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Abstract

A venerable history of classical work on autoassociative memory has significantly shaped our understanding of several
features of the hippocampus, and most prominently of its CA3 area, in relation to memory storage and retrieval. However,
existing theories of hippocampal memory processing ignore a key biological constraint affecting memory storage in neural
circuits: the bounded dynamical range of synapses. Recent treatments based on the notion of metaplasticity provide a
powerful model for individual bounded synapses; however, their implications for the ability of the hippocampus to retrieve
memories well and the dynamics of neurons associated with that retrieval are both unknown. Here, we develop a
theoretical framework for memory storage and recall with bounded synapses. We formulate the recall of a previously stored
pattern from a noisy recall cue and limited-capacity (and therefore lossy) synapses as a probabilistic inference problem, and
derive neural dynamics that implement approximate inference algorithms to solve this problem efficiently. In particular, for
binary synapses with metaplastic states, we demonstrate for the first time that memories can be efficiently read out with
biologically plausible network dynamics that are completely constrained by the synaptic plasticity rule, and the statistics of
the stored patterns and of the recall cue. Our theory organises into a coherent framework a wide range of existing data
about the regulation of excitability, feedback inhibition, and network oscillations in area CA3, and makes novel and directly
testable predictions that can guide future experiments.
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Introduction

The hippocampus, together with associated medial temporal-

lobe structures, plays a critical role in memory storage and

retrieval. A venerable line of classical theoretical work has shaped

our understanding of how different hippocampal subfields

subserve this function [1,2]. At the core of this body of work is

the notion that area CA3 of the hippocampus operates as an

autoassociator, retrieving previously stored memory traces from

noisy or partial cues by the process of pattern completion.

Furthermore, the theoretical framework of autoassociative mem-

ory networks helped elucidate how recurrently-coupled neural

circuits, such as CA3 [3], are capable of such pattern completion

[4–10]. In this framework, synaptic plasticity stores memory traces

in the efficacies (or weights) of the recurrent synapses of the neural

circuit, and the recall of memories is achieved by the dynamical

evolution of network activity through the synapses that were

previously altered [11]. This framework has paved the way for a

thorough analysis of the memory capacity of recurrent neural

circuits [4,8–10], and ensuing experimental results have confirmed

many of its qualitative predictions [12,13]. However, despite much

progress, existing models of auto-associative memories make

drastic simplifying assumptions, as we describe below, concerning

both the synaptic plasticity rules storing information in the circuit

and the dynamics of the network at recall.

First, at the level of memory storage, one powerful, yet

biologically untenable, simplification made by most existing

models [4,8–10,14] is the use of additive learning rules, whereby

the cumulative effect of storing multiple memory traces is obtained

as the linear sum of the contributions made by storing each

individual trace. This simplification makes the analysis of the

circuit tractable and suggests high memory capacity, but it also

implies that synaptic weights can grow arbitrarily large or even

switch sign, thereby violating Dale’s principle. The shortcomings

of assuming additive learning rules can be partially alleviated by

introducing additional mechanisms such as synaptic scaling or

metaplasticity, that ensure synapses are maintained in the relevant

biological range [15]. Metaplasticity is loosely defined as any

mechanism that manipulates or modulates synaptic plasticity; it

comes in many forms, from the sliding threshold in BCM-like

models [16] to sophisticated cascade models [17]. It is ubiquitous

in the neocortex [18–20] and the hippocampus [21], and has long

been implicated in endowing synapses with powerful computa-

tional properties [16]. Importantly for memory storage, it was

shown that one particular form of metaplasticity, the cascade

model [17], enables information to be stored in bounded synapses
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almost as efficiently as additive learning rules, whereas synapses

with the same range of efficacies but without metaplasticity are

hopelessly poor [17]. Unfortunately, despite their advantage at

storing information, metaplastic synapses were found to perform

equally poorly when the amount of recalled information was

measured instead [22], indicating that much of the information

laid down in the synapses remained inaccessible for the standard

attractor dynamics used at retrieval. Thus, perhaps surprisingly,

we still do not know how competent memory recall is possible

from more realistic synapses that suffer from a bounded dynamical

range.

Second, at the level of retrieval, there are also several aspects of

hippocampal circuit dynamics of which we lack a theoretical

account. For example, experimental work has long shown that

synaptic plasticity is accompanied by changes in the excitability of

CA3 neurons [23–25], that the activity of pyramidal cells is

modulated by several classes of inhibitory neurons [26,27], and

that the interaction of excitation and inhibition induces prominent

oscillations in multiple frequency bands [26,28]. Yet, it is largely

unclear whether and how these dynamical motifs contribute to

efficient memory recall.

Here, we develop a theory that specifically addresses the

problem of memory recall from synapses with a limited dynamic

range, and thus consider how various neuronal and synaptic

biophysical properties of area CA3 contribute to this process. We

start by assuming that synaptic efficacies are limited and adopt one

particular, oft-studied model of metaplasticity, the cascade model,

where synapses make transitions between different states which

have the same overt efficacy but differ in their propensity to

exhibit further plasticity [17]. In order to understand how

memories can be recalled efficiently from such synapses, we

derive recurrent network dynamics that are optimal for this

purpose. Our approach is based on treating memory recall as a

probabilistic inference problem, in which the memory pattern to

be recalled needs to be inferred from partial and noisy information

in the recall cue and the synaptic weights of the network, and

network dynamics act to produce activity patterns that are

representative of the resulting posterior distribution. Given the

statistical properties of the prior distribution of patterns, the recall

cues, and the learning rule, the network dynamics that we derive

to be optimal for retrieval are fully specified without free

parameters to tune (except, as we show later, for some parameters

affecting the speed of recall). The essence of our approach is that

there is a tight coupling between the specifics of the learning rule

governing memory storage and the dynamics of the circuit during

recall. This approach has already helped reveal some basic

principles of efficient memory recall in neural circuits [14,29–31],

but has not yet been applied to bounded metaplastic synapses.

While we derived optimal recall dynamics with only minimal a

priori regard to biological constraints, we found that approximately

optimal retrieval can be achieved in a neural circuit whose basic

functional structure resembles the standard, biophysically moti-

vated dynamics used for additive learning rules [4]. Importantly,

the solution involves several critical motifs that are not predicted

by standard approaches, and yet map onto known features of the

dynamical organisation of hippocampal area CA3. First, precisely

balanced feed-back inhibition [32] and pre- and postsynaptic

forms of intrinsic plasticity (IP) [25,33] matched to the form of

synaptic plasticity that stores the memory traces, are necessary for

ensuring stability during retrieval. Second, oscillations that

periodically change the relative contributions of afferent and

recurrent synapses to circuit dynamics [34,35] can further improve

recall performance by helping the network explore representative

activity patterns more effectively.

In sum, addressing the computational challenges associated with

effective retrieval of information from bounded synapses provides

novel insights into the dynamics of the hippocampal circuitry

implementing this function. Thus, our work extends previous

approaches that sought to understand the basic anatomical and

physiological organisation of the hippocampus [2,36] as functional

adaptions towards memory recall by providing a similar functional

account of further crucial aspects of hippocampal organisation,

involving plasticity and circuit dynamics.

Results

We start by providing a formal description of autoassociative

memory recall as a probabilistic inference task. We then derive

recall dynamics that solve this task (approximately) optimally and

investigate their computational and biological implications. First,

we show that efficient recall is possible from metaplastic synapses

with such dynamics. Second, as several details of the derived

dynamics are unrealistic, we investigate biologically plausible

approximations for them which enable us to identify the circuit

motifs that are critical for effective memory retrieval in hippo-

campal circuits. Finally, we consider one particular improvement

of the original solution which makes the recall dynamics more

efficient and suggests a novel computational role for network

oscillations.

A probabilistic framework for autoassociative memory
recall

We consider an auto-associative memory task in which a

sequence of patterns, x(t), is stored by one-shot learning in the

synaptic efficacies (or weights), W, of the recurrent collaterals of a

neural network. This models the network of pyramidal neurons in

hippocampal area CA3. (We do not model other cell types or

hippocampal subfields explicitly, but do consider their effects on

CA3 pyramids, see also below). Here, x
(t)
i is the activity of neuron i

in the pattern that was stored t time steps prior to recall (in other

words, the age of this pattern is t), and Wij is the (overt) efficacy of

the synapse between presynaptic cell j and postsynaptic cell i at the

time of recall (Fig. 1A–B). For tractability, we assume that neural

Author Summary

Memory is central to nervous system function and has
been a particular focus for studies of the hippocampus.
However, despite many clues, we understand little about
how memory storage and retrieval is implemented in
neural circuits. In particular, while many previous studies
considered the amount of information that can be stored
in synaptic connections under biological constraints on the
dynamic range of synapses, how much of this information
can be successfully recovered by neural dynamics during
memory retrieval remains unclear. Here, we use a top-
down approach to address this question: we assume
memories are laid down in bounded synapses by
biologically relevant plasticity rules and then derive from
first principles how the neural circuit should behave during
recall in order to retrieve these memories most efficiently.
We show that the resulting recall dynamics are consistent
with a wide variety of properties of hippocampal area CA3,
across a range of biophysical levels – from synapses,
through neurons, to circuits. Furthermore, our approach
allows us to make novel and experimentally testable
predictions about the link between the structure, dynam-
ics, and function of CA3 circuitry.
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activities are binary; although extensions of the theory to analogue

activities are also possible [14,31].

Memory storage in cascade-type metaplastic syna-

pses. Although we assume that the efficacy of a synapse,

Wij[ 0,1f g, is binary, underlying these two ‘overt’ states there is a

larger number of ‘hidden’ states, Vij[ 1 . . . 2nf g, between which

the synapse can transition, engendering a form of metaplasticity

[21] (Fig. 1B–C). More specifically, we use a model in which

synaptic plasticity is stochastic and local, with (meta)plasticity

events inducing changes in the hidden state of each synapse, Vij , as

a function of the activity of the pre- and postsynaptic neuron, xj

and xi respectively [17] (see Methods for details). Each of these

hidden synaptic states is mapped into one of the two overt binary

synaptic efficacies, Wij , which can be used to influence network

dynamics at recall.

We considered two possible rules for mapping the activity of

the pre- and postsynaptic neuron into plasticity events: a

postsynaptically-gated learning rule, with plasticity occurring

whenever the postsynaptic neuron is active, leading to either

potentiation when the presynaptic neuron is also active or to

depression otherwise; and a presynaptically-gated learning rule,

in which synaptic change occurs only if the presynaptic neuron is

active (Fig. 1C). The first form seems more biologically relevant,

as plasticity in hippocampal area CA3 is NMDA-receptor

dependent (and hence requires postsynaptic depolarization for

induction) [37], while the presynaptically-gated form has been

traditionally assumed in past analyses of recall performance for

autoassociative memory tasks [22,38]. We followed common

practice in setting the parameters of the model that determine the

particular transition probabilities (see Methods), but did not

otherwise attempt to set them explicitly to maximize information

storage [39].

Memory recall as probabilistic inference. At the time of

retrieval, the network is presented with a cue, ~xx, which is a noisy or

partial version of one of the originally stored patterns, x(t) (Fig. 1B).

Network dynamics should lead to a recalled pattern x̂x by

combining the information in the cue, ~xx, and the weights, W
(Fig. 1B). Note that each of these sources of information alone is

unreliable: the cue is is imperfect by definition (otherwise there

would be no computational task to solve, as the cue would already

be identical to the pattern that needs to be recalled), and the

weights provide only partial information, because the synaptic

plasticity rule is stochastic and the information about any

particular memory pattern interferes with the effects of storing

other patterns in the same set of synaptic weights (Fig. 1D).

Combining information from multiple unreliable sources, such

as the recall cue and the synaptic efficacies, is inherently a

probabilistic inference problem [29,30]. In order to understand

better what this problem implies, and to start our investigation of

potential solutions to it, we first focus on the posterior distribution

over patterns, which expresses the probability that pattern x is the

correct pattern to be recalled given the information in the recall

cue and the weights:

P xD~xx,Wð Þ!Pstore(x):Pnoise(~xxDx):P(WDx) ð1Þ

where Pstore(x) is the prior distribution from which patterns are

sampled at the time of storage, Pnoise(~xxDx) is the distribution

Figure 1. Autoassociative memory with bounded synapses. A. Memories are stored in the recurrent collaterals of a neural network. Five
example synapses are shown, each in a different state (colors from panel C). B. During storage, a sequence of items, xt (t indexes time backwards
from the time of recall), induces changes to the internal states, V, and thus to the overt efficacies, W, of recurrent synapses in the network. During
retrieval, the dynamics of the network should identify the pattern to be recalled given a cue and information in the synaptic efficacies. C. The cascade
model of synaptic metaplasticity [17]. Colored circles are latent states, V , that correspond to two different synaptic efficacies, W ; arrows are state
transitions (blue: depression, red: potentiation). Tables show different variants of mapping pre- and post-synaptic activations to depression (D) and
potentiation (P) under the pre- and postsynaptically-gated learning rules. D. Left: the evolution of the expected distribution over synaptic states
(thickness of stripes is proportional to the probability of the corresponding state, see panel C for color code) after a potentiation event at time t~1
(marked by the vertical arrow) and the storage of random patterns in subsequent steps, and the distribution of times at which this memory may need
to be recalled (white curve). Middle: the time-averaged expected distribution of hidden synaptic states at the unknown time of recall of this memory.
Right: the corresponding distribution over overt synaptic efficacies.
doi:10.1371/journal.pcbi.1003489.g001
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describing noise corrupting the recall cue, and P(WDx) is the

probability that the synaptic weight matrix is W at the time of

recall given that pattern x was stored some time in the past with a

known synaptic plasticity rule (such as the one described above).

Thus, in general, there are several patterns that may constitute the

correct answer to a recall query, each with a different probability

given by the posterior distribution, P xD~xx,Wð Þ (Eq. 1). We consider

a neural circuit to perform well in autoassociative recall if its

dynamics are such that the resulting activity patterns are somehow

representative of this distribution. However, before we spell out in

detail the link between the posterior and actual neural dynamics

(see next section), we first need to understand more thoroughly

some key properties of the posterior, and in particular how it is

affected – through the likelihood term P(WDx) – by the synaptic

plasticity rule used to store memories.

Previous analyses of optimal recall considered forms of synaptic

plasticity that are mathematically unstable and biologically

unrealistic. In these, unlike actual neural circuits [40,41], synaptic

weights do not have a proper stationary distribution. The most

common case involves additive learning rules [4,14,31]. These

make synaptic weights grow without bound and imply that the

information available about a pattern is independent of pattern

age. They thus do not correctly capture behavioural forgetting

[42]. Conversely, storage in binary synapses with a logical OR-like

rule [30] creates a degenerate stationary distribution for synaptic

weights, because all synapses eventually become potentiated. It

also makes forgetting catastrophically fast [17]. The cascade

learning rule we investigate here covers the biologically relevant

scenario in which synaptic weights have a well-defined, non-

singular, stationary distribution (Fig. 1D). In this case, old

memories are overwritten by the storage of new ones, but

metaplasticity helps to maintain memories efficiently over long

retention intervals [17].

Fig. 1D provides intuition for the four steps involved in

computing P(WDx) when synapses evolve according to the cascade

model (for formal details, see Methods).

1. The evolution of the hidden synaptic states, Vij , after storing

pattern x, can be described by a stochastic process (formally a

Markov chain), characterizing the probability of the synapse

being in any possible state Vij[ 1 . . . 2nf g after storing a specific

pattern xi,xj

� �
(the example shown in Fig. 1D is for

xi~xj~1), and then a set of subsequent patterns.

1. There are three key stages in the evolution of the synaptic state.

First, before storing x, the state of the synapse reflects the large

number of patterns that preceded it and were drawn from

Pstore(:). These leave the synapse in a stationary distribution

which, in our case, is uniform. Thus in Fig. 1D (left) the

thickness of the stripes showing the probability before storage,

tv1 (with slightly informal notation), is the same for all

possible synaptic states. (Note that t can equivalently denote the

age of the pattern that needs to be recalled at any particular

time, or the time elapsed since the storage of a particular

pattern, starting with t~1 when the pattern is the last pattern

that has been stored.)

1. Second, at the time of storage, t~1, pattern x is stored in the

synapse. In the particular example shown in Fig. 1D, both the

post- and pre-synaptic cells are active in this pattern, i.e.

xi,xj

� �
~ 1,1ð Þ. This triggers a potentiation event in the form of

a stochastic transition between the latent synaptic states

(following the red arrows in Fig. 1C). In this case, this increases

the probability of the synapse being in states Vij~6 . . . 10,

corresponding to Wij~1.

1. Finally, subsequent patterns stored after x, again drawn from

Pstore(:), lead to similar stochastic transitions, ultimately

determining the state of the synapses at the time of recall,

P Vij Dx~ 1,1ð Þ,t
� �

. Formally, the effect of these other patterns

can be described by repeatedly applying a single transition

operator that averages over the possible identities of the other

patterns (see Methods for details). From the perspective of the

original pattern we aim to retrieve, all these subsequent

patterns act as a source of noise, because they reduce the

amount of information available in the synapses about the

original pattern (the distribution becomes increasingly similar

to that before storing the pattern, Figure 1D, left).

2. As the distribution over synaptic states at the time of recall

depends on the (unknown) pattern age (i.e. the number of times

the average transition operator has been applied since storing

the original pattern), we need to integrate over the distribution

of possible pattern ages t, Precall(t) (Fig. 1D, left, white curve).

Thus, we compute
P

t P Vij Dx~ 1,1ð Þ,t
� �

Precall(t), yielding the

time-averaged expected synaptic state distribution,

P Vij Dx~ 1,1ð Þ
� �

(Fig. 1D, middle).

3. As it is only the overt synaptic efficacies, Wij , and not the

hidden states, Vij , that can influence the interactions between

neurons during recall, we apply the deterministic mapping

between hidden synaptic states and overt synaptic efficacies to

determine the probability distribution over the latter,

P Wij Dx~ 1,1ð Þ
� �

, obtained by summing together the probabil-

ities of Vij values that correspond to the same Wij value

(Fig. 1D, right).

4. Finally, in order to simplify our analysis, we assume that for

local synaptic plasticity rules, for which the change in Wij only

depends on xi and xj , the evidence from the synaptic efficacies

can be factorized as P WDxð Þ~Pij P Wij Dxi,xj

� �
[14,30] (but see

[43]).

Dynamics for approximately optimal recall. As we saw

above, the answer to a recall query lies in the posterior

distribution, P xD~xx,Wð Þ (Eq. 1). How can neural dynamics compute

and represent it, even if approximately? While there exist several

proposals for representing probability distributions in neural

populations [44,45], sampling-based methods offer a particularly

suitable representational scheme. In this, each neuron corresponds

to one random variable (one element of x), and thus the pattern of

activities in the whole population at any particular time (the

momentary ‘population vector’ [46]) represents one possible

setting of the whole vector x. The key step is to show that

biologically plausible interactions between neurons can lead to

stochastic network dynamics (also known as Markov chain Monte

Carlo [47]) which, over time, visit any particular state x with just

the right frequency, i.e., proportional to its probability under the

posterior P xD~xx,Wð Þ (for an illustration, see the stochastic trajectory

trace in Fig. S1). Thus, the resulting sequence of activity patterns

can be interpreted as successive samples taken from this high-

dimensional posterior.

This representational scheme has the advantage that it is

naturally suited to work when the number of variables over which

a probability distribution needs to be represented is the same as

the number of neurons in the system, as is conventional for

associative memories. Furthermore, a sampling-based representa-

tion is also computationally appealing, as it allows the ‘best’

estimate (in the squared error sense) to be read off by simple

temporal averaging, and also allows the uncertainty associated

with this estimate to be characterized naturally by the variability of

responses (Fig. S2). This uncertainty can then feed into higher

Optimal Recall from Bounded Metaplastic Synapses
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order processes monitoring and modulating memory retrieval

[48,49].

While we discuss later some direct evidence for sampling-based

representations of the posterior in the hippocampus [46,50,51], we

have also considered several alternative neural representations of

the posterior. These include representing the most probable

pattern (maximum a posteriori, or MAP, estimate) [14,30], or

representing explicitly the (real-valued) probability of each neuron

in the (binary) stored pattern being active (mean-field solution)

[30,31]. These approximations can be achieved by deterministic,

attractor-like, dynamics, rather than the stochastic dynamics

required by a sampling-based representation; nevertheless, we

showed that the same circuit motifs arise in these cases as for the

sampling case discussed below (see Text S1 and Fig. S1).

The particular form of sampling dynamics we consider is called

Gibbs sampling [52], which, in general, requires the activity of

each neuron i to be updated asynchronously by computing the

probability of it being active conditioned on the current states of all

other neurons (a vector denoted by x\i). Formally, in each update

step the activity of a randomly selected neuron i is computed by

sampling the probability P(xi Dx\i,~xx,W). In our case, this is

equivalent to the firing of a neuron being driven by a sigmoid

transfer function (Fig. 2A):

P xi~1ð Þ~ 1

1ze{Ii
ð2Þ

with the total somatic current to the neuron, �I �i, given as the log-

odds ratio:

I i~log
P(xi~1 x\i,

�� W, ~xi)

P(xi~0 x\i,
�� W, ~xi)

~abiaszacue ~xizI rec,in
i zI rec,out

i

ð3Þ

and the contribution of the recurrent weights themselves given by:

I rec,in
i ~

X
j

ain
1
:Wji xjzain

2
:Wjizain

3
:xjzain

4

� �
ð4Þ

I rec,out
i ~

X
j

aout
1
:Wji xjzaout

2
:Wjizaout

3
:xjzaout

4

� �
ð5Þ

The expressions for the current in equations 3–5 show the

important result that the optimal way for a neuron to integrate

inputs in its total somatic current is via a simple sum of neuron-

specific terms (Eq. 3): a constant bias, abias, an input current from

the recall cue, acue ~xxi, and terms that account for recurrent

interactions within the network, I rec,in
i and I rec,out

i , which

themselves can also be expressed in a simple linear form, as a

sum over the synaptic partners of the neuron (Eqs. 4–5).

Note that the general functional form of our dynamics

resembles a stochastic version of a canonical model of recurrent

network dynamics for autoassociative recall: the Hopfield network

[53]. However, along with their broad conceptual similarity, there

are also several distinctive features of our model that set it apart

from Hopfield-like network models. First, the exact expression of

the optimal current includes several terms that are not included in

standard network models, but which will prove to be critical for

efficient recall (Text S2). In turn, the same terms also correspond

to biological processes not accounted for by previous models of

autoassociative memory. Moreover, while making Hopfield-like

neural dynamics work for the kind of realistic learning rules we are

studying is very difficult, and at the very least requires considerable

fine tuning of parameters [22], the parameters of our recall

dynamics, acue, abias, and a
in=out
1...4 , are all uniquely determined by

the parameters defining the input noise and the storage process

(i.e. the learning rule, the statistics of the stored patterns, and the

pattern age distribution, see Methods).

By construction, the dynamics defined by equations 2–5 are

optimal, in the sense that they will (asymptotically) produce

samples from the correct posterior distribution. But are these

dynamics neurally plausible? While our dynamical equations may

seem somewhat abstract, previous work has shown that a network

of simple stochastic integrate-and-fire-like spiking neurons, in

which each neuron receives a total somatic current that is

determined by the corresponding log-odds ratio (i.e. just as in our

case, see Eq. 3), naturally implements precisely the same sampling

procedure as our simpler Gibbs dynamics [54].

Hence, as long as the total somatic current has a realistic form,

the complete form of the network dynamics can also be rendered

realistic. For example, although the expression for the total current

is semi-local, in that it depends only on the activity of the neuron’s

pre- and post-synaptic partners, it assumes an unrealistic symmetry

in a neuron’s ability to process information through its incoming

and outgoing synapses (Eq. 4–5). Therefore, to address this issue,

along with the biological implications of other features of our

model, in the following we will focus on analysing properties of the

total somatic current.

Computational efficiency of approximately optimal recall
Having derived the approximately optimal dynamics for

memory recall, we first study its efficiency by numerical

simulations, using the simpler Gibbs dynamics (in light of their

formal equivalence to a network of stochastic spiking neurons, see

above). Specifically, our network dynamics proceed in discrete

iterations corresponding to a full network update. In each such

iteration, we first sample a random permutation to determine the

order in which the neurons are to be updated, and then we update

each neuron by applying Eqs. 2–5.

We first consider an example in which we store a specific

pattern x, followed by a sequence of 10 random other patterns

(Fig. 2B, left). The retrieval cue, a noisy version of the original

pattern, is used both as an initial condition at the beginning of

recall and, as required by Eq. 3, also as a source of external input

biasing the network throughout the retrieval process. The activity

of the network is stochastic, asymptotically sampling the corre-

sponding posterior distribution, and the output of the network, x̂x,

is taken to be the running temporal average of the network activity

(Fig. 2B, middle). We measure retrieval performance by root-

mean-squared (r.m.s.) error, which implies that the optimal

response is exactly the posterior mean x̂x. Even though sampling-

based dynamics may, in general, suffer from slow convergence and

mixing, as we will also show below, the particular dynamics here

attains its asymptotic performance in only a few time steps (Fig. 2B,

right). A useful corollary of these dynamics is that the variability of

the responses during recall also represents a computationally

relevant quantity: the confidence in the correctness of the output

(the average activity). Indeed, as expected from a system with a

well-calibrated representation of confidence, variability correlates

strongly with the actual errors made by the network (see Fig. S2).

To evaluate the overall retrieval performance of the network

more systematically, we repeat the storage and retrieval procedure

described above 250 times. The patterns are drawn randomly

from Pstore(x), a uniform distribution over binary vectors, and the

age of each pattern to be recalled is drawn from Precall(t), the prior

Optimal Recall from Bounded Metaplastic Synapses
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over t (Fig. 1D, left, white curve). For each pattern, we simulate

the effects of storing t{1 other random patterns on the synaptic

weights, and then run our network dynamics, by starting it from

the recall cue. At the end of each recall trial, lasting 100 time steps,

we measure the error (normalised Euclidean distance) between the

originally stored and the recalled pattern and average the errors

across all trials.

We compare the average performance of the optimal network to

that of a ‘control’ network which is a feed-forward network that

retains no information about the particular patterns that have

been stored, but does perform optimal inference given the general

distribution of patterns and the recall cue (first two terms in Eq. 1).

This should provide an upper bound on recall errors because it

simply ignores the information in the recurrent collaterals. While

this control may seem trivial, several classical recurrent auto-

associative memory networks are, in fact, unable to outperform it

[14,43] (see also Fig. S3).

The performance of our recurrent network deteriorates as a

function of pattern age (Fig. 2C, see also Text S3), as expected, but

the average error across pattern ages reveals that the network

performs significantly better than the control (Fig. 2D). In line with

previous work that assumed additive synaptic plasticity [4,14],

retrieval performance is ultimately determined by the number of

synapses per neuron (Fig. 2D). Due to the limited dynamic range

of synapses, recall performance is also influenced by the average

pattern age, such that a larger network (with more synapses per

neuron) can recall older patterns more proficiently (Fig. 2E). A

similar rescaling of errors is observed when using more biologically

plausible sparse patterns [1] instead of the dense patterns we used

in other simulations (Fig. 2E). In this case, the amount of

information per pattern is reduced and so more patterns can be

remembered. The quality of recall of the control (green dashed

line) also improves, because the prior over patterns also becomes

more informative (specifying a priori that most neurons should be

inactive).

Despite the well-known advantage of the cascade model over

simple two-state synapses in storing information [17,55], previous

work using heuristically constructed recall dynamics was unable to

demonstrate a similar advantage in recall performance [22].

Optimal dynamics confers substantial improvement in recall

performance when synapses have multiple metaplastic states

(Fig. 3A). Importantly, one of the hallmark benefits of metaplastic

synapses is that the time for which they retain information after

encoding scales as a power-law of the number of synapses per

neuron, instead of the catastrophically poor logarithmic scaling

exhibited by deterministic two-state synapses [17,56]. The quality

of information recall in our network shows the same scaling

relationships, thus retaining this crucial advantage of metaplastic

synapses (Fig. 3B).

Motivated by these findings, we now turn to the question of how

these approximately optimal dynamics can be implemented, and

further approximated, by neural circuit dynamics. For computa-

tional convenience, we will consider moderately sized all-to-all

connected networks, dense patterns, and small average pattern

ages, but these results generalise to the more realistic case of large

sparsely-connected networks recalling sparse memories after

longer retention intervals (as suggested by Fig. 2D–E). We will

take special care to assess the effects of sparse connectivity in those

cases in which the detailed structure of the connectivity matrix can

be expected to matter for recall performance.

Neural implementation of approximately optimal recall
The dynamics defined by equations 2–5 have two appealing

properties. First, by construction, they represent an approximately

Figure 2. Optimal recall. A. Optimal neural transfer function: the total somatic current combines the recurrent contribution and a persistent
external input corresponding to the recall cue. B. An example retrieval trial, from left to right: the pattern to be retrieved; the recall cue; activity of a
subset of neurons during retrieval; final answer to the retrieval query obtained by temporally averaging the activity of the population; evolution of
r.m.s. retrieval error over time in a trial. C. Recall performance as a function of pattern age (blue). As a reference, performance when the age of the
pattern is known to the network is also shown (black, see Text S3). Gray filled curve shows distribution of retrieval times. D. Average performance as a
function of the number of synapses per neuron in fully connected networks of different sizes (blue), or a sparsely connected network of fixed size
N~500 varying the number of connections (red). E. Average performance as a function of average pattern age in fully-connected networks of
different sizes for balanced patterns (coding level = 0:5, black, gray), and sparse patterns (coding level = 0:2, green). Dashed lines in panels C–E show,
as a control, the performance of an optimised feed-forward network without synaptic plasticity (see main text for why this is a relevant upper bound
on average recall error).
doi:10.1371/journal.pcbi.1003489.g002

Optimal Recall from Bounded Metaplastic Synapses

PLOS Computational Biology | www.ploscompbiol.org 6 February 2014 | Volume 10 | Issue 2 | e1003489



optimal solution to autoassociative recall, with all the parameters

of the recall dynamics being derived from those characterising

memory storage and the input noise. Second, at the same time,

they are in a form that is in a loose agreement with standard

reduced models of single neuron dynamics (thresholded, linear

summation of inputs). However, several details of the dynamics are

unrealistic, and it is therefore necessary to show whether and how

these details can be approximated by a neural circuit without

severely compromising recall performance. Conversely, neuronal

dynamics in cortical areas such as CA3, that may be involved in

the recall of associative memories, exhibit features that are

mysterious from the perspective of recall based on conventional,

additive, plasticity rules. We consider the possibility that these

features might play a role in the approximations.

A common theme in the approximations we are to consider is to

replace an original, implausible term of the total somatic current

by its statistical average. Averages can readily be taken over the

activity of the population (as we will see when we consider the role

of the balance between excitation and inhibition), or over the

statistics of previous patterns (as we will see when we consider pre-

and/or post-synaptic forms of intrinsic plasticity). In general we

ask two questions about each approximation:

N Is it efficient, i.e. is recall performance close to that seen with

the exact dynamics?

N Is it necessary, i.e. is it possible to achieve the same

performance by an even simpler approximation?

The conclusion of the following sections will be that, in fact,

several aspects of neural circuit organisation characterising

hippocampal area CA3 can be understood as such necessary

and efficient approximations.

It is important to note that we only explicitly model pyramidal

neurons (the principal cells) in CA3, and that all other mechanisms

involved in implementing approximately optimal memory recall

will be described phenomenologically, in terms of their effects on

the total somatic current of pyramidal neurons – which is the only

computationally-relevant quantity in our model. Nevertheless, for

each of these mechanisms, we will point out ways in which they

may be dynamically implemented in the neural substrate and also

quantify their effects in a way that allows direct comparisons with

experimentally measurable quantities (see also Discussion).

Intrinsic plasticity. The most obviously unrealistic feature

of the optimal recall dynamics derived above is that incoming and

outgoing synapses to a neuron should both contribute directly to

the total somatic current (Eq. 3). As synaptic transmission is

unidirectional, the term corresponding to the outgoing synapses,

I rec,out
i , needs to be approximated. We investigated three different

approximations of increasing complexity, all of which are based on

(conditional) expectations of this quantity:

I rec,out
none ~0~SI rec,outT ð6Þ

I rec,out
indep ~aout

3
:�xxout

i zaout
5 &SI rec,outD�xxout

i T ð7Þ

I rec,out
specific~aout

2
:�wwout

i zaout
3
:�xxout

i zaout
6 &SI rec,outD�xxout

i ,�wwout
i T ð8Þ

where aout
5,6 are constants defined by the statistics of the stored

patterns and the learning rule (see Methods).

The simplest approximation, I rec,out
none , replaces Iout,rec

i by its

unconditional expectation [54], which in our case is SIout,rec
i T~0

(Eq. 6). As it predicts no influence from outgoing synapses, we will

refer to this approximation as ‘none’. The remaining two

approximations are based on the conditional expectation of

Iout,rec
i , conditioning on sources of information that may be

available to the neuron (see below). I rec,out
indep is conditioned on the

summed activity of the neuron’s postsynaptic partners, �xxout
i , and as

such it is still independent of the synaptic weights of the particular

neuron (Eq. 7). The last and most sophisticated approximation,

I rec,out
specific, conditions on both �xxout

i and on the sum of the outgoing

synaptic weights of the specific neuron, �wwout
i (Eq. 8). To minimise

the complexity of the two more sophisticated conditional

expectations, we further approximated them as sums of terms

(plus a constant) that each depend linearly on one of the quantities

on which they are conditioned (Eqs. 7–8).

There may thus be two quantities that need to be available to a

neuron so that it can implement these approximations: �xxout
i and

�wwout
i . The magnitude of �xxout

i should vary over time within a recall

trial, and we consider how it can be furnished by feedback

inhibition in the next section. The magnitude of �wwout
i is constant

on the time-scale of a recall trial, and acts as a bias term shifting

the transfer function of the cell in the same way as the recall cue

does in Fig. 2A. As we will show below, such a bias can be

provided by a process which corresponds to a form of intrinsic

plasticity that adjusts the excitability of the cell as a function of the

strength of outgoing synapses, and to which we thus refer as IPout. In

order to assess the computational importance of these terms, and

Figure 3. The advantage of metaplastic synapses. A. Recall performance in simple two-state (cascade depth n~1) versus metaplastic (n~5)
synapses. B. Scaling of memory span, defined as the maximum age for which patterns can be recalled reliably within the allowable error, Emax, for
two-state (left) and metaplastic (right) synapses.
doi:10.1371/journal.pcbi.1003489.g003
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thus of the corresponding biological processes, we used numerical

simulations as described above to compare the recall performance

of three networks, each using one of the approximations in

equations 6–8.

Comparing the three approximations we have introduced above

reveals an interesting dissociation between pre- and postsynapti-

cally-gated synaptic plasticity rules (explained in Fig. 1C). The two

rules behave identically when using the exact recall dynamics (as

expected, because the synaptic weight matrix produced by them is

identical up to a transpose operation). However, the effectiveness

of the different approximations depends critically on the specifics

of the synaptic plasticity used for encoding (Fig. 4A, top).

While the two simple solutions, I rec,out
none and I rec,out

indep , work well for

the presynaptically-gated learning rule (Fig. 4A, top left), they fare

considerably worse for postsynaptically-gated learning (Fig. 4A,

top right). In the presence of intrinsic plasticity, network

performance becomes very close to that achieved by the exact

dynamics for the postsynaptically-gated rule (Fig. 4A, top right),

but not for the presynaptically-gated learning rule (Fig. 4A, top

left). This latter, slightly counterintuitive, effect is due to the linear

approximation of the conditional expectation (Eq. 8), which

ignores correlations between the synaptic efficacies of outgoing

synapses and the activity of the postsynaptic neurons. The same

linear approximation has no detrimental effect for the postsynap-

tically-gated rule. Moreover, the benefit of the weight-specific

approximation for the postsynaptically-gated rule is particularly

significant for recent patterns that could potentially be recalled

well (Fig. 4B).

In sum, our theory predicts that the storage of memories by a

hippocampal form of synaptic plasticity, which is postsynaptically-

gated, should be accompanied by the appropriate form of IP for

maintaining near-optimal performance. This IP is predicted to

have a non-trivial form: it affects the presynaptic neuron (because

it depends on the outgoing synapses), and it is ‘anti-homeostatic’ in

that the potentiation or depression of the synapses between two

cells should be accompanied by a respective increase or decrease

in the excitability of the presynaptic cell. Interestingly, recent

reports demonstrated a form of IPout that followed precisely this

pattern [57,58].

The expression for the other main component of the total

somatic current dictated by the optimal dynamics, I in,rec
i (Eq. 4), is

also problematic biologically. Although computing I in,rec
i only

requires information about the strength of incoming synaptic

weights, there is a term in it that depends on the sum of these

weights directly rather than the sum of currents (weights multiplied

by presynaptic activities) through the incoming synapses. As we

saw above in the case of outgoing synapses, sums over synaptic

weights can be approximated by adjusting neural excitability, and

hence this suggests that, beside IPout, there should also be a

postsynaptic form of IP that regulates a neuron’s excitability

depending on the sum of incoming synaptic weights, �wwin
i , and to

which we refer as IPin.

Therefore, we again constructed three approximations to this

term that were analogous to those used for outgoing synapses (Eqs.

6–8), but replaced �wwout
i by �wwin

i . Interestingly, the need for IPin is

specific to the postsynaptically-gated learning rule, as the constant

factor multiplying �wwin
i , ain

2 ~0 vanishes for the presynaptically-

gated rule, see Methods. Unlike in the case of IPout, this term is

homeostatic in nature (ain
2 v0 for the postsynaptically-gated rule),

with neurons becoming less excitable when many of their

incoming synapses are strong. Such homeostatic regulation of

the postsynaptic neuron’s excitability is well documented exper-

imentally, and is believed to play an important role in modulating

neuronal activity during learning to ensure network stability [25].

Figure 4. Intrinsic plasticity. A. Effects of different forms of IP (rows) for different forms of synaptic plasticity (columns). Recall performance is
shown for different variants of each form of IP (bars), entailing different approximations of the exact (optimal) dynamics. Dashed lines show control
performance of an optimized feedforward network, as in Fig. 2C–E; solid lines show performance of exact dynamics, asterisks mark neural dynamics
that are formally equivalent to the exact case. B. Recall performance as a function of pattern age with neuron-independent (black) and -specific (blue)
variants of IPout for the postsynaptically-gated learning rule. Gray filled curve shows distribution of pattern age. C. Recall performance for an online
implementation of the two forms of IP. D. Net change in excitability induced by the two forms of IP together as a function of time since memory
storage for neurons that were either active (gray) or inactive (black) in the originally stored pattern. Lines correspond to different random sequences
of consecutively stored patterns.
doi:10.1371/journal.pcbi.1003489.g004
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The same principle applies in our model, as removing this

regulation has catastrophic consequences for retrieval, and even

replacing this term with a neuron-independent form of homeo-

static regulation still impairs network performance (Fig. 4A,

bottom right). Moreover, this impairment becomes dramatically

worse in sparsely connected network (not shown). Conversely,

introducing a homeostatic regulation term in the case of the

presynaptically-gated learning rule has equally detrimental effects

(Fig. 4A, bottom left). This reinforces the notion that a tight match

is needed between the form of the synaptic plasticity rule storing

memories and the presence and form of mechanisms regulating

neural excitability.

Although a direct dependence of neuronal excitability on the

strength of net incoming and outgoing connections, as proposed

above, may seem difficult to achieve biologically, it can be well

approximated by a temporal average of the incoming (or outgoing)

excitatory drive to the neuron, as it is commonly formalised in

standard models of IP [59,60]. Essentially, this requires estimating

the average current into the neuron when the incoming inputs are

distributed according to the prior over stored patterns (by

averaging over responses during other retrieval trials, see Methods

for details). The effectiveness of this approximation depends on the

time scale for integrating past activity, and needs to be at least an

order of magnitude slower than the time scale on which individual

memories are stored and retrieved (Fig. 4C). Thus, this process

makes the neural threshold neuron-specific and keeps it fixed on

the time scale of individual recall trials, while slowly updating it to

reflect the history of patterns stored in the network. This is

consistent with experimental evidence suggesting intrinsic plastic-

ity be a slow process relative to the induction of synaptic plasticity

[25].

While postsynaptically-gated plasticity consistently predicts the

need for mechanisms regulating neuronal excitability, it is not

immediately clear what the net effects of the two distinct forms of

IP, IPin and IPout, should be. In fact, at first glance, they seem to

have opposite effects on neural excitability, with IPout acting in a

positive feedback loop, with neurons having a strong contribution

to the drive of their postsynaptic partners becoming more

excitable, and IPin acting homeostatically, reducing neural

excitability for neurons receiving many strong inputs. Predicting

the net effect of the two processes is further complicated by the

asymmetry in the learning rule itself, which makes it nontrivial to

determine the changes in net synaptic strength into and out of a

neuron. To investigate this question directly in a way that allows

experimentally testable predictions, we monitored the changes in

excitability in individual neurons triggered by storing a specific

pattern, and the evolution of these changes with pattern age

(Fig. 4D). We found that neuronal changes in excitability are

ultimately dominated by the positive feedback process, with

neurons activated or deactivated in the original storage event

displaying an increase or decrease in excitability, respectively. This

effect is general, and does not depend on the details of the synaptic

plasticity rule as long as it is postsynaptically-gated. Furthermore,

this effect is predicted to decrease with pattern age, following the

time constant of synaptic forgetting.

Dynamic feedback inhibition. Another important conse-

quence of the optimal retrieval dynamics derived above is that the

total current to a neuron should include a negative contribution

proportional to the population activity of its pre- and possibly

postsynaptic partners. While earlier theoretical work already

considered the importance of inhibition during retrieval [36],

and several standard models of spike-based recurrent circuits

exhibit a linear dependence of inhibition on the level of excitation

[61,62], our model advances these findings by predicting a specific

form of feed-back inhibition that is both temporally and spatially

specific. Temporal specificity requires that inhibition be dynam-

ically regulated to match the level of excitation in the network.

Spatial specificity requires that the level of inhibition received by

each neuron should be determined by just the right pool of

excitatory neurons (i.e., those ones with which it is connected). We

investigated the importance of both forms of inhibitory specificity.

Temporal specificity in the model leads to inhibition closely

tracking excitation in single neurons, with the difference in

magnitude between the two reflecting the evidence in favour of the

neuron having been active in the pattern to be retrieved (Fig. 5A).

In fact, the stabilisation of neural dynamics during retrieval relies

heavily on such dynamically balanced feedback inhibition.

Replacing the corresponding term in the total current term by

its average value, which corresponds to replacing feedback by

tonic inhibition, has catastrophic consequences for retrieval

performance (Fig. 5B), as network activity becomes unstable,

and – depending on pattern age and initial conditions – either

explodes or dies out altogether (Fig. 5C).

Spatial specificity in the model requires a precise overlap for

each neuron (for example, black neuron in Fig. 5D) between the

population of those excitatory cells that are pre- or postsynaptic to

the neuron (Fig. 5D, neurons with red fill) and the population that

provides disynaptic inhibition to it (Fig. 5D, neurons with blue fill).

While this can be trivially guaranteed in fully connected networks,

it requires considerable fine tuning in realistic, sparsely connected

networks. Although inhibitory plasticity has been suggested to tune

inhibitory inputs to match excitation [63], it remains an open

question how precisely biologically realistic synaptic plasticity of

inhibitory circuits can realise such a match. Thus, we investigated

the robustness of the recall dynamics to perturbations of the

optimal inhibitory connectivity by systematically varying the

probability that an existing source or target of monosynaptic

excitation is also a source of disynaptic inhibition while keeping the

total inhibitory input to each neuron constant (see Methods).

Perturbing the precise pattern of inhibition needed for optimal

recall acts as a source of noise in the total current to the neuron

(Fig. 5E). This depends on the excitatory/inhibitory (E/I) overlap,

which is 0% for random connectivity, 100% for a precise match.

This noise translates into an impairment in retrieval performance

which also varies with E/I overlap, with the network continuing to

perform significantly better than control even at small degrees of

overlap (Fig. 5F). (In these simulations, the lower bound on

achievable error, given by the exact recall dynamics, is relatively

high due to the reduction in the number of synapses per neuron in

the sparsely connected network.) Importantly, although some

information is lost due to this approximation, the dynamics remain

stable to perturbations in inhibitory connectivity, suggesting that

approximately optimal dynamics could be realistically implement-

ed in sparsely connected neural circuits without an exquisitly fine

tuning of inhibitory connections.

The cumulative effects of biological approxima-

tions. Although we have shown that individual terms of the

optimal recall dynamics can be approximated via biologically

plausible mechanisms with relatively small detriments in recall

performance, it is unclear whether the network can still work

appropriately with all these approximations in place. To test this,

we constructed retrieval dynamics combining the online form of

both pre- and postsynaptic IP, and assumed a 50% overlap

between the excitatory and inhibitory input sources to neurons in

the network (with 50% sparse network connectivity). We

considered two sets of comparisons: to exact sampling dynamics,

which provides a lower bound for the error rate achievable by our

approximation, and to networks involving the various components
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individually (Fig. 6). We found that the performance of the

biologically realistic network involving all approximations re-

mained close to that of the optimal network. Indeed, the relative

error of the whole set of approximations (compared to that of the

exact sampling dynamics) was less than the sum of relative errors

of the individual approximations.

Population oscillations
Although Gibbs sampling was an attractive starting point for

deriving dynamics that both work well in practice and can be related

to biologically plausible neural network dynamics [54], it suffers

from a major computational shortcoming: sloth. This means that a

very large number of iterations may be necessary before the samples

are appropriately distributed (i.e., a long burn-in time). Further, the

alacrity with which Gibbs sampling explores this distribution may

be limited (slow mixing). This would mean that consecutive samples

are highly correlated, implying that very many of them would be

needed to compute reliable expectations under the distribution

[64,65] thus compounding the error in the output of our network –

which is computed as just such an expectation (Fig. 2B). These

problems become particularly acute when the posterior distribution

that needs to be sampled is multimodal (when modelling

hippocampal flickering, see below) or itself exhibits strong

correlations (e.g. corresponding to strong coupling in frustrated

Ising models). In fact, similar problems affect the alternative,

deterministic mean-field or MAP dynamics (discussed in Text S1)

which suffer from local optima and regions of the objective function

that gradient-based methods find hard to traverse.

Recalling old memories. Fig. 7A (gray vs. blue) presents

evidence for the infelicity of Gibbs sampling. It shows that a large

fraction of the errors suffered by our network is solely due to slow

Figure 5. Dynamic feedback inhibition. A. Example statistics of inhibitory vs. excitatory currents to three example neurons during a recall trial.
Blue: neuron correctly recalling a 0 bit in the originally stored pattern, correctly recalled; red: neuron correctly recalling a 1 bit in the originally stored
pattern; gray: neuron with high variability during the trial, corresponding to an incorrectly recalled bit. Individual dots correspond to different time
steps within the same recall trial. B. Effect of replacing feedback inhibition by tonic inhibition with the same average level. C. Evolution of the mean
population activity during retrieval when network dynamics involve feedback (red) versus tonic inhibition (blue). Lines correspond to different trials.
D. Schematic view of inhibitory connectivity in the network. Pyramidal neurons sending or receiving monosynaptic excitation (disynaptic inhibition)
to example neuron 2 (black) are colored red (blue). Blue circle: local interneuron (not explicitly modeled) mediating disynaptic lateral inhibition
received by neuron 2. E/I overlap is measured as the ratio of presynaptic pyramidal neurons colored both blue and red, 0% is chance. E. Total somatic
current (through recurrents) to an example cell in a sparsely connected network (20% connectivity) with full (x-axis) or partial E/I overlap (y-axis,
colors); different points correspond to different time steps. F. Recall performance as a function of E/I overlap. Asterisks in B and F indicate network
configurations that are formally equivalent to the exact dynamics.
doi:10.1371/journal.pcbi.1003489.g005

Figure 6. Combining different circuit motifs for approximately
optimal retrieval. Retrieval performance with individual approxima-
tions (left), and all approximations combined (right), compared with a
hypothetical scenario cumulating errors additively (middle). All
networks are 50% sparsely connected. Dashed and solid lines show
performance of exact dynamics and control network. Approximations
used: online neuron-specific pre- (red) and postsynaptic IP (pink) with
an online integration window of 10 patterns, 50% E/I overlap (yellow),
all combined (blue), with additional population oscillations (green, see
also Fig. 7).
doi:10.1371/journal.pcbi.1003489.g006

Optimal Recall from Bounded Metaplastic Synapses

PLOS Computational Biology | www.ploscompbiol.org 10 February 2014 | Volume 10 | Issue 2 | e1003489



convergence speed: an artificial sampler which samples the exact

same posterior distribution but more efficiently [49] (see Methods)

performs substantially better. The difference between our network

and the artificial sampler is particularly striking for old memories:

this is because for these, the entropy of the posterior distribution is

large, and so a great number of different states needs to be visited

for it to be represented fairly.

How can we improve retrieval dynamics in our neural dynamics

to reduce the errors due to inefficient sampling? One potential

solution, inspired by work in optimisation and sampling is to use

annealing [64,65]. In this procedure, the function that needs to be

navigated – in our case the (log) posterior – is gradually ‘morphed’

between an approximate form, that is easy to handle, and its

original form, that is hard, with the degree of morphing being

controlled by a ‘temperature’ parameter. In the context of

sampling in particular, an annealing-based procedure termed

tempered transitions (TT) has been proposed as a way to ensure a

more efficient exploration of the state space [64] (Fig. S4). This

sampling procedure involves a form of oscillatory dynamics which

periodically increases and decreases the ‘temperature’ parameter

in way that could potentially be implemented by appropriate

population oscillations in a neural circuit.

To construct TT-based dynamics for our problem, a naı̈ve

choice for the approximate distribution at the highest temperature

would be a uniform distribution. However, while the uniform

distribution is trivially easy to sample from, it is too unspecific as it

retains no information about the original posterior and thus runs

the risk of leading to inefficient sampling. Fortunately, there is a

better option for the maximum temperature approximation: the

combination of the prior over patterns and the likelihood for the

recall cue. This approximation still retains important aspects of the

posterior (the first two terms comprising it, see Eq. 1) while

avoiding all the correlations in the posterior of which the sole

source is the likelihood of the weights (the last term in Eq. 1).

Therefore, it is a more efficient approximation than a uniform

distribution, but it is equally easy to sample from (because it is fully

factorised), and – as it is exactly the distribution sampled by the

feed-forward network that we have used as a control – it is also

readily implemented in the same recurrent circuit that represents

the full posterior by simply suppressing the effects the recurrent

connections.

As a result of using this more efficient approximation at high

temperatures, the TT-based sampler results in network dynamics

very similar to those corresponding to our original Gibbs sampler

(Eqs. 3–5), with only two alterations. First, the relative contribution

of recurrent inputs compared to that of external feed-forward

inputs (corresponding to the recall cue) needs to be modulated in

an oscillatory fashion (Methods). Such periodic modulation could

potentially be implemented by a form of shunting inhibition

differentially affecting distal and proximal synapses, corresponding

to feed-forward and recurrent inputs, respectively [34,35]. (As

above, we do not explicitly model the inhibitory population which

would provide this oscillatory input, only its effects on the total

somatic current of the principal cells; there exist several spiking

neuron models that could generate the required signal, see e.g.

[66]). Second, the readout of population activity needs to occur at

the phase of the oscillation corresponding to the original posterior

(temperature = 1). This could also be achieved by an appropriate

oscillatory modulation of the Schäffer collaterals (the efferent fibers

of CA3, see also Discussion).

One further approximation is required. In order to sample from

the exact distribution, TT normally requires a step in which a

possible sample taken at the lowest temperature after the whole

oscillation, could be rejected as a whole. The state of all the

Figure 7. Population oscillations. A. Recall performance as a function of pattern age with optimal network dynamics without oscillations (blue,
cf. Fig. 2C), with medium- (purple) or large-amplitude (red) oscillations, and with an artificial sampling algorithm (gray). B. Average recall performance
with the artificial sampling algorithm (gray) and with different levels of amplitude modulation for network oscillations (amplitude 0.75 corresponds to
the ‘medium oscillation’ in panel A). C. Average normalised population activity and response entropy at different phases during a cycle of a large-
amplitude oscillation.
doi:10.1371/journal.pcbi.1003489.g007
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neurons should then be returned to their original activities before

the sample was created. This is a highly non-local operation in

space and time, and so we made the approximation of omitting it.

Importantly, although the oscillatory dynamics we have

introduced are only approximate, they are still helpful in speeding

up convergence, allowing old memories to be retrieved substan-

tially more competently (Fig. 7A, red vs. gray). Unfortunately, the

same oscillatory dynamics prove to be detrimental when recalling

recent memories. This is because the synaptic weights retain

substantial information about these [17] implying that the

posterior distribution is very concentrated, which is inconsistent

with the over-exuberant changes in state that happen at the higher

temperatures in TT. In the exact forms of this procedure, such

moves are penalised by the highly concentrated posterior, leading

to high rejection rates and slow dynamics. The approximate

sampler, which lacks rejection, becomes less accurate. Therefore,

there is an inherent trade-off in the utility of oscillations: the more

useful they are for recalling remote memories, the more damaging

they are for the recall of recent memories. Parametrically varying

the amplitude of the oscillations reveals that an intermediate

oscillatory strength, where the dynamics take into account

recurrent inputs throughout the cycle (see Methods), best resolves

this tradeoff (Fig. 7A, purple and Fig. 7B).

Generating network oscillations is almost unavoidable in a

network combining excitatory and inhibitory neurons. However,

the kind of oscillations we employ here have several characteristic

signatures that can be used for experimentally validating our

predictions. In particular, since the oscillation phase controls the

temperature used to anneal the posterior distribution, the activity

at the trough of the oscillation (phase p, highest temperature)

should correspond to samples from a broader distribution (Fig.

S4). Hence, neural responses at the trough of the oscillation should

be more variable than those at the peak. Indeed, if we measure the

average entropy of the responses in the network as a function of

the phase of the oscillation, response variability is predicted to be

modulated with the period of the underlying oscillation, with most

variability at the trough (Fig. 7C, bottom). An intriguing

prediction that the overall level of population activity should be

modulated much more weakly by the same oscillation (Fig. 7C,

top). This is because, in the model, oscillations improve

convergence speed by periodically modulating the spread of the

distribution from which the network needs to sample (Fig. S4A),

rather than by biasing it in any particular way, e.g. towards higher

firing rates.

Representing spatial ambiguity. We have argued that

oscillations help the network explore a broad posterior resulting

from limited information in the synapses. Another particularly

revealing regime involves multimodal posteriors. Such distributions

might arise when animals receive conflicting cues, for instance, after

an instantaneous change in spatial context. In this scenario, current

sensory inputs suggest that the animal is in a new context, while the

generally correct assumption that spatial contexts are contiguous in

time suggests that the animal is still in the previous context, thereby

creating substantial spatial ambiguity.

The effects of spatial ambiguity have recently been examined in

experiments recording place cells in rats experiencing just such

rapid and abrupt changes between different spatial contexts

[46,50,51]. Immediately following a switch in spatial context, and

before hippocampal activity settled to representing the new

context, transient flickering was observed, in which there was

rapid switching back and forth between the recall states

representing the previous and the new context (Fig. 8A; top), in

a manner that was paced by oscillations in the theta range [46] (or,

in a different experiment, the gamma range [51]).

When the effective recall cue is the recent history of sensory

inputs (which is statistically appropriate since spatial location

should only change slowly and smoothly under normal circum-

stances, see Methods), our network also generates transient

flickering (Fig. 8B, top). In fact, as the net information available

in the cue always remains limited, it never perfectly excludes other

contexts, such that transient flickering can also be observed

without switching, albeit much less frequently (Fig. 8B, bottom).

Such spontaneous flickers were also observed in the original

experiment (Fig. 8A, bottom; [46]).

Discussion

A venerable history of classical theoretical work on hippocampal

area CA3 accounted for many of the architectural and anatomical

features of this area in terms of how they support its function as an

autoassociative memory system [1,2,36,67]. However, the dynam-

ical behaviour of CA3 has so far escaped such a theoretical

treatment. Indeed, unlike the simple dynamics of theoretical

models for autoassociative memory recall [4], the dynamics of

hippocampal networks implementing this function are dauntingly

complex. Individual neurons change their integration properties

on multiple time scales [24,25], the activity of pyramidal cells is

modulated by a plethora of functionally specialised inhibitory

neurons [26,27], each with its own intrinsic dynamics and

connectivity properties[32], innervating distinct domains of

pyramidal cells [28,32] and inducing task-specific oscillations in

several frequency bands [26,28]. Here, we have shown that it is

possible to dissect some of this complexity in light of the circuit

approximating optimal auto-associative memory recall. Neverthe-

less, it should be noted that there is still more to be said about the

contribution of different gross neuroanatomical features of the

hippocampus (and CA3) to associative memory, as well as the roles

that various cell types may play in it. Addressing these questions

were outside the scope of the present study and thus remain the

subject of future work.

Distinctive features
The recall dynamics in our theory share some of the basic

features of standard autoassociative memory networks (recurrent

excitation, linear inhibition [4,8]), but refine them in several

critical ways. First, traditional approaches require considerable

fine tuning of parameters for scenarios different from the standard

Hopfield network (storing binary patterns with the additive

‘covariance’ learning rule). In our approach, the basic form of

the network dynamics during recall is fully specified by the

statistical properties of the recall cue and the storage process, with

no free parameter left to be tuned. (Note, though, that tuning the

amplitude of population oscillations in the more sophisticated,

tempered transition dynamics, might be useful to improve the

speed of convergence.) This allowed us to include the effects of a

markedly non-uniform prior over the delay after which a memory

needs to be recalled, motivated by human forgetting data [42], in

contrast to traditional autoassociative memory models that

assume, mostly implicitly, an (improper) uniform distribution over

a finite range of recall delays (see also Text S2).

Second, our theory provides an explicit prescription for how the

excitability of neurons should be regulated depending on the

efficacies of both their incoming and outgoing synapses. Akin to

standard approaches, this means that excitability should depend

on all previously stored patterns. However, while previous

proposals for adjusting neuronal excitability require a somewhat

heuristic offline procedure where the full list of stored patterns

needs to be known [38], we were able to show that the appropriate
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regulation of neural excitability in our system can be well

approximated by commonly-assumed online forms of IP [60]

resulting in competent recall performance.

Third, while standard approaches only consider deterministic

dynamics, our dynamics are stochastic. This makes it straightfor-

ward to optimise network performance for a squared-error loss,

and additionally allows for a simple representation of uncertainty,

thereby also naturally accounting for hippocampal flickering

phenomena (see also below).

Finally, in keeping with other statistical treatments of auto-

associative memory, which, however, number only few [30], the

recall cue modulates the network dynamics throughout retrieval

(as an external field) rather than just being an initial condition. Its

relative contribution to the dynamics reflects its quality (or

noisiness).

Storage versus recall performance
One powerful, yet biologically-untenable, simplification made

by previous autoassociative memory models [4,8–10,14] is the use

of additive learning rules. The memory capacity of such networks

is linear in the number of synapses per neuron [1,4], but at the cost

of unrealistic synaptic and neural dynamics. At the other extreme,

the importance of bounded synaptic plasticity has been investi-

gated using synapses with extremely limited dynamic ranges,

including synapses with only two states [7,30]. While the capacity

of such networks was shown to be disappointingly poor, recent

work has shown that metaplastic synapses can store memories far

more efficiently than synapses with the same range of efficacies but

without metaplasticity [17]. As theoretical work investigating the

role of metaplastic synapses in memory has so far concentrated on

the benefits for storing information, it has been unclear how these

benefits can be translated into recall performance – which is what

ultimately matters for the organism (after all, there is not much

point in storing memories if they cannot be recalled). Surprisingly,

almost no work has considered the quality of memory recall from

metaplastic synapses, with the notable exception of Ref. [22] who

found only very modest improvements compared with the recall

performance of simple two-state synapses. Thus, it had remained

unclear if the benefits of metaplasticity in terms of information

stored can be translated into recall performance.

We have shown that with appropriate recall dynamics, recall

performance can in fact be substantially improved using meta-

plastic synapses (without explicit optimisation of the synaptic

plasticity rule used for storage), avoiding the characteristic of

simple two-state synapses that they exhibit catastrophically poor

logarithmic scaling of memory life time with the number of

synapses (Fig. 3). While our measures of performance are currently

based on numerical simulations, it may be possible to apply and

extend the analytical approaches originally developed for

computing the recall capacity of simpler network dynamics [22]

to provide a systematic analysis of the performance of our optimal

network dynamics.

The performance of our recall dynamics follows the qualitative

trends predicted by earlier analyses of metaplastic synapses [17].

Figure 8. Network flickering. A. Hippocampal population dynamics during a single retrieval trial, reproduced from Ref. [46]. Correlation of the
instantaneous population vector to the stereotypical responses of the network in the two contexts are shown (red vs. blue) Top: flickering (box)
following the switching of visual cues at time 0 (green vertical line), bottom: spontaneous flickering (box) without external cue switching. B.
Dynamics of population responses in the model showing flickering (boxes) after cue switching (top), and spontaneously, without cue switching
(bottom).
doi:10.1371/journal.pcbi.1003489.g008
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However, there remain some quantitative discrepancies: for

example, the cascade depth at which stored information is

maximised is not the same as that at which recall error is

minimised (Fig. S5). There may be several sources of these

discrepancies. First, the degree to which our approximately

optimal recall dynamics is able to make use of the information

that is stored in the synapses may depend on the parameters of the

system. Second, analyses of stored information typically quantify

information in single synapses (using measures such as the signal-

to-noise ratio, SNR), while recall error (e.g. fraction of correctly

recalled bits for whole patterns) is a result of the information stored

jointly in all synapses. These metrics may themselves only be

related to each other in a complex and nonlinear manner. For

example, when synaptic weights are correlated, these two

information measures will differ in general. In this work, we have

side-stepped this issue by using an approximation which treats

synapses in the network as independent given a particular pattern

has been stored. This is formally incorrect in statistical terms, as

we expect dependencies between synapses sharing a pre- and post-

synaptic partners. Indeed, weak but significant correlations are

observed between such synapses in the cortex [68]. It will be an

important next step to explicitly consider these statistical

dependencies and their significance for memory retrieval [43].

More importantly, however, these measures implicitly quantify

performance on fundamentally different tasks: while SNR is

appropriate for measuring recognition performance, i.e. the error

in making the relatively simple binary judgement on whether a

particular (and noiseless) pattern has been stored in the past [17],

our central interest has been recollection performance, i.e. the

error on the much more demanding task of recalling the details of

a high-dimensional pattern from noisy input [4,22].

Intrinsic plasticity
Our model predicts changes in neuronal excitability that can be

traced back to the specifics of CA3 synaptic plasticity (i.e. the

NMDA-receptor dependence of learning). In particular, we expect

that the excitability of individual neurons should constantly change

as a function of the state of the incoming and outgoing connections

to and from the neuron. A range of experiments has long

confirmed the homeostatic regulation of a neuron’s responsiveness

to injected current after chronic manipulations of network activity,

corresponding to IPin in the model [25,33]. More remarkably,

recent evidence confirmed that neuronal excitability is also

modulated by the strength of a neuron’s outgoing connections

[57,58], closely matching the predictions of our model for IPout:

not only do the shifts in presynaptic neuron excitability follow the

apparently anti-homeostatic direction predicted (increases after

LTP, reduction after LTD) [57,58], but this form of plasticity was

also shown to be specific to excitatory-to-excitatory connections

[58], as required by the theory. To our knowledge, we are the first

to ascribe a functional role to such presynaptic IP. Furthermore,

while homeostatic plasticity has been introduced in some models

as a heuristic addition to the network dynamics, meant to enhance

stability during learning [59,60], here it is derived from first

principles, as a necessity for optimal recall.

Our model also offers insights into some of the paradoxical

findings surrounding IP. Namely, while homeostatic IP can be

robustly expressed in vitro by pharmacological manipulations [25],

as we noted, the changes in excitability reported in vivo after more

naturalistic manipulations (e.g. after learning) are typically anti-

homeostatic [23,24] (see also [25]). Our results suggest that,

although different experimental manipulations may preferen-

tially expose one or the other mechanism (see [25,57,58]), both

are necessary for circuit function, and that the presynaptic

anti-homeostatic component dominates overall (Fig. 4D). This

would explain non-homeostatic increases in neural excitability in

the hippocampus after hippocampus-dependent learning [23,24].

Our model offers an equilibrium theory – we expect constancy

of neural excitability over the long-run, irrespective of the details

of synaptic plasticity, at least as long as there exists a stationary

distribution for the weights. Such a balance is consistent with

experimental findings about spatial learning preserving the global

firing rate of the network [69]. However, it is not obviously

consonant with the observations of net shifts in excitability that

have been measured across a population of CA3 neurons following

learning [23,24]. One possibility is that this comes from a

detection bias given sparse population patterns, such as those

observed in CA3 [70]. That is, for such populations, we predict

that the overall balance in excitability is achieved by large

increases in excitability in the small subset of neurons that are

active in the pattern, accompanied by small decrements of

excitability in the inactive population of neurons. If the larger

changes are preferentially detected (e.g. simply due to signal-to-

noise constraints in recordings), the changes in excitability that will

be evident will be positive but not negative. Indeed, the pattern of

experimental reports follows this trend: not all neurons recorded

during the course of an experiment show detectable changes in

excitability, but when they do, those changes are positive [23,25].

The model also makes the novel prediction that differential shifts

in excitability should be recorded after separating neurons based

on their activity in the pattern being stored. Using indicators of

immediate early expression gene (c-Fos) expression to generate a

lasting tag for the neurons that are active during the encoding of a

particular memory (when the animal is exposed to a novel

environment [71]) should make it possible to probe the excitability

of these neurons at various retrieval delays, thus directly testing

our prediction for the temporal evolution of excitability following

memory storage (Fig. 4D).

Feedback inhibition
Another key prediction of our model concerns the structure of

the inhibitory circuitry that provides feedback inhibition in CA3

(most likely by fast-spiking basket cells [72,73]). In particular,

optimal recall dynamics require a form of feedback inhibition that

dynamically tracks excitation, but without the need for tonic levels

of excitation and inhibition to be tightly balanced. This mode of

operation is fundamentally different from previously proposed

theories of E/I balance in cortical circuits requiring tonic

excitation and inhibition to match [61], because it is the very

difference between tonic excitation and inhibition levels (on the

time scale of a recall trial) that carries the information about the

identity of the pattern that needs to be recalled (and about

the confidence in this pattern). The network is therefore operating

in a rather different regime from other work on associative

memory in balanced spiking networks which has considered

additive synaptic plasticity [74]. In our model, when the stored

patterns are sparse, this translates into inhibition dominating

neural responses, as reported for sensory responses in awake (but

not anesthesized) mice, at least in V1 [75]. It also predicts a net

shift between excitation and inhibition within the same neuron

depending on the memory being retrieved, consistent with a shift

in the average membrane potential of hippocampal place cells

depending on whether the animal is inside or outside their place

field [76]. At a finer temporal resolution, we also expect that

fluctuations in excitation and inhibition are closely correlated.

There is evidence for this in neocortical recordings [75] but a test

of this prediction in the hippocampus has yet to be performed.
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At the level of the underlying hippocampal circuitry, the model

predicts a high degree of overlap between a neuron’s monosyn-

aptic excitatory and disynaptic inhibitory partners, which could, in

principle, be detected anatomically [77] or functionally [78].

Indeed, recordings in behaving rats confirm a close functional

coupling between excitatory and inhibitory cell populations [79].

Moreover, as the underlying recurrent connectivity is modified,

e.g. during learning, the inhibitory circuitry should be plastic as

well, on a time course similar to that of learning at excitatory

synapses. One recent experiment demonstrates that, at least in

CA1, such structural plasticity of inhibitory connections does

accompany the induction of (synaptic and structural) plasticity at

the excitatory synapses [80]. At the level of synaptic plasticity,

theoretical models of excitatory-inhibitory networks have already

predicted the dynamical matching of excitatory and inhibitory

inputs in individual excitatory cells [63]. A recent experiment

found evidence for this by measuring the profile of inhibition

during learning of a new spatial representation [51]. This

experiment revealed a reconfiguration of inhibitory activity that

mirrored the reorganization of excitatory activity during place

map formation, as we would expect from a process actively

matching excitation with inhibition.

Oscillations
We have shown that a periodic modulation of the relative

contribution of external versus recurrent inputs facilitates the

exploration of the state space of the network, and hence improves

performance when there is limited time to answer a recall query.

Such periodic modulation of extrinsic vs. recurrent inputs has been

anticipated to be useful in the rather specific context of sequence

disambiguation [81] but its general utility for memory recall under

time-pressure is a novel aspect of our model.

The computational role we ascribe to oscillations leads to a

number of predictions that are unique to our theory. First, the

main effect of oscillations in CA3 should be on the variability

rather than the rates of pyramidal cell responses (Fig. 7C). This

points to gamma oscillations as potential biological substrates

because they have only weak effects on the firing rates of CA3

pyramidal cells [82]. Second, the transmission of information to

read-out areas of CA3, most prominently to pyramidal cells in

hippocampal area CA1, should also be strongly modulated by the

oscillation, because only samples from the target distribution at the

peak of the underlying oscillation (corresponding to

temperature = 1) are correctly representing the pattern that needs

to be recalled. This means that CA3 input into CA1 should be

periodically gated such that it impacts CA1 preferentially at this

phase of the oscillation, which is consistent with gamma

modulation of population rates being stronger in CA1 than in

CA3 pyramidal cells [82]. Further evidence for this oscillatory

coordination between CA3 and CA1 is that their in-phase

synchronization in the lower gamma band is a signature of

coordinated memory reactivation across the hippocampal network

[83,84], and in particular of the transfer of information between

them [84,85]. This analysis does not delimit a role for theta

oscillations.

Another novel prediction of the theory is that response

variability across the CA3 pyramidal cell population (measured,

for instance, by the entropy of their responses across trials) should

depend on the phase of gamma oscillations. This can be directly

tested using multielectrode hippocampal recordings in awake

behaving animals, pooling data across trials in which the same

item is being recalled (e.g. the same spatial position is being

traversed), and measuring the variability across such trials as a

function of the phase of the simultaneously recorded gamma

oscillation.

Mechanistically, our model of oscillations requires a rhythmic

modulation of the different excitatory inputs to pyramidal cells in

CA3, affecting the relative contribution of recurrent versus

perforant path inputs. While the specific mechanisms achieving

this effect remain unclear, recent evidence suggests that at least

two classes of inhibitory neurons – bistratified [26] and oriens-

lacunosum moleculare (OLM) cells [86] – can rhythmically

modulate external versus recurrent inputs to pyramidal cells, as

would be required in our model. As OLM cells show strong

modulation by gamma [87], they seem to be ideally placed to play

this role.

Lastly, our analysis of retrieval performance revealed an

inherent tradeoff between the utility of oscillations when exploring

complex posterior distributions (very wide for old patterns or

multimodal as in the case of the flickering experiment) and their

detrimental effects when the correct answer is very clear (the

posterior is sharp and unimodal, as for recent patterns). It is

tempting to speculate that the amplitude of gamma oscillations

could be modulated with task difficulty (estimated by some

measure of response confidence, which is readily provided in a

sampling based representation) to optimise retrieval performance.

Indirect evidence for this comes from chronic recordings in the

human hippocampus showing increased gamma (and theta) power

for retrieving remote versus recent autobiographical memories

[88].

Representation of uncertainty
One key aspect of our theory is that the uncertainty about the

patterns that are being recalled is represented along with the

patterns themselves. This facilitates recall within the network, and

it is also essential for downstream functions such as decision-

making, for which evidence from recalled memories has to be

combined with other, e.g. perceptual, sources of information –

weighting each source of information with their respective

certainties [45]. The behavioural ability to assess confidence in a

retrieved memory trace has been demonstrated in various species,

including humans [89,90]. We proposed that this is underpinned

by a sampling-based neural code for uncertainty in the hippo-

campus [45,91]. Although the neural dynamics considered here

are highly simplified, recent theoretical work has shown that the

dynamics of more realistic leaky integrate-and-fire neurons can

closely approximate those required by Gibbs sampling used here

[54].

We showed that a sampling-based representation can explain

some puzzling experimental observations revealing transient

flickering in population responses following an instantaneous

transformation of the spatial context [46]. In order to capture this

flickering in traditional attractor dynamics, high levels of input

noise would need to be assumed. However, in the actual

experiments, special care was taken to make the cues for the

individual environments as reliable as possible, so that the animals

faced a problem of ambiguity rather than noise. According to our

theory, hippocampal flickering is a variant of bistable ‘spatial

perception’, and as such can be viewed as a signature of the

dynamics exploring different modes of the posterior, each

corresponding to one of the stored memories. Bistability poses a

particular challenge to attractor dynamics, which actively elimi-

nate ambiguity by a winner-take-all mechanism. Conversely,

sampling-based representations have been used to account for a

host of perceptual and neural phenomena surrounding bistable

perception [45,92–95]. If our sampling-based interpretation of

flickering is correct, then it should be possible to modulate the
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degree of flickering, and the distribution of dwell-times for the

individual representations, by experimentally manipulating sourc-

es of uncertainty (the reliability of sensory cues, or the prior

probabilities of the animal finding itself in any one of the possible

environments).

Conclusions
In sum, our work makes two important contributions. First, it

shows for the first time that high-quality recall from metaplastic

synapses is at all possible with neurally plausible dynamics.

Second, the resulting recall dynamics involve several critical motifs

that had not been predicted by standard approaches, and yet map

onto known features of hippocampal dynamics. Thus the model

provides insights into the computational role of several aspects of

hippocampal activity and allows us to make a range of novel,

experimentally testable, predictions.

Methods

Pattern and input statistics
We model a network of N neurons, with connectivity defined by

matrix C, with Cij~1 if there is a synapse from neuron j to neuron

i and Cij~0, otherwise. To control connectivity (Figs. 2E, 5E–F,

and 6), a randomly selected pC fraction of elements in C was set to

1 and the rest to 0. The corresponding synaptic efficacies are

binary and defined by matrix W, which is obtained as the result of

storing a sequence of patterns x(t) by the cascade learning rule (see

below). The patterns are also binary and, consistent with data

suggesting that the inputs to the CA3 network are decorrelated by

the dentate gyrus [96], we assume individual bits in a pattern to be

independent, such that the distribution of the stored patterns

factorizes over neurons (and also, implicitly, over patterns):

Pstore(x)~Pi Pstore(xi) Pstore(xi)~f xi :(1{f )1{xi ð9Þ

where f is the pattern density, or coding level.

Finally, the recall cue is a noisy version of the original pattern,

corrupted by independent noise modelled as a binary symmetric

channel:

Pnoise(xD~xx)~P
i

Pnoise(xi D~xxi) ð10Þ

Pnoise(~xxi Dxi)~((1{r)xi :r1{xi )~xxi :(rxi :(1{r)1{xi )1{~xxi : ð11Þ

with parameter r describing the probability of a bit in the original

pattern being flipped in the recall cue.

Pattern age t is assumed to be distributed geometrically with

mean �tt:

Precall(t)~
1

�tt
: 1{

1

�tt

� �t{1

, t§1 ð12Þ

Cascade rule
Learning is stochastic and local, with changes in the state of a

synapse Vij being determined only by the activation of the pre-

and postsynaptic neurons, xj and xi and the current value of Vij .

Following the presentation of a pattern with activation xi and xj ,

the synaptic state transitions from the current state Vij to to the

new state V ’ij . In the most general form, the probability of a

synapse changing between any two states can be defined through a

set of transition matrices M(xi,xj), with M(xi,xj)v’v~

P(V ’ij~v’DVij~v,xi,xj), which leads to a large number of model

parameters. A natural way to reduce this number is to define a

transition matrix for potentiating, Mz, and depressing, M{,

events and separately map different neuron activation pairs into

such events, possibly with some pairs leading to no change. Here,

we assume a postsynaptically-gated rule, where the co-activation of

pre- and post- neuron leads to potentiation, while an active

postsynaptic neuron causes depression if the presynaptic neuron is

silent, i.e. M(0,0)~I, M(0,1)~I, M(1,0)~M{, M(1,1)~Mz,

with I denoting the identity matrix. For comparison, we also use

the traditionally assumed presynaptically-gated learning rule

[22,38], with M(0,0)~I, M(0,1)~M{, M(1,0)~I, M(1,1)

~Mz.

We express the two transition matrices M+ using a general-

ization of Fusi et al.’s 2005 cascade model [17], parametrized by

r+, x and the cascade depth n. We index states corresponding to

weak and strong synapses with v[f1 . . . ng and v[fnz1 . . . 2ng,
respectively (Fig. 1C). We describe the elements of the transition

matrix, M+
v’v, as a sum of two terms: p+v describing the probability

that a weak (strong) synapse in state v[f1 . . . ng (v[fnz1 . . . 2ng)
will potentiate (depress) to become a strong (weak) synapse, by

occupying the ‘shallowest’ corresponding state in the cascade

hierarchy, v’~nz1 (v’~n); and q+v describing the probability that

a weak (strong) synapse in state v[f2 . . . ng (v[fnz1 . . . 2n{1g),
will remain weak (strong), but even more so, by changing to a

corresponding state that is one step deeper in the cascade

hierarchy, v’~v{1 (v’~vz1).

The probability of potentiation and depression decays as a

geometric progression: pz
v ~rzxn{v for v[f2 . . . ng (p{

v ~

r{xv{n{1 for v[fnz1 . . . 2n{1g), and we set pz
1 ~rz xn{1

1{x

(p{
2n~r{ xn{1

1{x
) to compensate for boundary effects. The proba-

bility of transitions towards deeper metastates is defined as

q{
v ~z{ xn{vz1

1{x
for v[f1 . . . ng (qz

v ~zz xv{n

1{x
for v[fnz

1 . . . 2ng) with the correction parameter zz~r{

1{f

f
(z{~

rz

f

1{f
) ensuring that different metastates are equally occupied

for any pattern sparseness value f , as done in the original model

[17]. Additionally, the constraint xƒmin
1

1zz{
,

1

1zzz

� �
en-

sures that we have proper transition probabilities for q+v . The two

additional parameters r+ are inspired by previous work on simple

binary synapses, which showed that, for sparse patterns, it is

beneficial to have different transitions probabilities for potentiation

and depression [10]. The original Fusi model [17] can be easily

recovered by setting r+~1, x~0:5.

Computing the synaptic weight distribution. A key

quantity that is determined by the synaptic plasticity rule, and

that we will need for deriving the optimal recall dynamics below, is

the probability, P(Wij Dxi,xj), that the weight of the synapse

between presynaptic neuron j and postsynaptic neuron i takes a

particular value after having stored pattern (xi,xj) some time ago,

where the delay (time since storage) is drawn from the prior over

pattern ages, Precall(t). For this, we first need to understand how

the probability distribution of the underlying synaptic state, Vij ,

evolves over time.

The presentation of a sequence of patterns (intervening between

storage and recall time) drawn independently from Pstore(x)
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defines a Markov process, described by a transition matrix �MM.

This matrix defines the transition probabilities caused by the

storage of an individual intervening pattern, obtained by

marginalizing over the unknown identity of this intervening

pattern:

�MM~
X
xi ,xj

Pstore(xi):Pstore(xj):M(xi,xj): ð13Þ

This transition matrix also defines the stationary distribution of the

synaptic states p? as the eigenvector of �MM corresponding to the

eigenvalue l~1, with p?
v ~P Vij~v

� �
under the stationary

distribution (with v[f1 . . . 2ng).
Using this notation, the evolution of a synaptic state after

encoding a pattern (xi,xj), reduces to a sequence of matrix

multiplications, starting from the stationary distribution, p?

(corresponding to having stored an infinite sequence of patterns

prior to storing (xi,xj)), applying the transition induced by the

pattern (xi,xj), then applying repeatedly the operator �MM the

appropriate number of times. Formally, the distribution over the

synaptic states, for pattern age t (i.e. after storing t{1 intervening

patterns), can be expressed as:

pV(xi,xj ,t)~ �MMt{1:M(xi,xj):p
? ð14Þ

where pV
v (xi,xj ,t)~P(Vij~vDxi,xj ,t). An example of the evolution

of this distribution under cascade dynamics, when the stored

pattern is (1,1) is shown in Fig. 1D.

Next, as the pattern age t is unknown at the time of recall, we

need to integrate over all possible pattern ages, with probabilities

given by Precall(t):

pV
v (xi,xj)~P(Vij~vDxi,xj)~

X
t

Precall(t):p
V
v (xi,xj ,t), ð15Þ

To make the marginalisation of the unknown pattern age t
practical, we use the diagonalized form of the transition matrix
�MM~X:L:X{1, with L being a diagonal matrix containing the

eigenvalues of M, and X a matrix having the corresponding

eigenvectors as columns. As the expression in Eq. 15 is linear, we

can reorder the operations and compute Eqs. 14–15 in a single

step:

pV(xi,xj)~XL̂LX{1:M(xi,xj):p
?: ð16Þ

where L̂L~
P

t Precall(t)L
t{1. It is hard to compute the eigenvalues

and corresponding eigenvectors analytically in general; thus, we

estimate them numerically. Nonetheless, if the prior over t is

relatively simple, it is possible to do the marginalization

analytically, with L̂Lij~
dij

�tt{(�tt{1):Lij

for the geometric prior we

used in our simulations (see above), where dij~1 for i~j, and 0

otherwise.

Finally, we use the deterministic map of synaptic states into

synaptic efficacies (formalised as a 2|2n matrix T, with T1v~1
for vƒn; T2v~1 for vwn; and Twv~0, otherwise) as:

pW(xi,xj)~T:pV(xi,xj) ð17Þ

where P(Wij~w{1Dxi,xj)~pW
w (xi,xj) with w[f1,2g.

Note that this approach is general and can be applied to any

synaptic plasticity model which involves stochastic transitions

between a finite set of states, e.g. the serial model of Ref. [55].

Optimal recall
As is conventional, and plausibly underpinned by neuromod-

ulatory interactions [97], we assume that network dynamics do not

play a role during storage, with stimuli being imposed as static

patterns of activity on the neurons; and conversely, that the

network does not undergo further plasticity during recall.

The posterior distribution over patterns. A recall query

implies a posterior distribution over patterns, given the informa-

tion in the weights and the recall cue:

P xD~xx,W,Cð Þ!P x,~xx,WDCð Þ~Pstore(x):Pnoise(~xxDx):P(WDx,C) ð18Þ

The first two terms composing the posterior have been defined in

the section describing ‘pattern and input statistics’ above. To be

able to analyze the last term, we make the approximation of

assuming that the evidence from the synaptic efficacies factorizes

over individual synapses as P WDx,Cð Þ~ P
ij:Cij~1

P Wij Dxi,xj

� �
,

where we have derived the form of the individual terms,

P(Wij Dxi,xj), in the preceding section. To simplify notation and

since we usually focus on all-to-all connected networks, the

dependence on matrix C is not made explicit in the main text.

Note that we do not assume that this posterior is ever computed

explicitly by a neural circuit: we use it merely as an intermediate

conceptual step to construct network dynamics that produce

activity patterns optimizing network performance under this

posterior distribution.

Gibbs sampling. All procedures that we use for sampling

from the posterior distribution in this paper are variations of Gibbs

sampling which updates sequentially dimension (neuron) i of the

vector x, conditioned on the current state of all other dimensions

(neurons), x\i, by sampling from P(xi Dx\i,~xx,W,C). For binary

variables, as in our case, this is equivalent to computing the log-

odds ratio:

Ii~
P xi~1Dx\i,~xx,W,C
� �

P xi~0Dx\i,~xx,W,C
� � ð19Þ

and then passing it through a logistic sigmoid nonlinearity

P(xi~1Dx\i,~xx,W,C)~s(Ii)~
1

1ze{Ii
.

Under the assumptions used for computing the posterior

described above, the log-odds ratio can be decomposed into

individual contributions from the prior over patterns, from the

recall cue, and from individual synapses in the network that link

neuron i to its pre- or postsynaptic partners (by applying Bayes

rule, and appropriately ordering the factors):

Ii~log
P xi~1ð Þ
P xi~0ð Þzlog

P ~xxijxi~1ð Þ
P ~xxijxi~0ð Þz

X
j:Cij~1

log
P Wij jxi~1,xj

� �
P Wij jxi~0,xj

� �z
X

j:Cji~1

log
P Wjijxi~1,xj

� �
P Wjijxi~0,xj

� �
ð20Þ

The contributions of individual recurrent weights in the total

current is computed using the expression for P Wij Dxi,xj

� �
in

Eq.17. This results in a set of 2|2 possible outcomes depending
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on the value of the synaptic efficacy Wij[f0,1g and presynaptic

activity xj[f0,1g: sWij ,xj
~log

P(Wij Dxi~1,xj)

P(Wij Dxi~0,xj)
, which can be

further rewritten as a quadratic form in the two variables,

ain
1
:Wij xjzain

2
:Wijzain

3
:xjzain

4 , with the parameters ain
1...4 com-

puted as ain
1 ~s11zs00{s01{s10, ain

2 ~s10{s00, ain
3 ~s01{s00,

ain
4 ~s00. A very similar functional form can be obtained for the

outgoing synapses. Note that these values are thus fully determined

by the parameters of the learning rule (here, the cascade rule), the

pattern distribution, and the prior for the pattern age, with no free

parameters. (These parameters can also be derived for the case

when the true pattern age is known, by replacing the prior for the

pattern age with a delta function in Equation 16.) As a special case,

when using a balanced (for which the average probability of a

potentiation or depression event is the same) presynaptically-gated

learning rule we find that ain
2 ~0; equally, by symmetry, for a

balanced postsynaptically-gated learning rule we will have aout
2 ~0.

Putting everything together, the total current to a neuron under

Gibbs dynamics has the form:

Ii~I rec,in
i zI rec,out

i zacue:~xxizabias ð21Þ

I rec,in
i ~

X
j:Cij~1

ain
1
:Wij xjzain

2
:Wijzain

3
:xjzain

4 ð22Þ

I rec,out
i ~

X
j:Cji~1

aout
1
:Wji xjzaout

2
:Wjizaout

3
:xjzaout

4 ð23Þ

where acue~2 log
1{r

r

� �
and abias~log

fr

(1{f )(1{r)

� �
.

Starting from the recall cue, the recall dynamics involve

asynchronous updates of each neuron in the network, with

samples collected at the end of each full network update,

corresponding to one time step in the figures. The permutation

determining the order in which neurons are updated is also

randomly redrawn at the beginning of each network update.

Network approximations
Intrinsic plasticity. We consider three variants for approx-

imating the term corresponding to the outgoing synapses

(presynaptic IP):

I rec,out
none ~0 ð24Þ

I rec,out
indep ~

X
j:Cji~1

(aout
1
:f zaout

2 ): �WWzaout
3
:xjzaout

4

� �
ð25Þ

I rec,out
specific~

X
j:Cji~1

(aout
1
:f zaout

2 ):Wjizaout
3
:xjzaout

4

� �
ð26Þ

Computationally, I rec,out
indep corresponds to an approximation of the

expected value of I rec,out, conditioned on the net activity of the

neuron’s postsynaptic partners,
P

j:Cji~1 xj . The last, most refined

approximation, I rec,out
specific, represents a similar expectation, further

conditioned on the sum of the efficacies of outgoing synapses,P
j:Cji~1 Wji. We obtain I rec,out

indep by taking an expectation over

I rec,out
specific (implicitly still ignoring correlations between weights and

postsynaptic activities).

To investigate the role of the homeostatic regulation of neural

excitability depending on the incoming synaptic weights (postsyn-

aptic IP), we replaced the term corresponding to
P

j:Cij~1 Wij by

its expected value, N:pC
: �WW , with �WW the expected synaptic efficacy

under the stationary distribution, and pC the synaptic connection

probability (see above). Furthermore, when introducing or

removing the homeostatic regulation of excitability in Fig. 4A

(bottom) we replace ain
2 by aout

2 (alternatively, we could have varied

the factor scaling the dependence of the total synaptic efficacy

parametrically).

For both forms of regulation of neural excitability, the online

version of the recall dynamics assumes the term
P

j Wij , orP
j Wji, respectively, is replaced by a temporal average of the form

1

f
S
X

j
WijxjT, with the presynaptic activity sampled from the

prior, which would correspond to network activity while retrieving

other patterns (we use a square temporal window and only vary its

width, i.e. the number of samples used for the estimation, but a

more realistic time decaying kernel would also be possible).

Inhibition. To model tonic inhibition, we replace the

inhibition terms
P

j:Cij~1 xj and
P

j:Cji~1 xj by their expected

value f :Nsyn, with Nsyn~
P

j Cij (or Nsyn~
P

j Cji) the total

number of pre- or postsynaptic connections to neuron i. To asses

the importance of spatial selectivity of inhibitory connections we

use a sparsely connected network (pC~0:2) and vary the degree of

overlap of the sources of excitation and inhibition to a neuron,

while maintaining the average magnitude of inhibition fixed. In

particular, we define a second connectivity matrix Cinh for

defining the sources of (disynaptic) inhibition to each neuron

and vary the E/I overlap by manipulating the similarity between

Cexc and Cinh. To preserve the average net inhibition to a neuron,

we keep the average number of inhibitory connections to a neuron

fixed (the two connectivity matrices are equally sparse), and

replace a certain percentage of the correctly matched inhibitory

sources to a neuron (e.g. in Fig. 5D from neuron 4 to neuron 2)

with inhibitory connections from neurons that are not in the set of

its (pre- or post-) synaptic partners (e.g. from neuron 5), with the

E/I overlap parameter defining the probability of a ‘correct’

inhibitory source actually feeding inhibition to a neuron,

P(Cinh
ij ~1DCexc

ij ~1). Furthermore, to keep the net inhibitory

current to the neurons unchanged, we add random inhibitory

connections from neurons that do not share recurrent collaterals

with neuron i as to preserve the average number of inhibitory

synapses onto the neuron. Using this setup, the feedback inhibition

term becomes ain
3

P
j:Cinh

ij
~1 xjzaout

3

P
j:Cinh

ji
~1 xj .

Artificial dual sampler
We construct artificial recall dynamics that perform Gibbs

sampling in the space of the joint distribution P x,tð Þ [49].

Introducing the pattern age as an auxiliary variable in the

sampling procedure can be related to other auxiliary variable

methods for sampling and is expected to improve sampling

efficacy in the case of complex distributions [65].

Formally, the dynamics alternates between sampling an

individual neuron’s activity, conditioned on everything else

(including the current value to t), P(xi Dx\i,~xx,W,C,t) and sampling

the pattern age t, according to the distribution P(tDx,~xx,W,C)
(which simplifies to P(tDx,W,C), as t is independent of the recall

cue after conditioning on the stored pattern x). This last step
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makes this sampling procedure biologically unrealistic, as

computing the distribution over pattern ages requires knowledge

of the full set of recurrent collaterals of the network.

Practically, the procedure involves stochastic updates of neuron

activities that are very similar to those of the simple Gibbs sampler,

with the distinction that now the parameters ain=out depend on the

pattern age, t, and are computed using the distribution

P(Wij Dxi,xj ,t), obtained by projecting the distribution over the

synaptic states P(Vij Dxi,xj ,t) directly into synaptic efficacies,

without marginalising out t. This means that the expression of

the total current Eq. 3 now includes age-dependent parameters

a
in=out
1:4 (t). Conceptually, this will result in a modulation of the

relative contribution of the recurrent collaterals versus the external

input from the cue, such that the recurrent dynamics dominate for

recent patterns while the output is driven by the external input

when the pattern is deemed to be old, when little or no

information about the pattern is available in the weights.

Finally, to be able to sample the pattern age, we limit the

maximum possible pattern ages resulting in a finite discrete

distribution, from which it is easy to sample (in practice, we

assume events with t§100 can be treated as equivalent). As there

is little signal in the tail of the distribution over pattern ages, this

does not affect performance for the network sizes considered here.

Tempered transitions and network oscillations
Tempered transitions (TT) is a method that can improve

sampling efficiency by using annealing, i.e., systematically

increasing and then decreasing a temperature parameter to ensure

better exploration of the state space [64]. According to TT, in

order to sample from a target distribution P xð Þ we choose a set of

intermediate probability distributions, Pb xð Þ, indexed by the

inverse temperature parameter 0ƒbƒ1, that are increasingly

dissimilar from, but also easier to sample than, P xð Þ as b
decreases. The target distribution is represented at inverse

temperature b~1: P1 xð Þ~P xð Þ. For each intermediate distribu-

tion we need a form of stochastic dynamics (formally, defining a

Markov transition operator) which samples from (i.e. has as its

stationary distribution) the corresponding Pb xð Þ. Starting from the

current state x, which is a sample at b~1, i.e. from P1 xð Þ, a

sampling cycle involves first lowering the inverse temperature in a

sequence of steps down to b~0 and then increasing it back to

b~1. At each temperature level, we run the corresponding

stochastic dynamics for a few steps starting from the last sample

collected at the previous temperature level. This results in a

sequence of intermediate samples, x
^

b and x̂xb, for the descending

and ascending inverse temperature sequences, respectively (Fig.

S4). Finally, all the intermediate samples produced at inverse

temperatures bv1 are discarded, and the final sample produced

at b~1 is accepted or rejected (in which case network activity

would need to return to the state it had at the beginning of the

cycle) with a probability given by the product of pairwise ratios of

probabilities of all the intermediate states [64] (see also Suppl.

Info. in Ref. [49]).

For us, the target distribution is the posterior P xD~xx,W,Cð Þ.
Common practice would dictate that we choose the intermediate

distributions to be simply exponentiated (with bv1 as the

exponent) versions of the target distribution, which would result

in a completely uniform distribution at b~0. However, this would

not be efficient as the uniform distribution has no information

about the original problem and thus results in unnecessarily wide

Markov steps and, as a consequence, in a high rejection rate.

Instead, we can use an important insight about the structure of our

posterior to construct a better sequence of intermediate distribu-

tions. This insight is that the only factor that makes the posterior

hard to sample from (thus motivating the usage of TT in the first

place) is the correlations in it that are solely introduced by the

weight-likelihood term, P(WDx,C). (Note that although we

approximated this term above as factorized over the elements of

W, this still does not mean that it also factorizes over the elements

of x, of which the correlations are of issue here.) Therefore, we

chose only this term to be modulated by temperature, such that

Pb xD~xx,W,Cð Þ!Pstore(x):Pnoise(~xxDx): P(WDx,C)½ �b ð27Þ

The are two important features of exact TT dynamics that are

problematic in the context of our network dynamics: first, the

order in which neurons are updated in the ascending phase should

be the exact reverse of that used in the descending phase; second,

and more critically, an acceptance step is required at the end of

each temperature cycle, as we saw above. As both the final

acceptance step and the tight control on the ordering of neural

updates are biologically unrealistic, the neural network approxi-

mates TT dynamics by ignoring sample rejections and by updating

neuron activities in a random order during an oscillation cycle

[64]. Under these approximations, the network dynamics are

essentially identical to those of simple Gibbs (Eqs. 21–23), with all

parameters unchanged, with the only modification that the

recurrent currents are multiplicatively modulated by the inverse

temperature b (cf. Eq. 21):

Ii~b I rec,in
i zI rec,out

i

� �
zacue:~xxizabias ð28Þ

At b~0 this is equivalent to sampling from a purely feed-forward

network which uses no information in the recurrent weights and

which is the network that we used throughout the paper as our

‘control’.

In general, the inverse temperature parameter b can take values

between 0 (corresponding to control) and 1 (the target distribu-

tion). Here, we took a sequence that linearly interpolated between

b~1 and a minimum value b0§0, with the amplitude of the

oscillation being defined as 1{b0. In all cases the number of

neurons updated at each temperature level was chosen such that

the total number of neurons updated over a whole cycle was the

number of neurons in the network, N.

Although, due to the approximations we introduced above, the

resulting network dynamics is no longer guaranteed to generate

samples from exactly the correct posterior distribution, simulation

results suggest that this approximation does not significantly alter

the estimate of the posterior mean or the average response

variability provided that the acceptance probability under the

exact dynamics remains high, which we ensure by an appropriate

modulation of b0.

Simulation parameters
We start by defining the general setup and the default

parameters used in all simulations, after which we proceed to list

the parameter settings specific to each figure, in the order in which

they are included in the main text. Unless otherwise specified, we

considered a network of N~500 fully-connected neurons. The

stored patterns were balanced, f ~0:5 (f ~0:2 when sparse

patterns were used, in Fig. 2); the recall cue noise was r~20%,

the average pattern age was �tt~10 and the cascade parameters

were r+~1, x~0:5 and depth n~5.

For measuring retrieval performance, we started from sampling

the stationary distribution of the synaptic states, then we sampled
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from the prior, Pstore(x), one N-dimensional binary pattern x
which we stored by modifying synaptic states in the network

according to the cascade learning rule described above. To

separate the effects of synaptic correlations from the correlations

among recalled activities, we simulated the effects of the storage of

intervening patterns following the storage of x by evolving

individual synapses independently for t{1 steps according to

the transition operator, �MM, corresponding to storing a random

pattern from the prior. At recall, we sampled a recall cue, which

was a noisy version of x, according to the noise model. This cue

was provided as input to the network throughout retrieval as well

as the starting point for the network dynamics. The network was

allowed to evolve for 100 steps according to the dynamics we

derived above. We took the temporal average across all these

samples to be the recalled pattern x̂x, and computed the root mean

square error between the stored and recalled pattern asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
i
(xi{x̂xi)

2

r
. The performance for the control feed-forward

network could be computed analytically (as both the prior over x
and the recall cue distribution are factorized) asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r (1{r)

1zr
1{2f

f


 �
1zr

2f {1

1{f


 �
vuuut , which for the case of balanced

patterns (f ~0:5, as in most cases considered here) reduces toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r (1{r)

p
. When plotting mean performance as a function of

pattern age, we used 10 trials for estimating the error for each t;
for the average performance plots, we repeated the storage-

retrieval procedure described above 250 times, with pattern ages

drawn randomly from the prior distribution. Average performance

was measured as the average error over these independent runs,

with all error bars representing the standard error of the mean.

For Fig. 2B, we stored the 32|32 binary pattern shown and used

Gibbs dynamics without further approximations to retrieve it at a

pattern age t~10. To emphasize the stochastic aspects of the

dynamics, we chose to show a subset of neurons whose activity

evolution happened to be most variable. When investigating the

dependence of the networks’ performance on the total number of

synapses per neuron in the sparse condition, we fixed network size

and varied the connection probability, pC; in particular, we used a

network size of N~500 with one exception: we took N~1000 for

the case of 500 synapses/neuron. To investigate the effects of the

prior over pattern ages, we reran the same procedure for different

settings of the average pattern age (adjusting the parameters of the

network accordingly and resampling the pattern ages for which

retrieval is performed).

For the memory capacity analysis in Fig. 3, we used the default

parameters for the cascade (r+~1 and depth n~5) and

optimized the parameters of the two-state synapse such that the

signal decays exponentially with the same time constant as the

prior assumed over patterns (r+~2=�tt and n~1). The memory

capacity was defined, in line with classic SNR-based analyses, as

the maximum pattern age for which retrieval error (averaged over

100 trials for each t) was below a predefined threshold Emax. The

network evolved by simple Gibbs dynamics (assuming t unknown).

When optimizing cascade depth (Fig. S5), we assumed r+~1, and

estimated for each setting of n the average retrieval error under the

prior for t and the mutual information between a synapse Wij and

the activity of its corresponding neurons (xi,xj) (marginalizing

over the unknown t; i.e. using Eq. 17).

For Fig. 5A, we monitored the excitatory, ain
1

P
j Wijxj , and

inhibitory, (ain
3 zaout

3 )
P

j xj , input to a neuron in a network with

the default parameters settings, evolving by Gibbs dynamics, as

described above (the actual values obtained were discrete so we

added a small amount of Gaussian jitter to them for visualization

purposes). These two quantities are plotted against each other for

three example neurons, two with low entropy (red, blue) and one

with high response entropy (§0:75). All-to-all connectivity was used

for panel B, and sparse connectivity (pC~0:2) for panels E and F.

Panel E shows the total recurrent current to an example neuron

using the exact vs. the approximate expression for computing the

inhibitory current, while the dynamics evolve by Gibbs.

For Fig. 6, we used relatively dense connectivity (p~0:5) in

order to preserve a relatively high number of synapses per neuron.

The parameters for different approximations were 10 steps for the

online forms of IP, and we used 50% E/I coherence and

oscillation amplitude 0:75.

For the simulations with oscillations (Fig. 7), we used 50
different temperature levels, linearly spanning the range (b0,1),
with 5 neurons updated at each temperature step, such that one

oscillation cycle corresponded to one full network update (50

descending and 50 ascending inverse temperature steps), as before.

In this case, the posterior mean was computed by averaging over

the samples obtained at (inverse) temperature b~1. (We kept the

total simulation length constant, which meant that we had a

reduced number of samples for estimating the posterior with

oscillations, thus slightly favoring simple Gibbs dynamics without

oscillations, but we deemed this a fair comparison if the duration

of a recall trial is the real constraint). For Fig. 7C, we used high

amplitude oscillations, b0~0, and, for each temperature level

(which defines the phase of the oscillation), computed average

population firing as
1

N

X
i
x̂xi and the average response entropy as

1

N

X
i
hi, with a neuron’s response entropy defined as

hi~{x̂xi
:log(x̂xi){(1{x̂xi):log(1{x̂xi).

For the flickering experiment (Fig. 8), we stored two consecutive

patterns, xA and xB (corresponding to the two contexts in the

original experiments), and simulated the effects of having stored

another 8 successive patterns independently across synapses as

described above. For creating inputs to the network, cues were

sampled independently in each time step from the input

distribution conditioned on the pattern (xA or xB) corresponding

to the current context, and hence their statistics changed abruptly

at a context switch. For recall, we used oscillatory dynamics (as in

Fig. 7, with b0~0) with one minor modification: instead of taking

a single relatively reliable recall cue as the input, each neuron

integrated the evidence from the most recent past of several highly

unreliable cues (75 cues, each with r~0:48) by simply summing

them up (this is optimal in our framework under the assumption

that all 75 cues are i.i.d., which is violated at a context switch). For

constructing the actual figure, we started the simulations using xA

and switched to xB at time t~0, marked by the vertical green bar.

As the effective recall cue was obtained by integrating over a

period of several time steps, there is a corresponding time-window

after the switch during which this effective recall cue is ambiguous

(due to the integration of conflicting evidence coming from two

different contexts), and hence the posterior is determined primarily

by the evidence from the weights, which is inherently multimodal.

We computed the correlation between the response of the network

(at the peak of the oscillation, corresponding to b~1) and the two

actually stored patterns xA, and xB, which are displayed in Fig. 8.

Supporting Information

Figure S1 Different schemes for representing the
posterior through recall dynamics. A. Schematic represen-
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tation of possible strategies for constructing recall dynamics

corresponding to the posterior (heat map): starting from the recall

cue (green), maximum a posteriori (MAP, black line) dynamics

follow the local gradient to a possibly local maximum of the

posterior thus exhibiting attractor dynamics; sampling based

dynamics (MCMC, gray dots) move stochastically in the state

space, such that the amount of time spent in a certain region of the

state space is proportional to the mass of the distribution in that

region. For the purposes of illustration, the case of analog patterns

is shown. B. The corresponding neuronal transfer functions (the

expression for the total current to a neuron is identical in all

variants, see Eq. 3). C. Comparison of retrieval performance using

different retrieval dynamics. Control level was 40% (not shown).

All simulation parameters had the default values, as defined in the

main text.

(TIF)

Figure S2 Representing recall uncertainty. Relationship

between the variability of neural responses during retrieval,

measured by the average neural response entropy as shown in

Fig. 7C, and the final (r.m.s.) retrieval error associated with the

response. Colors label the age of the pattern to be retrieved (see

color bar on right). Simulation used default parameters (see

Methods).

(TIF)

Figure S3 Recall performance for standard attractor
dynamics. A total of 10 patterns was stored in a recurrent

network by the cascade rule, either the pre- (blue) or the

postsynaptically gated form (red). All parameters were set to their

default values. Retrieval followed standard attractor dynamics

which ignore the prior over pattern ages and the recall cue –

beyond the initial condition (see Text S2 for details). Gray dashed

line shows retrieval performance for the optimal dynamics

(without approximations). (This performance is formally identical

for pre- and post-synaptically gated plasticity.) Black dashed line

shows the usual control level, corresponding to an optimized

feedforward network.

(TIF)

Figure S4 Oscillations as tempered transitions. Sche-

matic depiction of the effects on the posterior induced by

modulating the temperature parameter for a one-dimensional

analog distribution. Tempered transitions cycles through several

distributions indexed by the inverse temperature parameter b
taking values between b0 (depending on oscillation depth) and 1.

Sampling at the high temperature (low b) distributions allows the

dynamics to explore the full state space.

(TIF)

Figure S5 Single synapse signal vs. recall performance.
Mutual information between pre- and postsynaptic activity at a

synapse and the weight of that synapse (gray) and recall

performance in the network (black) as a function of cascade

depth. Arrows show optima of the two curves.

(TIF)

Text S1 Alternative recall dynamics.
(PDF)

Text S2 Comparison to standard attractor dynamics.
(PDF)

Text S3 Error rates for old patterns.
(PDF)
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