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Abstract

Dynamic positron emission tomography (PET) imaging is a powerful tool that provides useful quantitative information on
physiological and biochemical processes. However, low signal-to-noise ratio in short dynamic frames makes accurate kinetic
parameter estimation from noisy voxel-wise time activity curves (TAC) a challenging task. To address this problem, several
spatial filters have been investigated to reduce the noise of each frame with noticeable gains. These filters include the
Gaussian filter, bilateral filter, and wavelet-based filter. These filters usually consider only the local properties of each frame
without exploring potential kinetic information from entire frames. Thus, in this work, to improve PET parametric imaging
accuracy, we present a kinetics-induced bilateral filter (KIBF) to reduce the noise of dynamic image frames by incorporating
the similarity between the voxel-wise TACs using the framework of bilateral filter. The aim of the proposed KIBF algorithm is
to reduce the noise in homogeneous areas while preserving the distinct kinetics of regions of interest. Experimental results
on digital brain phantom and in vivo rat study with typical 18F-FDG kinetics have shown that the present KIBF algorithm can
achieve notable gains over other existing algorithms in terms of quantitative accuracy measures and visual inspection.
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Introduction

Dynamic positron emission tomography (PET) is a powerful

tool that provides useful quantitative information on physiological

and biochemical processes [1]. Associative parametric imaging can

be achieved by fitting the time activity curves (TACs) at each voxel

with a linear or nonlinear kinetic model [2]. However, low signal-

to-noise ratio (SNR) in short dynamic frames causes the related

noise to be inevitably transferred to the voxel-wise kinetic

parameter estimation from the TAC measurements. Thus, PET

parametric imaging is essentially an ill-posed problem.

As regards PET parametric imaging, the related reconstructions

can be realized by using direct and indirect methods [3–5]. Direct

reconstruction methods enable accurate compensation of noise

propagation from the projection data to the kinetic fitting process

by combining kinetic modeling and dynamic image reconstruction

into a unitary formula [6–9]. Direct reconstruction methods

usually require knowledge of the input function, that is, the TAC

of tracer concentration in arterial blood. The related data

acquisition is known to be invasive and labor intensive, which

limits its application in clinical practice. As regards indirect

reconstruction methods, dynamic image reconstruction and kinetic

analysis are conducted separately. Meanwhile, the image-derived

input function method [9–13] or reference region method [14,15]

can be employed as an alternative to painful blood sample

measurement. To achieve high-quality dynamic PET images, two

strategies are commonly used, namely, maximum a posteriori

(MAP) image reconstruction and image restoration based post-

processing [16–20]. MAP image reconstruction with significant

noise suppression is performed by incorporating different prior

models, such as the spatial quadratic smoothing prior [21],

sophisticated edge-preserving priors [17,22–26], anatomical priors

[27–31], and kinetics-based priors [18,32,33]. These MAP

approaches, particularly with sophisticated edge-preserving priors,

may have limited practical applications in clinic because of

implementation complexity and computational burden. As an

alternative strategy, image post-processing through spatial filtering

has been extensively explored to reduce the noise of individual

PET image frames [19,34–37]. A simple and common technique is

the use of a Gaussian filter, which performs well in a homogeneous

region with evident noise reduction. However, a Gaussian filter

usually fails at edges with noticeable spatial resolution loss because

of shift invariance. As an extended version of the Gaussian filter,

the bilateral filter (BF) was investigated in PET studies with

significant gains over the Gaussian filter in terms of noise

reduction and resolution preservation [19]. Meanwhile, all these

spatial filters should be noted to reduce the noise of individual

image frames without considering the kinetic information

contained within entire dynamic images. A recently increasing

interest in dynamic PET image filtering is the use of the temporal

information from dynamic PET data [20,38]. For example, the

information contained in a time-averaged frame was used to filter

each individual frame and improve the SNR of desired PET
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images [38]. In addition, by considering the dynamic PET TAC in

each voxel as a vector, Tauber et al. designed a spatio-temporal

anisotropic diffusion image filter with noticeable gains over the

existing methods [20].

In this work, to improve PET parametric imaging accuracy, we

present a kinetics-induced bilateral filter (KIBF) to reduce the

noise of dynamic image frames by incorporating the similarity

between the voxel-wise TACs using the framework of BF [39].

The aim of the present KIBF algorithm is to reduce the noise in

homogeneous areas while preserving the distinct kinetics of regions

of interest (ROIs). To validate and evaluate the performance of the

proposed KIBF algorithm, experiments were conducted through

computer simulations and a preclinical rat study with a focus on

quantitative accuracy measures and visual inspection.

Materials and Methods

Ethics Statement
The rat study was conducted in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Institutional Animal Care and Use

Committee of Case Western Reserve University (Permit Number:

2008-0072). All surgery was performed under 2% isoflurane

anesthesia, and all efforts were exerted to minimize suffering.

Brief Review of the BF
The BF was originally proposed by Tomasi and Manduchi for

2D image processing [39]. The discrete version of their BF

algorithm can be expressed as follows: Let B be a discrete grid of

voxels and x~fx(i)Di[Bg be a noisy image. Given a neighbor

window N i5B centered at voxel i, the restored intensity BF(x)(i)
at voxel i is the weighted average of all intensities of the

neighboring voxels fjDj[N ig and can be written as

BF(x)(i)~
X

j[N i
w(i,j)x(j) ð1Þ

where x(j) denotes the image intensity at voxel j, and w(i,j) is the

weight and consists of a product of two separate filters acting in the

spatial and intensity domains. The popular weight w(i,j) is often

defined as Gaussian shape:

w(i,j)~
1

S(i)
exp {

(i{j)2

2s2
s

( )
:exp {

(x(i){x(j))2

2s2
x

( )
ð2Þ

where

S(i)~
P

j[N i
exp {(i{j)2=(2s2

s )
� �

:exp {(x(i){x(j))2=(2s2
x)

� �
is a normalizing factor to ensure that the weight w(i,j) satisfies the

conditions of 0ƒw(i,j)ƒ1 and
P

j[N i
w(i,j)~1. Two parameters

ss and sx control the geometric proximity and the intensity

similarity, respectively.

Description of the KIBF
Our proposed KIBF adapts the concept of the BF algorithm to

make use of both the spatial information and the voxel-wise kinetic

information within the entire dynamic PET data. The KIBF

algorithm contains two major steps: (a) optimal weight construc-

tion using kinetics information; and (b) weighted average using the

constructed weights.

Optimal Weight Construction. In dynamic PET studies,

voxels in physiologically similar regions have similar tissue TAC

kinetics. Thus, the TAC tendency can provide the tissue-specific

biochemical information for dynamic PET image filtering. Under

the framework of the BF algorithm, the weights can be optimally

constructed by exploring the voxel-wise kinetic information. In this

work, by incorporating the similarity between the voxel-wise

TACs, the optimal weights are constructed as follows:

~ww(i,j)~
1

~SS(i)
exp {

(i{j)2

2s2
s

( )
:exp {

Z(i){Z(j)k k2
W

2s2
z

( )
ð3Þ

where

S(i)~
P

j[N i
exp {(i{j)2=(2s2

s )
� �

:exp { Z(i){Z(j)k k2
W=

n

Figure 1. Two MSE plots or parameter selections of the neighbor window (A) and the controlling parameters (B) of KIBF algorithm.
doi:10.1371/journal.pone.0089282.g001
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(2s2
z )g is the normalizing factor. The TAC at voxel k is denoted as

Z(k)~fx(k,t),t~1,2, � � � ,Tg, where x(k,t) denotes the activity

value of voxel k(k~i,j) at frame t, and T is the total sampling

time frames. The similarity measure between two TACs is

calculated by the distance measure :k k2
W , which is defined as

Yk k2
W ~

PT
t~1 W (t)Y 2(t), where W is the vector of weighting

factors. An empirical choice of W is W~fDtt,t~1,2, � � � ,Tg,
wherein Dtt denotes the time duration of the sampling frame t.

Two factors ss and sz control the spatial voxel neighborhood and

the TAC similarity, respectively.

Weighted Average. Based on the constructed weights ~ww(i,j),
a voxel-wise weighted average operation similar to Equation (1)

can be performed on each frame. The present KIBF algorithm can

be described as follows:

KIBF(x)(i,t)~
X

j[N i
~ww(i,j)x(j,t): ð4Þ

Given that the average weights at voxel i are the same for each

frame, the present KIBF algorithm can also be directly performed

on the noisy TACs as follows:

KIBF(Z)(i)~
X

j[N i
~ww(i,j)Z(j): ð5Þ

The weighted average of Equation (5) illustrates that the present

KIBF algorithm takes advantage of both the spatial and temporal

consistencies of the dynamic PET data. As a result, the noise in

each individual frame can be remarkably suppressed by the

introduction of voxel-wise kinetic information within the entire

dynamic frames.

Parameter Selection for the KIBF Algorithm
For the present KIBF algorithm, three parameters will be

determined, namely, the size of the neighbor window N i and the

controlling parameters ss and sz. In this study, the minimum

mean squared error (MSE) measure and visual inspection of

clinical experts were used for parameter selection. The MSE

between the original and de-noised dynamic images is defined as

MSE(F (X noise ,h) )~ F (X noise ,h){Xphantom

�� ��2
=M, where

Xnoise is the noisy dynamic image, Xphantom is the original

phantom dynamic image, M is the total number of voxels, F(:)
denotes the filtering processing and h is the filter parameter or

parameter set (h~fss,szg for the present KIBF algorithm) to be

determined. Visual inspection was conducted by clinical experts to

score from 0 (worst) to 10 (best) for two aspects (namely, noise

reduction and edge-preservation) separately for each displayed

image set. The higher score indicates the better parameter setting.

In the computer simulations, as the ground truth is known, the

parameters were all selected by minimizing the MSE with

optimized parameter settings. In the preclinical rat study, two

clinical experts were asked to score the resultant images in terms of

visual inspection on noise reduction and edge-preservation. The

resultant images with different parameter settings of the same

subject were randomized in order and displayed on the computer

screen. The display did not have any indication of which

parameter setting was used for the displayed images. Therefore

the procedure was completely blind.

Selection of Neighbor Window. To exploit the neighbor-

hood and similarity information fully for the KIBF algorithm, the

neighbor window size N i should be sufficiently large. However,

the associated computational load will be increased. In this study,

extensive experiments with minimum MSE measure and visual

inspection from two clinical experts have shown that a 7|7

neighbor window was adequate for effective noise reduction while

Table 1. Kinetic parameters used in the 18F-FDG PET simulation.

Regions K1( min{1 ) k2( min{1 ) k3( min{1 ) k4( min{1 )

Gray matter 0.1104 0.1910 0.1024 0.0094

White matter 0.0622 0.1248 0.0700 0.0097

Tumor 0.0640 0.0890 0.0738 0.0057

doi:10.1371/journal.pone.0089282.t001

Figure 2. The 18F-FDG PET simulation settings. (A) A brain phantom composed of gray matter, white matter and a small tumor; (B) the blood
input function and regional time activity curves.
doi:10.1371/journal.pone.0089282.g002
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retaining computational efficiency. The MSE plot for the selection

of the neighbor window size is shown in Figure 1A.

Selection of Controlling Parameters. Similar to the BF

algorithm, the performance of the KIBF algorithm depends on the

selection of two controlling parameters ss and sz. In the

implementation, if ss and sz are extremely large, the KIBF

filtered images will suffer from smeared edges, whereas the values

are extremely small, the desired results cannot achieve noise

suppression. Thus, a tradeoff between noise suppression and edge

preservation should be achieved by optimizing the two controlling

parameters ss and sz with some reliable image quality measures.

In this study, the MSE estimation was used for the computer

simulation experiments, and visual inspection by two clinical

experts was used for the preclinical rat experiments. Extensive

experiments have shown that ss~4 voxel and sz~20 were

appropriate for the simulation studies as shown in Figure 1B, and

ss~4 voxel and sz~0:25 were adequate for the preclinical rat

studies.

Data Acquisitions
Computer Simulations. A digital brain phantom [7,8], as

shown in Figure 2A, which consists of gray matter, white matter,

and a small tumor within the white matter, was used for the

computer simulations. In the simulations, we selected a two-tissue

Figure 4. The ground truth and the activity images reconstructed by different algorithms at frames #6, #16, and #26. (A) are the
ground truth; (B) are the results from the direct FBP reconstruction; (C) are the results from the FBP images filtered by the GF algorithm (sg~0:5
voxel); (D) are the results from the FBP images filtered by the BF algorithm (ss~4 voxel, b~0:5); and (E) are the results from the FBP images filtered
by the present KIBF algorithm (ss~4 voxel, sz~20). All images are with a same display window.
doi:10.1371/journal.pone.0089282.g004

Figure 3. MSE plots for parameter selections of the standard deviation for GF algorithm (A) and the controlling parameters of BF
algorithm (B).
doi:10.1371/journal.pone.0089282.g003
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compartment and 18F-FDG based tracer kinetic model for

glucose metabolism imaging of brain. Based on Feng’s model

described in [40], the TAC of each region was generated

according to the two-tissue compartment model and an analytical

blood input function as shown in Figure 2B. The calculation of

the kinetic model and the fitting procedure were performed using

the COMKAT package (http://comkat.case.edu) [41]. Given the

clinical application of the present algorithm, the kinetic param-

eters K1,k2,k3,k4 estimated from a set of 70 studies on brain

tumor patients described in [42] were used in our simulation and

they are listed in Table 1. In this study, the influx rate

Ki~K1k3=(k2zk3), which is related to the glucose metabolic

rate by a scaling factor, was analyzed. In addition, the fractional

volume of blood in the tissue was set to zero for three target

regions. The scanning schedule of dynamic PET data consists of

30 time frames: 4|20 s, 4|40 s, 4|60 s, 4|180 s, and

14|300 s. The TACs were integrated for each frame and

forward projected to generate dynamic sinograms and then

Poisson noise was added, which resulted in an expected total

number of events over 90 min that is equal to 50 million. A

filtered back-projection (FBP) method with a ramp filter was used

for the dynamic PET reconstruction.

Preclinical Dynamic PET Data. The preclinical dynamic

PET data were acquired from a female 236 g Sprague-Dawley rat

[43]. The rat was injected intravenously with 30.7 MBq of 18F-

FDG and scanned with a micro-PET R4 system (Siemens Medical

Solutions USA, Inc.). The PET scanning schedule was 12|5 s,

12|30 s, 5|60 s, and 15|300 s. Corrections for radioactive

decay, attenuation, scatter, and dead time were performed before

image reconstruction. The dynamic PET images were recon-

structed using an image matrix of 128|128|63 with voxel sizes

of 0.4922|0.4922|1.220 mm3 for each frame. An ordered

subset expectation maximization (OSEM) algorithm [44] with 16

subsets and 4 iterations was used for all reconstructions. In

addition, blood sampling was performed to provide a gold-

standard reference, and the input function from the samples was

linearly interpolated to construct a final input function. Similar to

the computer simulations, the influx rate Ki parametric image was

calculated based on the final input function.

Comparison Algorithms
To validate and evaluate the performance of the present KIBF

algorithm, the Gaussian filter (GF) and the BF algorithms were

adopted for comparison.

GF. The following GF algorithm was implemented for each

image frame separately:

GF(x)(i,t)~
X

j[Vi

exp {(i{j)2=(2s2
g)

� �
P

k[Vi
exp {(i{k)2=(2s2

g)
� � x(j,t) ð6Þ

where V i is the neighbor window, and sg is the standard deviation

of the Gaussian function that determines the width of the Gaussian

kernel. For each image frame, the parameter sg was chosen

empirically to yield a minimum MSE as shown in Figure 3A and

good visual inspection by two clinical experts.

BF. The BF algorithm, as described in Equations (1) and (2),

was also applied to each frame separately. Considering the

variation of the activity value among different image frames, we

proposed a frame-dependent scale parameter form, that is,

sx,t~bst, to control the image intensity similarity at frame t,
where b is a scaling factor, and st is the estimated noise standard

deviation of frame t. The calculation of st is the same as that used

in our previous work [18]. In the implementation, a 7|7 neighbor

window was used for the BF algorithm. The parameters ss and b
were determined by extensive experiments using minimum MSE

Figure 5. Three TAC plots from different algorithms for the
corresponding voxels located in the gray matter (A), white
matter (B) and small tumor regions (C), respectively.
doi:10.1371/journal.pone.0089282.g005
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estimation, as shown in Figure 3B, and visual inspection by two

clinical experts.

Results

Phantom Study
Comparison of Dynamic PET Activity Images. Figure 4

shows the ground truth and the activity images reconstructed by

different algorithms at frames #6, #16, and #26. The first

column represents the ground truth, the second column shows the

results from the direct FBP reconstruction, the third column shows

the results from the FBP image filtered by the GF algorithm

(sg~0:5 voxel), the fourth column shows the results from the FBP

image filtered by the BF algorithm (ss~4 voxel, b~0:5); and the

fifth column presents the results from the FBP image filtered by the

present KIBF algorithm (ss~4 voxel, sz~20). The results

demonstrate that the KIBF algorithm can yield significant noise

reduction without concealing subtle information compared with

other algorithms. To illustrate the effect of temporal information

on the smoothing of dynamic frames, we extracted the TACs of

three voxels located within the gray matter, the white matter, and

the small tumor regions, respectively. Figure 5 shows the TAC

plots from different algorithms for the corresponding voxels. We

can see that the TACs resulting from the present KIBF algorithm

are closer to the ground truth and smoother compared with those

of the other three algorithms. Figure 6 shows the box plots of the

mean activities with standard deviations in the gray matter, white

matter and small tumor regions from different algorithms at

frames #6, #16, and #26. We find that the present KIBF

algorithm achieves less bias compared with the ground truth as

well as less standard deviation than the other algorithms.

Furthermore, the merits of peak signal-to-noise ratio (PSNR) for

each individual frame and the total signal-to-noise ratio (TSNR)

for entire dynamic frames were used to measure the bias between

the ground truth and estimated values with different algorithms,

which is defined as

PSNR~10 log10

max2(X true(t))

X true(t){X result(t)k k2

 !
ð7Þ

TSNR~10 log10

X truek k2

X true{X resultk k2

 !
ð8Þ

where X true denotes the original phantom image, X result denotes

the filtered result, X true(t) and X result(t) denote the corresponding

image at frame t, and max2(X true(t)) represents the maximum

activity value of the original phantom image at frame t. Figure 7

plots the PSNRs at each frame of the activity images reconstructed

by the FBP, GF, BF and KIBF algorithms. The PSNR curves

illustrate that KIBF has a noticeable gain over the GF and BF

algorithms in terms of PSNR measurement, particularly in the

early frames. Table 2 lists the TSNRs of the activity images

reconstructed by different algorithms. The KIBF algorithm

Figure 6. Box plots of the mean activities with standard deviations in the gray matter, white matter and small tumor regions from
different algorithms at (A) the frame #6; (B) the frame #16; and (C) the frame #26.
doi:10.1371/journal.pone.0089282.g006

Figure 7. PSNRs at each frame of the activity images reconstructed by different algorithms.
doi:10.1371/journal.pone.0089282.g007
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achieves more noticeable gains over other two algorithms in terms

of TSNR measurement.

Comparison of PET Parametric Images. Figure 8 shows

the ground truth and the estimated Ki parametric images from the

activity images reconstructed by different algorithms: (A) is the

ground truth; (B) is the result from the direct FBP reconstruction;

(C) is the result from the FBP image filtered by the GF algorithm

(sg~0:5 voxel); (D) is the result from the FBP image filtered by the

BF algorithm (ss~4 voxel, b~0:5); and (E) is the result from the

FBP image filtered by the present KIBF algorithm (ss~4 voxel,

sz~20). The KIBF algorithm can achieve better performance

than other algorithms in terms of both noise reduction and the

detailed Ki parametric information estimation. Figure 9 represents

a description of the mean value of Ki and the standard deviations

in the gray matter, white matter, and small tumor regions by

different algorithms. We find that the KIBF algorithm achieves

less bias compared with the ground truth as well as less standard

deviation than the other algorithms.

To evaluate the performance of the KIBF algorithm quantita-

tively, the regional normalized standard deviation (NSD) versus

bias tradeoff curves were studied. Borrowing the definitions in

[31], NSD and Bias are written as:

NSDroi~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Mroi{1

P
j[roi Ki(j){ �KK roið Þ2

q
�KK roi

|100% ð9Þ

Biasroi~
�KK roi{K true

roi

�� ��
K true

roi

|100% ð10Þ

where Ki(j) denotes the estimated Ki parametric value at voxel

j(j~1,2, � � � ,Mroi) in the region of interest (ROI),
�KKroi~

P
j[roi Ki(j)=Mroi denotes the mean of the estimated Ki

parametric value in the ROI, and Mroi represents the number of

voxels in the ROI. For the regional bias (Biasroi), K true
roi is the

known uniform parametric value in the ROI. To quantify NSD

versus Bias in the whole brain region for an overall assessment of

quantitative performance, NSDroi and Biasroi values for the ROIs

(gray matter, white matter, and small tumor) were averaged, and

weighted based on the size (number of voxels Mroi) in each ROI.

Figure 10 shows the NSD versus Bias tradeoff curves of the

influx rate Ki estimated by the GF, BF, and KIBF algorithms for

different ROIs in the brain phantom. The parametric images

generated from the filtered dynamic activity images with the KIBF

algorithm outperform those generated by the other two algorithms

based on the NSD versus Bias tradeoff analysis.

Preclinical Rat Study
Figure 11 shows the transaxial slices of Ki parametric images

estimated from: (A) the direct OSEM reconstruction, (B) the

OSEM images filtered by the GF algorithm (sg~0:5 voxel), (C)

the OSEM images filtered by the BF algorithm (ss~4 voxel,

b~2), and (D) the OSEM images filtered by the present KIBF

algorithm (ss~4 voxel, sz~0:25). The KIBF algorithm can

achieve better performance than other algorithms in terms of both

noise reduction and detailed Ki parametric information estima-

tion. Moreover, in the preclinical rat study, we extracted the TACs

of two voxels located within a low glucose metabolic region (ROI

1) and a high glucose metabolic region (ROI 2), respectively. The

ROIs were indicated by the squares in Figure 11(A). Figure 12

shows the TAC plots from different algorithms for the corre-

sponding voxels. In the low glucose metabolic region, the noise is

suppressed strongly by the present KIBF algorithm and the

corresponding TAC seems smoother than those resulted from the

other algorithms; while in the high metabolic region, the noise is

suppressed slightly by the present KIBF algorithm. The results

could illustrate that the different smooth strength is dependent on

the noise level, and the high glucose metabolic region has a less

noise level than the low glucose metabolic region.

Discussion

To improve PET parametric imaging accuracy, the BF

algorithm has been investigated with significant gains over the

GF algorithm in terms of noise reduction and resolution

preservation [19]. However, as a spatial filter, the BF algorithm

merely reduces the noise of individual frames without considering

the kinetic information contained in all dynamic images. In this

study, we developed the KIBF algorithm to reduce the noise of

dynamic images by incorporating the kinetic information using the

framework of the BF algorithm. The KIBF algorithm can be

Figure 8. The ground truth and the estimated Ki parametric images from the activity images reconstructed by different algorithms.
(A) is the ground truth; (B) is the result from the direct FBP reconstruction; (C) is the result from the FBP image filtered by the GF algorithm (sg~0:5
voxel); (D) is the result from the FBP image filtered by the BF algorithm (ss~4 voxel, b~0:5); and (E) is the result from the FBP image filtered by the
present KIBF algorithm (ss~4 voxel, sz~20). All images are with a same display window.
doi:10.1371/journal.pone.0089282.g008

Table 2. The TSNRs of the activity images reconstructed by
different algorithms.

Methods FBP GF BF KIBF

TSNRs (dB) 12.92 13.24 13.93 16.29

doi:10.1371/journal.pone.0089282.t002

Dynamic PET Image Restoration via a KIBF Algorithm
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regarded as a combination of the spatial domain filter and the

temporal TAC filter, as expressed in Equation (3). As a spatio-

temporal filter, the KIBF algorithm can reduce the noise in

homogeneous areas while preserving the distinct kinetics of ROIs.

Moreover, considering the nature of the KIBF calculated from the

associative TACs, the algorithm does not require any prior kinetic

models typically used in existing approaches [6,29,30]. Thus, the

KIBF algorithm can be a potential tool to realize accurate

Figure 10. The NSD versus Bias tradeoff curves of the influx rate Ki estimated by the GF, BF and KIBF algorithms for different ROIs
in the brain phantom.
doi:10.1371/journal.pone.0089282.g010

Figure 9. Box plots of the mean value of Ki with standard deviations in the gray matter, white matter and small tumor regions from
different algorithms.
doi:10.1371/journal.pone.0089282.g009
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dynamic PET imaging. The preliminary results have shown that

the KIBF algorithm can achieve better bias-variance properties

and quantitative accuracy in generating PET parametric images

than the GF and BF algorithms. To validate the present KIBF

algorithm, a single rat study is really inadequate. However, more

real dynamic PET data are not available in our lab because the

dynamic rat PET experiments require very strict experimental

conditions. We will do our best to validate the present method

using more real dynamic PET data in further research.

Similar to the BF algorithm, a difficult task when performing the

KIBF algorithm is parameter selection, including the size of the

neighbor window and the controlling parameters. In this study, we

used the MSE measure and visual inspection by trial-and-error

fashion to optimize the parameters. Meanwhile, the original

ground truth is unavailable in practice and more reasonable

optimization criteria should be determined according to special

application cases. Notably, with the Gaussian noise assumption of

PET image [45,46], Stein’s recently developed unbiased risk

estimate approach [47–50] has demonstrated its capability for

parameter selection without requiring the ground truth, which

would be helpful for the optimal selection of the parameters of the

KIBF algorithm in dynamic PET imaging. This area is an

interesting topic for further research.

Another major limitation of the KIBF algorithm is that its

performance relies on the alignment between different frames,

similar to other time-frames based algorithms [20,38]. In the

implementation, when the TACs associated with voxels located

near the interface of different functional regions are a mixture of

temporal profiles from the underlying tissues, the KIBF algorithm

should be applied by incorporating some motion correction

through image registration techniques [51,52], which also is an

interesting research topic.

Conclusion

In this paper, to achieve accurate kinetic parameter estimation

from noisy voxel-wise TACs, we proposed the KIBF algorithm to

reduce the noise in homogeneous areas while preserving the

distinct kinetics in ROIs. Experimental results on dynamic digital

phantom and in vivo rat study with typical 18F-FDG kinetics have

shown that the KIBF algorithm can achieve noticeable gains over

other existing algorithms in terms of quantitative accuracy

measures and visual inspection. In the future work, we plan to

explore more reasonable methodology for parameter selection and

evaluate the KIBF algorithm in clinical human dynamic PET

studies.

Figure 11. The Ki parametric images estimated by different algorithms. (A) is the result from the direct OSEM reconstruction; (B) is the result
from the OSEM image filtered by the GF algorithm (sg~0:5 voxel); (C) is the result from the OSEM image filtered by the BF algorithm (ss~4 voxel,
b~2); and (D) the result is from the OSEM image filtered by the KIBF algorithm (ss~4 voxel, sz~0:25). All images are with a same display window.
doi:10.1371/journal.pone.0089282.g011

Dynamic PET Image Restoration via a KIBF Algorithm

PLOS ONE | www.plosone.org 10 February 2014 | Volume 9 | Issue 2 | e89282



Author Contributions

Conceived and designed the experiments: ZB JM. Performed the

experiments: ZB JH DZ. Analyzed the data: ZB LL SN. Contributed

reagents/materials/analysis tools: QF WC. Wrote the paper: ZB JM QF

WC.

References

1. Phelps ME (2004) PET: molecular imaging and its biological applications. New

York: Springer, 621 pp.

2. Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ (1997) Parametric

imaging of ligand-receptor binding in PET using a simplified reference region

model. Neuroimage 6: 279–287.

3. Tsoumpas C, Turkheimer FE, Thielemans K (2008) Study of direct and indirect

parametric estimation methods of linear models in dynamic positron emission

tomography. Med Phys 35: 1299–1309.

Figure 12. Two TAC plots from different algorithms for the corresponding voxels located in the ROI1 (A) and ROI2 (B), respectively.
doi:10.1371/journal.pone.0089282.g012

Dynamic PET Image Restoration via a KIBF Algorithm

PLOS ONE | www.plosone.org 11 February 2014 | Volume 9 | Issue 2 | e89282



4. Tsoumpas C, Turkheimer FE, Thielemans K (2008) A survey of approaches for

direct parametric image reconstruction in emission tomography. Med Phys 35:
3963–3971.

5. Rahmim A, Tang J, Zaidi H (2009) Four-dimensional (4D) image reconstruction

strategies in dynamic PET: beyond conventional independent frame recon-
struction. Med Phys 36: 3654–3670.

6. Kamasak ME, Bouman CA, Morris ED, Sauer K (2005) Direct reconstruction
of kinetic parameter images from dynamic PET data. IEEE Trans Med Imaging

24: 636–650.

7. Wang G, Fu L, Qi J (2008) Maximum a posteriori reconstruction of the Patlak
parametric image from sinograms in dynamic PET. Phys Med Biol 53: 593–604.

8. Wang G, Qi J (2009) Generalized algorithms for direct reconstruction of
parametric images from dynamic PET data. IEEE Trans Med Imaging 28:

1717–1726.
9. Rahmim A, Zhou Y, Tang J, Lu L, Sossi V, et al. (2012) Direct 4D parametric

imaging for linearized models of reversibly binding PET tracers using

generalized AB-EM reconstruction. Phys Med Biol 57: 733–755.
10. Iida H, Rhodes CG, de Silva R, Araujo LI, Bloomfield PM, et al. (1992) Use of

the left ventricular time-activity curve as a noninvasive input function in
dynamic oxygen-15- water positron emission tomography. J Nucl Med 33:

1669–1677.
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