secretariat of the Environment and Natural

Resources (SEMARNAT) (smn.conagua.gob.mx). State-level so-

cio-demographic data were obtained from the Mexican National

Institute of Statistics and Geography (INEGI) (www.inegi.org.mx/

). The socio-demographic data included the most recent data

available for the following variables: the population size and

density per kilometer (2010), the percentage of the population

under the age of 15 (2010), the number of doctors per 100,000

Author Summary

Dengue is a common and growing problem worldwide.
Delays in traditional surveillance systems limit the ability of
public health agencies to identify and respond to dengue
outbreaks efficiently. Internet search queries provide near
real-time indicators of infectious disease activity and have
proven effective for monitoring disease activity in some
countries, but have not been assessed on smaller
geographic areas. We compared Google Dengue Trends
data for 17 states in Mexico to traditional surveillance data
from those states. We found that the utility of Google
Dengue Trends at the state-level is highly variable and
depends on climatic conditions supporting dengue virus
transmission. Novel surveillance tools like Google Dengue
Trends can provide timely information to public health
agencies, but to be useful on a local scale, they must be
considered within the local context of dengue transmis-
sibility.

Figure 1. Time Series of monthly reported cases and Google Dengue Trends, Mexico. 2003–2011. The number of cases reported by the
Secretariat of Health is shown on the left axis (black) and the GDT index on the right (blue). The correlation coefficient between reported dengue
cases and GDT was 0.91 over the 9 years, indicating that GDT captured approximately 83% of the variability in the national surveillance data.
doi:10.1371/journal.pntd.0002713.g001

Evaluation of Google Dengue Trends

PLOS Neglected Tropical Diseases | www.plosntds.org 2 February 2014 | Volume 8 | Issue 2 | e2713

http://www.epidemiologia.salud.gob.mx/anuario/html/anuarios.html
http://www.epidemiologia.salud.gob.mx/anuario/html/anuarios.html
www.inegi.org.mx/


residents (2008), the percentage of the population with access to

drinking water (2006), the percentage of the population with

municipal sewage (2008), the percentage of the population with

Internet access (2008), and the average household income in pesos

(2010). The data for precipitation, population size, population

density, and average yearly dengue cases were log transformed to

reduce skewing.

To quantify the accuracy of GDT relative to reported dengue

cases, we used Pearson correlation to assess linear correlation

because GDT was designed as a linear predictor of dengue

incidence. We estimated the association between GDT and the

traditional surveillance data at the national level and for each

state, and calculated coefficients of determination (R2) to assess the

proportion of dengue incidence variance captured by the GDT

data. We then logit-transformed R2 and used Gaussian regres-

sion to assess the association between each climate and socio-

demographic variable and the variability in state-level correlations

between GDT and traditional surveillance data. The Akaike’s

Information Criterion (AIC) was applied to compare the fit for

each of the different models. All calculations were performed in R

version 2.14 (http://www.r-project.org/).

Results

A total of 352,093 dengue cases were reported in all of Mexico

from 2003–2011. Figure 1 shows the national-level monthly GDT

index compared to the monthly reported cases. These data show a

pattern of seasonal outbreaks, generally peaking between August

and November, and substantial variation in incidence between

seasons. The Pearson’s correlation coefficient between GDT and

reported dengue cases was 0.91 over the 9 years, indicating that

GDT captured approximately 83% of the variability in the

national surveillance data.

Correlation between monthly GDT and traditional surveil-

lance data, however, varied between states. The coefficient of

determination, R2, varied from 0.01 in Baja California to 0.88 in

Chiapas. Despite the presence of GDT data for the Distrito

Federal, the biggest metropolitan area of the country, R2 could not

be calculated because there were no reported cases during the

study period. Figure 2A shows the coefficients of determination for

this relationship in each state. In general, there was a stronger

correlation in the southern and western coastal states, with the

exception of Baja California.

Figure 2. Observed and model-estimated R2 for GDT and reported dengue cases. Darker shading indicates a higher coefficient of
determination between GDT and traditional surveillance data from observed data (A) and for predictions from the model using maximum
temperature, precipitation and the interaction of those two variables (B).
doi:10.1371/journal.pntd.0002713.g002

Table 1. Determinants of logit-transformed R2 between
Google Dengue Trends and government reported dengue
cases: single covariate models.

Coefficient
95% Confidence
Interval R2 AICb

Annual dengue
casesa

0.61 (0.36, 0.86) 0.67 43

Minimum
temperature

0.18 (20.02, 0.37) 0.21 57

Mean
temperature

0.24 (0.01, 0.47) 0.26 56

Maximum
temperature

0.28 (0.02, 0.55) 0.27 56

Precipitationa 1.6 (0.5, 2.6) 0.44 52

Populationa 20.4 (21.3, 0.6) 0.04 60

Population densitya20.05 (20.9, 0.81) 0 61

Percent youth 0.2 (20.23, 0.63) 0.07 60

Doctors per 100 k
residents

0.01 (20.01, 0.03) 0.06 60

Potable water 20.02 (20.12, 0.07) 0.02 61

Municipal sewage 20.01 (20.09, 0.06) 0.01 61

Internet access 20.06 (20.15, 0.03) 0.12 59

Household income 27.2E-05 (214.5E-05, 0.1E-05) 0.24 57

aLog-transformed.
bAkaike information criterion.
doi:10.1371/journal.pntd.0002713.t001
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State-level correlation between GDT and case data was

strongest in the states with high annual dengue incidence

(Table 1, Figure 3A). States with higher average mean temper-

ature, maximum temperature, and precipitation had significantly

higher correlation between GDT and dengue case numbers

(Figure 3B–D, Table 1). States with lower average household

income, a greater proportion of youths in the population, and less

internet access tended to have higher correlations, but these

associations were not statistically significant (Table 1). We inves-

tigated models incorporating combinations of these variables. A

model incorporating maximum temperature, logged precipitation,

and the interaction of those two variables described 81% of the

variance compared to 67% for the model with only dengue

incidence and reduced the AIC from 43 to 39 (Table 1, Table 2).

Adding socio-demographic factors to this model did not improve

the fit.

Next, we used this climate-based model to predict the

correlation between GDT and case data for all the states,

including those where GDT data are not available (Figure 2B).

There was general agreement between observed (Figure 2A) and

estimated correlation (Figure 2B). Furthermore, the model predicts

that for states with higher incidence such as Guerrero, where GDT

is not available, GDT may in fact be a good indicator of dengue.

However, in states with lower dengue incidence and cooler

temperatures, like Chihuahua, GDT may not be an accurate

indicator of dengue incidence. Overall, the results show that GDT

Figure 3. Geographic variation of state-level covariates. The covariates most highly associated with GDT accuracy (Table 1) were average
annual dengue cases (A), average annual precipitation (B), mean temperature (C) and maximum temperature (D).
doi:10.1371/journal.pntd.0002713.g003

Table 2. Determinants of logit-transformed R2 between GDT
and reported dengue cases: Multiple covariate model.

Coefficient
95% Confidence
Interval R2 AICb

Maximum
temperature

4.6 (2.3, 6.8)

Precipitationa 20 (10, 29)

Interaction 20.65 (20.98, 20.32)

0.81 39

aLog-transformed.
bAkaike information criterion.
doi:10.1371/journal.pntd.0002713.t002
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is a better indicator of real-time incidence in states with high

incidence and climate conditions that favor transmission.

Discussion

At the national level, we found that the official case reports

correlated well with GDT. Yet, the correlation between GDT and

reported cases varied substantially from state to state, with stronger

correlation in states with higher dengue incidence. Climate plays a

key role in determining the geographic range and activity of the

mosquitoes that transmit DENV. We found that in states with

warmer temperatures and greater precipitation, such as Chiapas

and Jalisco, GDT was strongly correlated with reported dengue

incidence.

The role of climate in DENV transmission, however, is

complicated by other biological and socio-demographic factors

[20]. Here, however, we did not find that socio-economic factors

had a strong influence on the accuracy of GDT. This is par-

ticularly important because GDT relies on internet searches, and

internet access can vary widely in different settings. We found that

Internet access from home was not associated with GDT accuracy,

suggesting that even with Internet access in the 30% range, search

query data may be robust enough to capture population-level

disease dynamics. Internet access will likely only increase in the

future, leading to the possibility that greater data flow will improve

the accuracy of measures such as GDT. While it is possible that

income or internet access do affect GDT accuracy in Mexico, their

importance may be overshadowed and confounded by climate, the

strongest determinant in our analysis. Our intention was to

identify relatively static characteristics that relate to the potential

utility of tools like GDT. As such, we used covariate data from the

single, most recent year or long-term averages. Future work will

build on these findings to determine how temporal variation in

relevant covariates may be combined with GDT to improve

dengue prediction.

Using the climate-based model, we predicted the utility of GDT

for the states where the GDT data are not available. For example,

in Guerrero, where GDT is currently not available, our model

suggests that it would provide a robust estimate of dengue

incidence. Yet, for states where dengue cases are rarer, such as in

Chihuahua, the predicted utility of GDT is low. In these areas,

where GDT appears to be a poor indicator of local transmission

levels, it may nonetheless be a good indicator of some level of

health-related activity such as travelers becoming sick in endemic

areas, returning home, and searching for dengue information on

the Internet. This information would be useful for those interested

in estimating local disease burden if not local transmission

intensity. Thus, GDT may provide different value in distinct

climatic or socio-economic contexts.

Dengue transmission patterns are highly variable and difficult to

predict; timely dengue surveillance methods like GDT are needed

to keep pace with the spread of the disease. We found that GDT is

accurate in areas of high incidence and favorable vector climate

conditions. While it appears to be a less robust gauge of local

transmission in areas of low incidence and unfavorable climate, it

may indicate infections among travelers. As the burden of dengue

increases and traditional surveillance efforts struggle to keep pace,

novel surveillance tools like GDT can provide timely information

to public health officials and contribute to real-time predictive

models.
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