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Niggli reduction can be viewed as a series of operations in a six-dimensional

space derived from the metric tensor. An implicit embedding of the space of

Niggli-reduced cells in a higher-dimensional space to facilitate calculation of

distances between cells is described. This distance metric is used to create a

program, BGAOL, for Bravais lattice determination. Results from BGAOL are

compared with results from other metric based Bravais lattice determination

algorithms. This embedding depends on understanding the boundary polytopes

of the Niggli-reduced cone N in the six-dimensional space G6. This article

describes an investigation of the boundary polytopes of the Niggli-reduced cone

N in the six-dimensional space G6 by algebraic analysis and organized random

probing of regions near one-, two-, three-, four-, five-, six-, seven- and eightfold

boundary polytope intersections. The discussion of valid boundary polytopes is

limited to those avoiding the mathematically interesting but crystallographically

impossible cases of zero-length cell edges. Combinations of boundary polytopes

without a valid intersection in the closure of the Niggli cone or with an

intersection that would force a cell edge to zero or without neighboring probe

points are eliminated. In all, 216 boundary polytopes are found. There are 15

five-dimensional boundary polytopes of the full G6 Niggli cone N.

1. Introduction

In a quantitative science, usable metrics should be defined. In

the study of crystal lattices, only a few metrics have been

proposed for describing the distance between two lattices (i.e.

unit cells). The V7 metric (Andrews et al., 1980) is quite non-

linear and has known issues in many cases. The metric of Oishi-

Tomiyasu (2012) is nonlinear and changes algorithm in some

regions. This study and the work of Macı́ček & Yordanov (1992)

use a metric based on the differences in metric tensors. This

metric is nonlinear outside the Niggli cone. Here we propose a

process for obtaining a linear measure from the differences of

metric tensors by remaining inside the Niggli cone.

BGAOL (Bravais general analysis of lattices) is a Bravais

lattice identification program based on the G6 analysis of

Niggli reduction described below. Niggli reduction defines a

complex space that has not previously been fully analyzed.

Several authors have published interesting commentaries on

the properties of this complex space (Hosoya, 2000; Oishi-

Tomiyasu, 2012; Gruber, 1997). These studies use the space G6

(Andrews & Bernstein, 1988), or a similar metric tensor-based

space, or a projection of G6 to a space of lower dimensionality,

respectively.

Failure to correctly identify the Bravais lattice of a crystal

can compromise subsequent least-squares calculations or even

the solution of a structure. There are two commonly used ways

to obtain a unique representative of the infinite number of

cells that may be used to generate a given lattice: Niggli

reduction (Niggli, 1928) and Delaunay reduction (Delaunay,

1932). We follow the conventions of International Tables for

Crystallography (Burzlaff et al., 1992) in basing this article on

Niggli reduction, and we will recast the discussion in terms of

Delaunay reduction in a future study.

Given a precisely determined reduced cell, the lattice

symmetry may be unambiguously inferred. In addition,

reduced cells are useful in searching for sub- and super-cells, in

indexing of powder patterns, and in twinned crystal studies.

Without a suitable metric and a clear understanding of the

geometry of the boundaries of the space, either searches of

lattices in the neighborhood of a given cell must be excessively

broad and produce many false positives, or, if made tighter,

they risk missing important candidates, especially in the vici-

nity of 90� angles.

As noted by Azaroff & Buerger (1958), the concept of a

reduced cell is strongly related to the concept of a reduced

ternary quadratic form (Seeber, 1831; Selling, 1874). Reduced

cells have become an important computational tool in crys-

tallography (just as reduced quadratic forms are an important

1 This article is derived from one originally submitted to Acta Crystal-
lographica Section A on 16 November 2011.
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tool in computational number theory), but

much of the literature focuses on an essen-

tially qualitative approach, taking a reduced

cell as an absolute indicator of symmetry

and not considering the impact of experi-

mental error (Andrews & Bernstein, 1988).

Consideration of experimental error

requires the use of a distance metric dealing

with reduced cells. Such metrics have been

used in a six-dimensional approach (Zim-

mermann & Burzlaff, 1985), another six-

dimensional approach (Andrews & Bern-

stein, 1988), a similar six-dimensional

approach with a modified L2 norm (Oishi-

Tomiyasu, 2012), a lattice-specific six-dimen-

sional approach (Kabsch, 2013), a B-matrix

approach (Macı́ček & Yordanov, 1992) and

a ‘distortion index’ approach (Minor &

Otwinowski, 1997).

In addition, because the processes of both

Niggli and Delaunay reduction can produce

large discontinuities in reduced cell para-

meters from small changes in the lattice, an

effective use of a metric must allow for such

discontinuities, either by a combinatorial

search or by a metric preserving embedding

in a higher-dimensional space that removes the discontinuities.

Until now, crystallographic software appears either to have

used a demanding combinatorial approach or simply to have

given up on doing a complete search. The purpose of this

article is to take the necessary first steps towards adding an

embedding to the existing combinatorial approaches by

clearly mapping the boundary discontinuities and their related

transformations.

Two principal uses of Niggli reduction are the determina-

tion of Bravais lattice type and the construction of a database

using a representation of the unit cell for its key (Andrews et

al., 1980; Toby, 1994; Byram et al., 1996).

Both uses can be viewed as distance determinations in G6.

In the former case the distances to the Bravais lattice

subspaces are used, and in the latter case the distances

between pairs of unit cells are used. However, the complexity

of the space has consequences in some regions; it is not

adequate to consider only one representation of a unit cell in

G6. A standard mathematical solution is to create an

‘embedding’ (Nash, 1956) of the space with an appropriate

associated metric. In such an embedding, separate regions of

the space under consideration are sewn together into a single

fundamental region preserving distances from the original

piecewise presentation.

In the case being considered the regions contain sets of cells

that appear to be far apart originally but which can be seen to

represent similar lattices as the regions are sewn together, and

sets of cells that remain far apart after the sewing can be seen

as not representing similar lattices. In concept, this is similar to

what we do in folding of atomic coordinates into the asym-

metric unit of a crystal. This is an example of a simple

embedding, allowing us to see which atoms interact. This is the

approach followed in BGAOL. The present article discusses

the application to Bravais lattice identification. McGill et al.

(2014) discuss the database application.

In order to define an embedding, the operations defining

the fundamental region must be specified. In the case of Niggli

reduction, the complete space is G6, and the fundamental

region is the fraction of the space containing only Niggli-

reduced cells. Proper unit cells in any other region of G6 can

be transformed into the fundamental region by the rules of

Niggli reduction. The transformations at the boundaries must

be enumerated and their combinations analyzed as in

Appendix A (see Table 1).

Given the complete set of conditions that define all

boundaries of the fundamental unit and their relationships to

adjacent units, the transformations of coordinates on crossing

the boundaries are enumerated. Oishi-Tomiyasu (2012) has

enumerated transformations in a related space.

There have been multiple investigations of such boundaries,

albeit without a consideration of experimental error in most

cases. See, for example, Gruber (1997, 2006) for a review and

an approach using a five-dimensional space based on the

metric tensor. Gruber’s 1997 approach partitions the space of

reduced cells into 127 disjoint components (genera), based on

67 one- to four-dimensional ‘hyperfaces’ further subdivided

into 227 hyperfaces in order to achieve a common partitioning

applicable to both Niggli and Delaunay reduction. Unfortu-

nately, Gruber’s reduction to five dimensions, and any purely

topological approach without a metric that allows error

propagation from the experimental data, makes it difficult or

impossible to carry out a full perturbation analysis of the
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Table 1
Fifteen five-dimensional boundary polytopes of Niggli-reduced cells in G6.

For a given boundary polytope C, the column ‘Condition’ gives the G6 constraints (prior to closure)
of the boundary polytope. Boundary polytopes 1 and 2 apply in both the all-acute (þþþ) and the
all-obtuse (���) branches of the Niggli-reduced cone. Boundary polytopes 8, B, E and F are
restricted to the all-obtuse (���) branch of the Niggli-reduced cone, N. Boundary polytopes 6, 7,
9, A, C and D are restricted to the all-acute (þþþ) branch of N. Boundary polytopes 3, 4 and 5 are
boundaries of both the all-acute (þþþ) and the all-obtuse (���) branches.

Class Boundary Condition Transformation matrix

Equal cell
edges

1 g1 ¼ g2 010000=100000=001000=000010=000100=000001½ �

2 g2 ¼ g3 100000=001000=010000=000100=000001=000010½ �

90� 3 g4 ¼ 0 100000=010000=001000=000100=000010=000001
� �

4 g5 ¼ 0 100000=010000=001000=000100=000010=000001
� �

5 g6 ¼ 0 100000=010000=001000=000100=000010=000001
� �

Face
diagonal

6 g2 ¼ g4 and g5 � g6 100000=010000=011100=020100=000011=000001
� �

7 g2 ¼ g4 and g5 < g6 100000=010000=011100=020100=000011=000001
� �

8 g2 ¼ �g4 100000=010000=011100=020100=000011=000001
� �

9 g1 ¼ g5 and g4 � g6 100000=010000=101010=000101=200010=000001
� �

A g1 ¼ g5 and g4 < g6 100000=010000=101010=000101=200010=000001
� �

B g1 ¼ �g5 100000=010000=101010=000101=200010=000001
� �

C g1 ¼ g6 and g4 � g5 100000=110001=001000=000110=000010=200001
� �

D g1 ¼ g6 and g4 < g5 100000=110001=001000=000110=000010=200001
� �

E g1 ¼ �g6 100000=110001=001000=000110=000010=200001
� �

Body
diagonal

F g1 þ g2 þ g4 þ g5 þ g6 ¼ 0 100000=010001=111111=020101=200011=000001
� �



impact of experimental errors. The linear G6 metric used in

the embedding makes such error analysis simpler.

Therefore, in this investigation we return to the full six-

dimensional space (Andrews & Bernstein, 1988), G6, of unit

cells based on the metric tensor and use algebraic techniques

confirmed by a Monte Carlo technique to explore the ‘natural’

five-, four-, three-, two- and one-dimensional boundary poly-

topes of the six-dimensional polytope of Niggli-reduced cells.

The two techniques are mutually supportive. The lower-

dimensional boundaries are an algebraic consequence of the

five-dimensional boundaries. The lower-dimensional bound-

aries derived algebraically are confirmed by the Monte Carlo

technique, which helps to identify unpopulated boundaries

and boundaries that drop to lower dimension owing to glan-

cing intersections with multiple other boundaries.

There are 15 five-dimensional boundary polytopes and a

total of 216 boundary polytopes. In this approach, all the

boundary polytopes are on the surface of the closure of the

six-dimensional Niggli-reduced polytope. Identification of

these boundary polytopes and the reduction transformations

to be applied in crossing them is an essential step either in a

combinatorial error analysis or in embedding G6 into a higher-

dimensional space for an analytical error analysis, and it is

useful for database searches.

The 15 five-dimensional boundary polytopes give the

complete shape of the space of Niggli-reduced cells (see

Appendix A). All of the primitive lattice types can be repre-

sented as combinations of the 15 five-dimensional boundary

polytopes. All of the non-primitive lattice types can be

represented as combinations of the 15 five-dimensional

boundary polytopes and of the seven special-position

subspaces of the five-dimensional boundary polytopes. By

confining our attention to just the Niggli reduction, the result

is a simpler classification than Gruber’s with more direct

applicability to an embedding and database searching.

2. Background

Crystallography began with the study of crystal morphology

and the classification of substances by the shapes of their

crystals, a database concept before the creation of databases.

Von Laue (1952) provided an accessible description. Two

themes have developed: Bravais lattice assignment and data-

base searches to identify substances by their unit-cell para-

meters. In this article we consider only the Bravais lattice

identification issues.

The following glossary may be helpful in reading the

subsequent discussion.

(1) G6. The six-dimensional space of vectors

g ¼ ðg1; g2; g3; g4; g5; g6Þ ¼ gf1;2;3g; gf4;5;6g

¼ ðkak2; kbk2; kck2; 2kbkkck cos�;

2kakkck cos �; 2kakkbk cos �Þ: ð1Þ

See xA1.

(2) N, Niggli cone, Niggli-reduced polytope. The locus of

points in G6 that are Niggli reduced. See xA2.

(3) Negative or positive portions of the Niggli cone. Those

parts of the Niggli cone that have gf4;5;6g either all negative or

all positive. Together they constitute the entire Niggli cone.

(4) Manifold. A space that in local regions has mappings

that establish Euclidean coordinates.

(5) Polytope. A portion of a space with flat sides.

(6) Boundary of a set. The points that have some immediate

neighbors in the set and some immediate neighbors not in the

set, i.e. the interface between the inside of the set and the

points outside of the set. Boundary points need not themselves

be members of the set.

(7) Boundary transformations. The transformations to be

applied to a point as it crosses from inside the Niggli cone to

outside in order to transform its position to the corresponding

position inside the Niggli cone.

(8) Boundary polytope. A portion of the boundary that is a

polytope, i.e. has flat sides.

(9) Special-position subspace of a boundary polytope. The

locus of points in a boundary manifold that are invariant

under the boundary transformation. See xA4.

(10) Embedding (in topology). The mapping of one space

into another, often of higher dimensionality.

(11) Isometric embedding. An embedding that preserves

distances.

(12) L1 norm. Manhattan or city-block distance, the sum of

the magnitudes of the differences of the vector components.

(13) L2 norm. Euclidean distance, the square root of the

sum of the squares of the differences of the vector compo-

nents.

(14) Fundamental region. For a repeating mathematical

structure, one is chosen as the starting point. For instance, in

crystallography, the 0–1, 0–1, 0–1 unit cell is often chosen as

the basic cell.

(15) Bravais lattice subspace. Any polytope in G6 that is

occupied by a single Bravais lattice type. For instance, cF

lattices fall on a line with base vector (1, 1, 1, 1, 1, 1).

(16) Hyperface. Term used by Gruber (1997) for subspaces.

(17) Monte Carlo. Mathematical technique of random

multiple probing of a system to discover its responses.

(18) Glancing intersection. An intersection of a manifold

with the intersection of two or more other manifolds, but of

measure zero. For instance, in a plane, the line (�1, 1) has a

glancing intersection with the all-plus quadrant.

(19) Boundary maps. The list of transformations that must

be applied to points exiting the fundamental unit.

(20) Projector into a subspace. A linear mapping from an

arbitrary point in a space to the nearest point in the subspace.

(21) Closure. For an open manifold, the closure is the

content of the manifold plus the content of the boundary. For

instance, the closure of a circular region is the interior of the

circle plus the bounding circle.

2.1. Bravais lattice assignment

Modern work on Bravais lattice assignment has taken two

directions: qualitative absolute assignment of lattice type

versus quantitative assignment using a metric to measure the
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distance from the 14 Bravais lattice types. This is a fuzzy

distinction because all methods are fundamentally quantita-

tive, being rooted in numeric cell parameters. The advantage

of the methods based on, and making full use of, a metric is

that they perform well in the presence of experimental error.

The more fine grained the metric used, the more easily and

efficiently can the alternatives be ranked. Gruber’s work

(Gruber, 1997) is the latest in qualitative assignment of lattice

types. DELOS (Zimmermann & Burzlaff, 1985) is a popular

example of a rather coarse-grained metric. Kabsch has incor-

porated a fine-grained metric in XDS (Kabsch, 1993, 2010)

based on the sum of the magnitudes of deviations from the

various Niggli reduction conditions. See Macı́ček & Yordanov

(1992) for a reasonably complete review of the relevant

literature.

The use of a fine-grained metric under which it is mean-

ingful to ask precisely how far a probe cell is from a given

lattice and to compare that distance with the experimental

error began with Andrews & Bernstein (1988), in which the

space G6, consisting of vectors

g ¼ a � a; b � b; c � c; 2b � c; 2a � c; 2a � bð Þ

¼ ða2; b2; c2; 2bc cos �; 2ac cos �; 2ab cos �Þ ð2Þ

(a modified metric tensor), was introduced. The concept is

simple, but the implementation is complex because a very

large number of iterations may be necessary to apply the

boundary transformations of the Niggli cone. BLAF (Macı́ček

& Yordanov, 1992) and OT-BLD (Oishi-Tomiyasu, 2012) cut

off the iterations, creating the possibility of missed symmetries.

The implementation of Andrews & Bernstein (1988),

ITERATE, continues without a cutoff until no new candidates

are found, to avoid missed symmetries but at the expense of

additional execution time. BGAOL resolves this conflict by

specifically using the 15 five-dimensional boundaries cited in

Appendix A, labeled 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, from

which the many remaining internal boundaries of the Niggli

cone may be derived as intersections, and by using an

isometric (i.e. distance-preserving) embedding that sharply

limits the boundary transforms to be applied to the ones

directly involved with those 15 five-dimensional boundaries,

plus three of the four-dimensional boundaries (8F, BF and EF)

in the negative portion of the Niggli cone and two boundaries

(69 and 6C) in the positive portion of the Niggli cone that

contains the images of 8F, BF and EF under their boundary

transforms. For the database application involving points far

from the boundaries, additional four-dimensional boundaries

and three-dimensional boundaries are used.

2.2. Embeddings

In mathematics, an embedding is an instance of some

mathematical structure within another, described as a map

from one structure to the other. Among the purposes of

embedding is to map coordinates from a discontinuous space

onto a continuous one. An example would be a computer

screen where objects exiting to the right reappear on the left.

That can be modeled by mapping the screen onto a cylinder

and treating the screen coordinate as an angle with range zero

to 2�. Two of the ways that embeddings can be implemented

are by analytical embedding, where an equation would map

between the spaces, and by a collection of boundary maps with

actions at the boundaries specified in the map. Treating the

above example as cylinder is an analytical embedding. Using a

boundary map that says at the right side subtract the screen

width and at the left side add the screen width is a boundary

map embedding. The latter are frequently used when an

analytical embedding is difficult to determine or simply

unknown. Often an analytical embedding is a more under-

standable, compact description, but boundary maps are

frequently the more practical. We implemented our embed-

ding of G6 as boundary maps (there is no known analytical

mapping), unfolding some transformations that are isometric

across the boundaries (essentially an analytical embedding).

This may seem to be an overly complex way to describe the

distance measure, but it is useful in this case where the

distance measure varies outside the fundamental unit (see

x2.3).

The problem of finding how far cells in the Niggli cone are

from other cells in the Niggli cone is similar to the problem of

finding the distance between atoms in a crystal, where the

shortest distance may not be the distance within the asym-

metric unit of the chosen cell. For example, in Fig. 1, two

atoms, A and B, are shown in the asymmetric unit of a cell

chosen from a two-dimensional lattice, with symmetry-related

copies of those atoms in neighboring cells. In this case, a

symmetry-related copy of B is closer to A (shown with a solid

black line) than is the original B in the same asymmetric unit.

An alternative to searching through neighboring cells in two

dimensions examining all the translational copies would be to

pick up the matching left and right edges of the cell and glue

them together to form a tube, and then bend the tube to glue
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Figure 1
Example of the difficulty of finding the shortest distance in a lattice. The
distance within the asymmetric unit of the chosen cell is shown as a light
dotted line. However, the shortest distance, shown as a heavy solid line,
crosses multiple unit cells.



the remaining edges together to form a torus. Then we can

navigate between points on the surface of the torus (where

there is only one copy of B) looking for the shortest distance.

Mapping the torus back onto the flat lattice, the shortest path

from A to B consists of the three pieces shown in Fig. 1 as the

bold black segments 1, 2 and 3. Even though they appear to be

disjoint in the two-dimensional representation, they are

contiguous in the embedding.

This process of picking up a lower-dimensional manifold in

which we know the geometry in Euclidean patches and gluing

the edges of the patches together to form a closed surface in a

higher-dimensional space but with the same distances between

points is called an isometric embedding. ‘All’ we need to know

is the distance function on that embedded surface.

2.3. Metric distortions

Embedding the Niggli cone in G6 into a higher-dimensional

space is, as one might expect, more complicated than

embedding a three-dimensional lattice as a torus-like object

into a six-dimensional space. In addition to having more

dimensions, the symmetry operations generated by the

boundary transformations in Table 1 are not, in general,

isometric. The face-diagonal boundary transformations M6

through ME and the body-diagonal boundary transformation

MF significantly compress space in some directions and

expand it in others. In measuring the distance between cells in

the Niggli cone, we always have to measure distances between

representatives of cells within the Niggli cone and not between

a representative in the cone and one outside. However, the

equal-cell-edge (M1, M2) and 90� boundary transforms (M3,

M4, M5) are isometric. Therefore we can safely ‘unroll’ the

cone into multiple images using those transforms and then

measure distances between those cell representatives. The

non-isometric boundary transforms have anisotropic expan-

sions and contractions, ranging from an expansion by a factor

of nearly 3.6 in one direction and a contraction by a factor of

less than 0.28 in another direction for the G6 vectors (corre-

sponding to an expansion factor of nearly 1.9 and a contrac-

tion factor of less than 0.53 for the R3 cells) for the body-

diagonal boundary transform (MF). For the face-diagonal

boundaries (M6, ME) the corresponding expansions and

contractions are 2.8 and 0.36 for the G6 vectors (corre-

sponding to expansions and contractions of nearly 1.7 and less

than 0.6 for the R3 cells). For those transforms, boundary maps

are used to map the transition through a boundary back into

another part of the Niggli cone. If, instead of applying these

boundary maps, we were to step past those boundaries into the

surrounding G6 environment, the effect of those metric

distortions would be very much like looking through glass of a

high anisotropic refractive index, thereby potentially creating

a very large number of distorted images of the distances within

the Niggli cone. Using the embedding and confining distance

measurements to those entirely within the cone greatly

reduces this computationally expensive effect and the need for

inappropriately early terminations of iterations. As noted

above, a large indeterminate number of iterations may be

necessary.

3. The BGAOL embedding distance

There are two ways in which to compute an embedded

distance. In the first way, one maps the lower-dimensional

space into a higher-dimensional space and computes distances

along the resulting curved surface using the coordinate system

of the higher-dimensional space, much as one computes

spherical distances on the surface of the Earth to determine

the distance between cities (A Society of Gentlemen in

Scotland, 1771). In the second way, one uses the coordinate

system of the lower-dimensional space and computes distances

in those terms, using the rules of the embedding to join

patches together (Helgason, 1962). Both approaches can

involve comparisons of multiple alternative distances, just as

one might have to compare going east versus going west in

deciding on the shortest distance between New York, USA,

and Sydney, Australia. In BGAOL, we chose to work with the

coordinate system in G6 rather than with curvilinear coordi-

nates in a higher-dimensional space.

The program BGAOL computes the embedded distance

between G6 vectors v1 and v2, which must both lie within the

Niggli cone. This restriction is important because the

boundary transformations are not isometric and have signifi-

cant anisotropies, causing the regions outside the Niggli cone

to be viewed as if through glass of anisotropic refractive index.

The distances are computed from the G6 coordinates as

follows.

(1) Unroll the Niggli cone by applying the six permutations

resulting from interchanging the cell edges and the four

possible acute–obtuse angle changes, for an initial set of 24

alternative presentations of each cell, v: v, M1v1, M2v1,

M1M2v1, M2M1v1, M2M1M2v1, M3v, M3M1v1, M3M2v1,

M3M1M2v1, M3M2M1v1, M3M2M1M2v1, M4v, M4M1v1,

M4M2v1, M4M1M2v1, M4M2M1v1, M4M2M1M2v1, M5v,

M5M1v1, M5M2v1, M5M1M2v1, M5M2M1v1, M5M2M1M2v1.

(2) For each of the 24 resulting cells from step 1, compute

the distances to and projections onto each of the 15 five-

dimensional Niggli cone boundaries.

(3) For each of the 24 resulting cells from step 1, compute

the distances to and projections onto each of the three inter-

sections between the face-diagonal cases and the body-diag-

onal case in the negative (obtuse angle) portion of the Niggli

cone (8F, BF, EF) as well as the distances to and boundary

mapping onto the images of those intersections in the positive

(acute angle) portion of those intersections. Specifically, for

each cell, v, compute the distance, projections and images

kðI � P8FÞvk; P8Fv; M8P8Fv;

kðI � PBFÞvk; PBFv; MBPBFv;

kðI � PEFÞvk; PEFv; MEPEFv;

kðI � P6CÞvk; P6Cv; MCP6Cv;

kðI � P69Þvjj; P69v; M6P69v and M9P69v: ð3Þ
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(4) For all subsequent distance calculations, also unroll the

Niggli standard-form transformations that restrict the Niggli

cone to þþþ or ���, by defining

dist456ðx; yÞ ¼ min
�
kx� yk;

kðx1; x2; x3; x4; x5; x6Þ � ðy1; y2; y3; y4;�y5;�y6Þk;

kðx1; x2; x3; x4; x5; x6Þ � ðy1; y2; y3;�y4; y5;�y6Þk;

kðx1; x2; x3; x4; x5; x6Þ � ðy1; y2; y3;�y4;�y5; y6Þk
�
: ð4Þ

This is the minimum distance between two images where one

is in the positive branch of the Niggli cone and the other is in

the negative branch.

(5) Compute the minimum Euclidean distance from each of

the 24 images of the first cell from step 1 to each of the 24

images of the second cell from step 1.

(6) For each of the 15 five-dimensional boundaries and for

each of the 576 combinations of one of the 24 images of the

first cell and one of the 24 images of the second cell, determine

the minimum of the distances computed thus far and the

distance going from the first cell to the chosen boundary and

then from the boundary to the second cell, treating as

equivalent each projection into a boundary and its transfor-

mation using the boundary transformation.

(7) For each member of each set of permutations, compute

the distance from each permutation to each of the face-diag-

onal and body-diagonal boundary manifolds. The face-diag-

onal boundaries are grouped together as three cases (6-7-8, 9-

A-B, C-D-E), with two subcases each. In the first three cases

these are the full five-dimensional boundaries, and in the

subcases these are the four-dimensional boundaries produced

by the intersections with the body-diagonal boundary mani-

fold (8F, BF, EF).

(8) For each face-diagonal or body-diagonal boundary

manifold, �, consider a member w1 from the first set of

permutations and w2 from the second set of permutations. Let

h1 be the distance from w1 to �and h2 be the distance from w2

to �.

(9) If h1 þ h2 is less than the minimum distance already

found, let P�w1 be the projection of w1 onto � and M�P�w1 be

the image of that projection under the boundary transforma-

tion, and let P�w2 be the projection of w2 onto � and M�P�w2

be the image of that projection under the boundary transfor-

mation. For the 8F, BF and EF four-dimensional boundaries,

use the transformations for the corresponding face-diagonal

boundaries (M8, MF, ME). Compare the minimum distance thus

far with {ðh1 þ h2Þ
2 + min½dist456ðP�w1;P�w2Þ, dist456ðP�w1;

M�P�w2Þ, dist456ðM�P�w1, P�w2Þ, dist456ðM�P�w1,

M�P�w2Þ�
2}1=2 and keep the smallest value.

The raw distance in G6 is not sufficient for comparison of

lattices of different symmetries and does not consider

distances in relationship to the size of experimental errors.

The anorthic lattices have the full six degrees of freedom of

the space, the monoclinic have four, the orthorhombic have

three, the hexagonal and tetragonal have two, and the cubic

have one. Multiplying the reported G6 distances by the square

root of the number of degrees of freedom provides better

comparisons between possible lattices. If one then divides by

the G6 experimental error estimate, one gets a dimensionless

‘Z score’.

Computationally, the multiplicities of the combinations

used is lower than one might expect because of constant

pruning by comparing the distance computed at each stage

with the distance to the boundary under consideration. If the

boundary distance that was precomputed in step 2 or 3 is

larger than the previously computed minimum distance

between cells, there is no need to compute path lengths that

include that boundary distance.

4. Implementation of the embedding

BGAOL is a modification of our earlier iteration-based

program ITERATE (Andrews & Bernstein, 1988) using

embedding-based distances to search for likely Bravais lattice

matches. The only other lattice matching programs that the

authors know of that use a metric are BLAF (Macı́ček &

Yordanov, 1992), DELOS (Zimmermann & Burzlaff, 1985),

XDS (Kabsch, 2010) and OT-BLD, the lattice matching part

of CONOGRAPH (Oishi-Tomiyasu, 2012). Because of the

metric distortions outside the Niggli cone, none of these

measures is assured to actually be linear. BLAF uses an L1 (i.e.

Manhattan street grid) measure on the metric tensor, while

ITERATE and BGAOL use an L2 (i.e. Euclidean) measure.

DELOS uses a coarse measure based on ‘cycles’. OT-BLD

reports matches using a fractional measure, also based on the

metric tensor. XDS uses a ‘quality index’ based on the sum of

the extents to which the inequalities of Niggli reduction are

not satisfied for components of the metric tensor, essentially

an L1 measure of the distance from each Niggli-cone boundary

polytope. Table 2 shows a comparison of BGAOL results with

those of other programs, except XDS. Table 3 shows a com-

parison of the BGAOL Z score with the XDS quality indicator.

4.1. Distance calculation

BGAOL distances are calculated using the function

NCDIST, which computes the distance between pairs of

research papers

J. Appl. Cryst. (2014). 47, 346–359 Andrews and Bernstein � The geometry of Niggli reduction: BGAOL 351

Table 2
Search results for BGAOL, BLAF, DELOS, OT-BLD and ITERATE for
basic beryllium acetate, a ¼ 19:2600, b ¼ 63:8825, c ¼ 27:2394 Å,
� ¼ 5:7696, � ¼ 19:4709, � ¼ 17:2952� (Himes & Mighell, 1987).

The BGAOL, BLAF and ITERATE columns show distances in Å2 from the
probe to the appropriate boundary manifold for the indicated Niggli lattice
character in G6. The BLAF column uses L1 distances versus L2 distances for
the others. The DELOS column shows the numbers of cycles of relaxation of
the Delaunay reduction needed to find the indicated symmetry. The OT-BLD
column is a dimensionless fractional measure of the agreement of metric
tensors. The significant differences between the BGAOL and ITERATE
values in some cases are a result of the expansion and contraction factors (see
the text) when G6 measures are applied outside the Niggli cone.

Lattice character BGAOL BLAF DELOS OT-BLD ITERATE

cF 0.067 – 1 1 � 10�5 0.096
tI 0.038 0.014 1 6 � 10�6 0.038
hR 0.065 0.013 1 7 � 10�6 0.076
oF 0.038 – 1 6 � 10�6 0.038
oI 0.019 0.007 1 4 � 10�6 0.018
mI 0.007 0.004 1 1 � 10�6 0.007



reduced cells. Bravais lattice determination for a given probe

cell consists of finding which boundary polytopes or subspaces

among the Bravais lattice subspaces of the Niggli cone are

closest to the probe. Constructing and using a cell database

requires computing the distance between cells as points in G6

that are arbitrarily far apart. Fig. 2 illustrates the use of

NCDIST to compute distances between well separated points.

4.2. Availability and test results

A BGAOL-based lattice identification web server is avail-

able at http://iterate.sf.net/bgaol. A source kit may also be

downloaded from a link on that page.

The prior ITERATE-based lattice identification web server

is available at http://www.bernstein-plus-sons.com/software/

ITERATE/.

The latest version of the source code of BGAOL is main-

tained on SourceForge (http://sourceforge.net/) for svn access

at

svn checkout

svn://svn.code.sf.net/p/iterate/code/trunk/bgaol

bgaol-code

The source kit contains the test program, Follower.for, that

computes the distance for database work as shown in Fig. 2.

The database code, which will be discussed in a subsequent

article, is available from the ‘sauc’ module in the same repo-

sitory.

APPENDIX A
The boundary polytopes

The embedding requires an understanding of the space G6, the

process of Niggli reduction, and the resulting Niggli cone and

boundaries created thereof on G6.

A1. The space G6

G6 is a reformulation of the crystallographic metric tensor

and the ‘Niggli matrix’ (itself a reformulation of the metric

tensor) (Andrews & Bernstein, 1988). A vector g in G6 is

defined as

g ¼ a � a; b �b; c � c; 2b � c; 2a � c; 2a � bð Þ

¼ ðkak2; kbk2; kck2; 2kbkkck cos�;

2kakkck cos �; 2kakkbk cos �Þ

¼ ðg1; g2; g3; g4; g5; g6Þ ¼ gf1;2;3g; gf4;5;6g; ð5Þ

where a, b, c are the unit-cell edge vectors, and � indicates the

dot product. The unit cell is chosen to be primitive.

The notation gf4;5;6g is used to denote the elements

ðg4; g5; g6Þ from the full G6 vector.

A2. The Niggli conditions

The Niggli-reduced cell of a lattice is a unique choice from

among the infinite number of alternative cells that generate

the same lattice (Niggli, 1928). A Buerger-reduced cell for a

given lattice is any cell that generates that lattice, chosen such

that no other cell has shorter cell edges (Buerger, 1960). Even

after allowing for the equivalence of cells in which the direc-

tions of axes are reversed or axes of the same length are

exchanged, there can be up to five alternative Buerger-

reduced cells for the same lattice (Gruber, 1973). The Niggli

conditions allow the selection of a unique reduced cell for a

given lattice from among the alternative Buerger-reduced cells

for that lattice.

Niggli reduction consists of converting the original cell to a

primitive one and then alternately applying two operations:

conversion to standard presentation and reduction (Niggli,

1928; Andrews & Bernstein, 1988). The convention for

meeting the combined Buerger and Niggli conditions is based

on increasingly restrictive layers of constraints: if g1 < g2 < g3,
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Table 3
Partial search results for BGAOL and XDS for the test cell, a ¼ 62:1,
b ¼ 63:5, c ¼ 92:9 Å, � ¼ 90:0, � ¼ 90:1, � ¼ 107:200� from Kabsch
(1993).

The BGAOL columns show the G6 distance and the G6 degrees-of-freedom
weighted Z score, assuming errors of 0.2 in edges and 0.1 on angles, which in
this case corresponds to a G6 error estimate of 61.3 Å2. The XDS QI (quality
indicator) and scaled QI columns show the raw deviations from Niggli
reduction and the same deviations scaled by 100=½0:2 minða2; b2; c2Þ� and
capped at 999 as per Kabsch (2013). Only the three most promising lattice
types are shown. The structure solution gave oC. G6 distances are in units
of Å2.

Lattice character G6 distance BGAOL Z score XDS QI Scaled QI

mP 20.138 0.657 1.0 0.13
oC 125.958 3.560 23.8 3.09
mC 125.150 4.085 23.4 3.03

Figure 2
To illustrate distance calculations between arbitrary points, a line was
drawn in G6 between an unreduced point close to cF and its reduced
image. Each curve shows the distances at 100 points along each line to the
corresponding reduced cell of the starting point. The upper curve starts
from a ¼ 3:162, b ¼ 3:173, c ¼ 3:163 Å, � ¼ 60:094, � ¼ 60:049,
� ¼ 60:338� and ends at a ¼ 3:162, b ¼ 3:163, c ¼ 3:173 Å, � ¼ 60:115,
� ¼ 89:843, � ¼ 60:049�. The lower curve starts from a ¼ 3:171,
b ¼ 3:166, c ¼ 3:160 Å, � ¼ 60:265, � ¼ 59:999, � ¼ 60:161� and ends
at a ¼ 3:160, b ¼ 3:165, c ¼ 3:166 Å, � ¼ 90:190, � ¼ 119:735,
� ¼ 119:825�.



jg4j< g2, jg5j< g1, jg6j< g1 and either gf4;5;6g> 0 or gf4;5;6g 	 0

then we have a Niggli-reduced cell, and we are done.

The remaining conditions are imposed when any of the

above inequalities becomes an equality or the elements of

gf4;5;6g are not consistently all strictly positive or are not

consistently all less than or equal to zero.

The full set of combined Buerger and Niggli conditions in

addition to those for the cell edge lengths being minimal is as

follows:

require 0 	 g1 	 g2 	 g3; ð6Þ

if g1 ¼ g2; then require jg4j 	 jg5j; ð7Þ

if g2 ¼ g3; then require jg5j 	 jg6j; ð8Þ

require g4 > 0 and g5 > 0 and g6 > 0; ð9Þ

or require g4 	 0 and g5 	 0 and g6 	 0; ð10Þ

require jg4j 	 g2; ð11Þ

require jg5j 	 g1; ð12Þ

require jg6j 	 g1; ð13Þ

require g3 	 g1 þ g2 þ g3 þ g4 þ g5 þ g6; ð14Þ

if g4 ¼ g2; then require g6 	 2g5; ð15Þ

if g5 ¼ g1; then require g6 	 2g4; ð16Þ

if g6 ¼ g1; then require g5 	 2g4; ð17Þ

if g4 ¼ �g2; then require g6 ¼ 0; ð18Þ

if g5 ¼ �g1; then require g6 ¼ 0; ð19Þ

if g6 ¼ �g1; then require g5 ¼ 0; ð20Þ

if g3 ¼ g1 þ g2 þ g3 þ g4 þ g5 þ g6;

then require 2g1 þ 2g5 þ g6 	 0: ð21Þ

The G6 transformations associated with each of these steps are

enumerated by Andrews & Bernstein (1988). Application of

these operations must be repeated until all are satisfied.

A3. Notation and boundary polytopes

We define the manifold of the Niggli-reduced cells in G6 as

N and refer to it as the ‘Niggli cone’.

The interior of N, intðNÞ, is defined as the set of n 2 N such

that there exists r> 0 such that for all g 2 G6 such that

kg� nk< r; g 2 N.

The closure of N, clðNÞ, is defined as the set of g 2 G6 such

that for all r> 0 there exists n 2 N such that kg� nk 	 r.

The boundary of N, @ðNÞ, is defined as the set of points in

clðNÞ not in intðNÞ.

The boundary of N is created by the linear constraints of

Niggli reduction and therefore can be decomposed into the

union of ‘polytopes’, i.e. flat facets with straight edges.

We distinguish the primary boundary polytopes from their

edges, which are also polytopes, by ‘dimension’, which is the

number of vectors in a basis for the interior of the polytope.

N is a six-dimensional polytope. N is a double-ended cone-

like region going through the origin to infinity in both direc-

tions. The boundary polytopes are flat facets created by the

intersections of hyperplanes through the origin. The boundary

polytopes are, of course, of lower dimension than N. There-

fore any randomly selected vector in G6 has a vanishingly

small probability of occupying any particular five-dimensional

boundary polytope, and it has an even lower probability of

occupying one of the lower-dimensional boundary polytopes

resulting from the intersections of five-dimensional boundary

polytopes. Some boundary polytopes are ‘open’, i.e. while

there are Niggli-reduced cells near that boundary, some or all

of the points on those boundary polytopes are not themselves

Niggli reduced.

Our task is to identify the five-dimensional boundary

polytopes that give N its shape. Those five-dimensional

boundaries and the transforms involved in crossing them

generate all the rest of the structure. However, in order to

understand the shape of a given five-dimensional boundary

polytope, we need the four-dimensional edges that bound it. In

order to understand the shape of a given four-dimensional

boundary polytope, we need the three-dimensional edges that

bound it. In order to understand the shape of a given three-

dimensional boundary polytope, we need the two-dimensional

edges that bound it. In order to understand the shape of a

given two-dimensional boundary polytope, we need the one-

dimensional edges that bound it. From this classification we

gain a better understanding of the relationships between

Bravais lattice types, and, perhaps more importantly, this

provides essential information needed to organize computa-

tions. Hosoya (1990) addressed a different, but related, clas-

sification. We discuss the relationship between boundary

polytope identification, lattice types and Hosoya’s approach in

xA10. Hosoya recognized the complexity of boundary identi-

fications for N and introduced the use of Monte Carlo

searching to clarify the relationships. We apply a Monte Carlo

search in Appendix B (Andrews & Bernstein, 1976; Beltrami,

1873; Jordan, 1874; Stewart, 1993), which is available as

supplementary material.2

The reduction steps convert a non-reduced cell into one

that has at least one edge shorter than the starting edges, and

other steps in the case of equality convert a non-reduced cell

into a cell that is more orthogonal than the starting cell. These

operations are accomplished by choosing a face or body

diagonal to replace one of the cell edges. The conditions added

to remove the ambiguities in the case of equalities allow for a

unique choice of Niggli cell in all cases but thereby create

complex boundary conditions (Andrews & Bernstein, 1988).

For example, the cell edge equalities in equations (7) and (8)

create boundary polytopes across which elements of both

gf1;2;3g and gf4;5;6g are exchanged, while equations (3) and (4)
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2 Supporting information for this paper is available from the IUCr electronic
archives (Reference: KK5144).



create boundary polytopes across which edges are exchanged

for face diagonals.

A boundary polytope does not necessarily consist entirely

of Niggli-reduced cells but can contain non-Niggli-reduced

cells including nearly reduced cells as well. We define a

boundary polytope C 
 N as a subset of N for which there is

an associated matrix MC such that for all points c 2 C there

exists �> 0 such that for all nn =2N where knn� ck<�,
MCðcÞ 2 N. Each boundary polytope is a portion of the

boundary for which there is a single transformation matrix

that maps the nearby non-Niggli-reduced cells to Niggli-

reduced cells. This is not necessarily a mapping back to the

starting point, or even to a point near the starting point, not

even for points on the boundary polytope itself. We look for

point-by-point invariance in defining special-position

subspaces in xA4.

Each boundary polytope C has an associated ‘projector’ PC,

which is the linear transformation that maps an arbitrary

g 2 G6 to the point PCg closest to g in the hyperplane

containing C. It is important to understand that PCg may not

be Niggli reduced or even close to the Niggli cone.

A4. Special-position subspaces

In an analysis of symmetry, special positions play an

important role. A special position is a point invariant under a

symmetry transformation, an eigenvector, of eigenvalue 1, of

the transformation. We define a special-position subspace of a

boundary polytope C as the intersection of the eigenspace of

eigenvalue 1 of MC with the boundary polytope. Formally, for

a boundary polytope C with associated transformation matrix

MC, the special-position subspace KðC;MCÞ is defined as the

set of points c 2 C such that MCðcÞ ¼ c. In the case of

boundary polytopes associated with a transformation matrix

that goes from the all-acute þþþ case to the all-obtuse

��� case or vice versa, there cannot be any Niggli-reduced

special-position subspace, because the axial planes of the

gf4;5;6g subspace are excluded from the all-acute þþþ case.

As we will see, while the special-position subspaces of the

boundary polytopes are not needed in order to classify the

primitive lattice types, they come into play in classifying the

non-primitive lattice types.

If we have two boundary polytopes C1, C2 � N, we denote

the intersection of the closure of C1 and the closure of C2 as

C1C2. Note that intersection is a commutative operation, i.e.

C1C2 ¼ C2C1.

Because we have restricted the boundary polytope in this

article to have only one associated matrix, we use the notation

ĈC for KðC;MCÞ. In general, an infinite number of higher-

dimensional polytopes will intersect C in ĈC. We distinguish

such a higher-dimensional polytope as C0. Thus CC0 ¼ ĈC.

A5. The 15 five-dimensional boundary polytopes

The 15 five-dimensional boundary polytopes and their

special-position subspaces may be organized as shown in

Table 1, in which we use the hexadecimal digits 1 through F as

identifiers. For each five-dimensional boundary polytope C in

Table 1 having a nontrivial special-position subspace, we

designate the particular choice of higher-dimensional polytope

intersecting C in ĈC as C0. See xA5.3 for a concrete example.

In the discussions of the 15 five-dimensional boundary

polytopes below, we give the condition being satisfied, the

right-handed E3 representation of the boundary transforma-

tion cell edge by cell edge, a G6 matrix representation of the

same boundary transformation and a G6 matrix representa-

tion of a projector into the hyperplane of that boundary. Note

that both a right-handed E3 representation and its negative

(left-handed) representation would map into the same G6

representation.

A5.1. Equal-cell-edge case. Cases 1 and 2 arise when two

cell edges have equal length. In this section some scalar

components are in bold face to direct the attention of the

reader to values that are changing. The conditions of Niggli

reduction impose a secondary condition on the associated

angles for those two edges that resolves the ambiguity in

ordering them. For example, in case 1, kak ¼ kbk (g1 ¼ g2)

and the Niggli-reduced G6 vector U ¼ ðg1; g2; g3; g4; g5; g6Þ

produces the same lattice as V ¼ ðg2; g1; g3; g5; g4; g6Þ, which is

not Niggli reduced if g4 and g5 have different values. In going

from Niggli-reduced cells near U to Niggli-reduced cells near

V (e.g. by decreasing g2 slightly), we are crossing a boundary

polytope with a discontinuity in each of g4 and g5 (Andrews &

Bernstein, 1988). We may represent the transformation that

takes U into V at the first boundary polytope by the matrix M1

that maps U into V and the projector P1 that maps any G6

vector into the g1 ¼ g2 boundary polytope.

Case 1 : g1 ¼ g2; a!�b; b!�a; c!�c

M1 ¼ 010000=100000=001000=000010=000100=000001ð Þ

P1 ¼
1
2

1
20000=1

2
1
20000=001000=000100=000010=000001

� �

G6 subspace : ðr; r; s; t; u; vÞ

Similarly, for case 2, kbk ¼ kck (g2 ¼ g3), g5 and g6 are

exchanged, yielding

Case 2 : g2 ¼ g3; a!�a; b!�c; c!�b

M2 ¼ 100000=001000=010000=000100=000001=000010ð Þ

P2 ¼ 100000=01
2

1
2000=01

2
1
2000=000100=000010=000001

� �

G6 subspace : ðr; s; s; t; u; vÞ

The remaining equal-cell-edge case, in which kak ¼ kck

(g1 ¼ g3), is only considered under Niggli reduction when

kak ¼ kbk and kbk ¼ kck, which is a combination of case 1

and case 2. This requires two simultaneous five-dimensional

constraints, thereby making g1 ¼ g3 a four-dimensional rather

than a five-dimensional case.

The special-position subspaces 1̂1 and 2̂2 are obtained by

adding the constraints 10 : fg4 ¼ g5g and 20 : fg5 ¼ g6g, respec-

tively.

A5.2. Ninety degree case. Cases 3, 4 and 5 arise when a

reduced cell angle is 90�. In those cases, the remaining cell

research papers

354 Andrews and Bernstein � The geometry of Niggli reduction: BGAOL J. Appl. Cryst. (2014). 47, 346–359



angles both can be replaced by their supplements. This

changes the sign of gf4;5;6g.

Case 3 : g4 ¼ 0; a! a; b!�b; c!�c

M3 ¼ 100000=010000=001000=000100=000010=000001
� �

P3 ¼ 100000=010000=001000=000000=000010=000001ð Þ

G6 subspace : ðr; s; t; 0;�u;�vÞ

Case 4 : g5 ¼ 0; a!�a; b! b; c!�c

M4 ¼ 100000=010000=001000=000100=000010=000001
� �

P4 ¼ 100000=010000=001000=000100=000000=000001ð Þ

G6 subspace : ðr; s; t;�u; 0;�vÞ

Case 5 : g6 ¼ 0; a!�a; b!�b; c! c

M5 ¼ 100000=010000=001000=000100=000010=000001
� �

P5 ¼ 100000=010000=001000=000100=000010=000000ð Þ

G6 subspace : ðr; s; t;�u;�v; 0Þ

In each 90� case, the special-position subspace consists of

3̂3; 4̂4; 5̂5 : fg4 ¼ g5 ¼ g6 ¼ 0g, i.e. the primitive orthorhombic

case, and we take 30 : fg5 ¼ g6 ¼ 0g, 40 : fg4 ¼ g6 ¼ 0g,

50 : fg4 ¼ g5 ¼ 0g.

A5.3. Face-diagonal case. Cases 6 through E are all face-

diagonal cases, in which a cell edge is equal in length to a face

diagonal. Some complexity arises in the analysis because,

unlike Delaunay reduction, Niggli reduction permits non-

obtuse angles. We can always change the sign of any two

elements of gf4;5;6g by changing the direction of the cell edge

involved with those two elements. For example, if we trans-

form a to �a then, while g1 remains unaffected, the signs of

each of g5 ¼ 2a � c and g6 ¼ 2a � b will change. Thus we can

transform a cell having three acute angles to a cell having one

acute angle and two obtuse angles, and we can transform a cell

having three obtuse angles to a cell having one obtuse angle

and two acute angles. The complete list of possible sign

changes in gf4;5;6g by changing the directions of axes are

fþ þ þg Ð f� �þg Ð f� þ�g Ð fþ � �g

f� � �g Ð fþ þ�g Ð fþ �þg Ð f� þ þg

Unless one of the angles is 90� (which introduces a zero into

gf4;5;6g), we cannot ordinarily transform a Niggli-reduced cell

with all-acute angles to one with all-obtuse angles by changing

the directions of axes, nor can we transform a Niggli-reduced

cell with all-obtuse angles to one with all-acute angles by

changing the directions of the axes. Note that changing the

direction of all three axes has no effect because all the sign

changes cancel.

The face-diagonal cases do include cases in which trans-

formations from, for example, þþþ to ��� do occur. Let

us look in detail at cases 6 and 7, g2 ¼ g4.

g2 ¼ g4;

g2 � g4 ¼ 0;

g2 � g4 þ g3 ¼ g3;

b � b� 2b � cþ c � c ¼ c � c;

kb� ck2
¼ kck2;

kb� ck ¼ kck:

ð22Þ

Thus transforming c to b� c will not change the cell edge

lengths. In this case, g1, g2 and g3 are, of course, unchanged and

g04 ¼ 2b � ðb� cÞ ¼ 2b � b� 2b � c ¼ 2g2 � g4 ¼ g4;

g05 ¼ 2a � ðb� cÞ ¼ 2a � b� 2a � c ¼ g6 � g5;

g06 ¼ 2a � b ¼ g6:

ð23Þ

This shows that a single element of gf4;5;6g, g5, will change sign

depending on the sign of g6 � g5. Cases 6 and 7 cannot start

from the all-obtuse case because g4 ¼ g2 and because g2 must

be nonnegative. Starting from an all-acute case,þþþ, we will

remain in the all-acute case if g6 is greater than or equal to g5

but go to one having one obtuse angle (not reduced) if g6 is

less than g5. We then change to having all-obtuse angles,

���, by reversing the direction of b. The resulting matrices

in these face-diagonal cases are

Case 6 : g2 ¼ g4; g5 � g6; a! a; b!�b; c! b� c

M6 ¼ 100000=010000=011100=020100=000011=000001
� �

P6 ¼ 100000=01
20

1
200=001000=01

20
1
200=000010=000001

� �

G6 subspace : ðr; s; t; s; uþ v; vÞ

Case 7 : g2 ¼ g4; g5 < g6; a!�a; b!�b; c! c� b

M7 ¼ ð100000=010000=011100=020100=000011=000001Þ

P7 ¼ 100000=01
20

1
200=001000=01

20
1
200=000010=000001

� �

G6 subspace : ðr; s; t; s; u; uþ vÞ

Case 8 : g2 ¼ �g4; a! a; b!�b; c!�b� c

M8 ¼ ð100000=010000=011100=020100=000011=000001Þ

P8 ¼
�
100000=01

20
1
200=001000=01

20
1
200=000010=000001

�

G6 subspace : ðr; s; t;�s;�u;�vÞ

Case 9 : g1 ¼ g5; g4 � g6; a!�a; b! b; c! a� c

M9 ¼ ð100000=010000=101010=000101=200010=000001Þ

P9 ¼
1
20001

20=010000=001000=000100=1
20001

20=000001
� �

G6 subspace : ðr; s; t; uþ v; r; uÞ

Case A: g1 ¼ g5; g4 < g6;

a!�a; b!�b; c!�aþ c

MA ¼ ð100000=010000=101010=000101=200010=000001Þ

PA ¼
1
20001

20=010000=001000=000100=1
20001

20=000001
� �

G6 subspace : ðr; s; t; u; r; uþ vÞ
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Case B: g1 ¼ �g5; a!�a; b! b; c!�a� c

MB ¼ ð100000=010000=101010=000101=200010=000001Þ

PB ¼
�

1
20001

20=010000=001000=000100=1
20001

20=000001
�

G6 subspace : ðr; s; t;�u;�r;�vÞ

Case C: g1 ¼ g6; g4 � g5; a!�a; b! a� b; c! c

MC ¼ ð100000=110001=001000=000110=000010=200001Þ

PC ¼
1
200001

2=010000=001000=000100=000010=1
200001

2

� �

G6 subspace : ðr; s; t; uþ v; v; rÞ

Case D: g1 ¼ g6; g4 < g5;

a!�a; b!�aþ b; c!�c

MD ¼ ð100000=110001=001000=000110=000010=200001Þ

PD ¼
1
200001

2=010000=001000=000100=000010=1
200001

2

� �

G6 subspace : ðr; s; t; u; uþ v; rÞ

Case E: g1 ¼ �g6; a!�a; b!�a� b; c! c

ME ¼ ð100000=110001=001000=000110=000010=200001Þ

PE ¼
�

1
200001

2=010000=001000=000100=000010=1
200001

2

�

G6 subspace : ðr; s; t;�u;�v;�rÞ

The special-position subspaces of the face-diagonal

boundary polytopes 6, 8, 9, B, C and E are empty because such

a special position would require a common point in the all-

acute þþþ and all-obtuse ��� cases that only meet at the

axial planes of the gf4;5;6g subspace, which are excluded from

the all-acute þþþ case. For cases 7, A and D there are non-

trivial special-position subspaces. An invariant point in case 7

would have to satisfy g5 ¼ g6 � g5 or g5 ¼ g6=2. Thus we

define 70 : fg5 ¼ g6=2g and similarly define A0 : fg4 ¼ g6=2g and

D0 : fg4 ¼ g5=2g.

A5.4. Body-diagonal case. There is only one five-dimen-

sional body-diagonal case, kaþ bþ ck ¼ kck:

Case F : g1 þ g2 þ g3 þ g4 þ g5 þ g6 ¼ g3;

a!�a; b!�b; c! aþ bþ c

MF ¼ ð100000=010000=111111=020101=200011=000001Þ

PF ¼
�

4
5

1
5 0 1

5
1
5

1
5 =

1
5

4
5 0 1

5
1
5

1
5 =001000= 1

5
1
5 0 4

5
1
5

1
5 =

1
5

1
5 0 1

5
4
5

1
5 =

1
5

1
5 0 1

5
1
5

4
5

�

G6 subspace : ðr; s; t;�u;�v;�r� sþ uþ vÞ

In order to have a special-position subspace in case F, in

addition to g1 þ g2 þ g3 þ g4 þ g5 þ g6 ¼ g3, we need (from

the fourth and fifth rows of MF) g4 ¼ �2g2 � g4 � g6 and g5 ¼

�2g1 � g5 � g6, from which we have 2g2 þ 2g4 ¼ �g6 ¼

2g1 þ 2g5, from which we take F 0 : fg1 � g2 � g4 þ g5 ¼ 0g.

This is equivalent to kaþ ck ¼ kbþ ck, i.e. that the shorter b-

face diagonal is the same length as the shorter a-face diagonal.

A6. The four-dimensional boundary polytopes

The four-dimensional boundary polytopes are created by

the intersection of two five-dimensional boundary polytopes.

Certain intersections are degenerate. For example, cases 8, B,

E and F are restricted to the ��� branch of the boundary of

the Niggli cone, while cases 6, 7, 9, A, C and D are restricted to

the þþþ branch. More subtly, cases 6 and 7 require g2 ¼ g4,

maximizing g4, forcing g4 � g5 and g4 � g6 which would

conflict with cases A and D. Only cases 9 and C, taken to their

boundaries with A and D, respectively, are possible. Those

boundaries are designated 9A and CD, respectively. Similarly,

cases 9 and A maximize g5, which would conflict with case 7

and force 6 to the 67 boundary, and cases C and D maximize

g6, which would conflict with case 6 except at the 67 boundary.

Thus cases 6A, 7A, 6D, 7D, 79, 7A and 6C actually are the

lower dimension cases 69A, 79A, 6CD, 7CD, 79A, 79A and

6CD, respectively. This process can result in three- or even

two-dimensional boundary polytopes from the intersection of

two five-dimensional boundary polytopes (see below). After

excluding the cases that involve any of gf1;2;3g ¼ 0, there are 55

four-dimensional cases as shown in the supporting information

(Appendix B, Table 3). The relative populations for all the

two-dimensional boundary polytopes except 26, 28, 2A and

2D have Z scores above �1. The Z scores for those four cases

range from �1.1 down to �1.9. (See the supplementary

materials for a discussion of Z scores).

The edges of the five-dimensional polytopes can be read

directly from Appendix B, Table 3. For example the 6 polytope

is bounded by 16, 26, 56, 67 and 69, and the F polytope is

bounded by 1F, 2F, 8F, BF and EF. It is important to note that

the polytopes 1, 2, 3, 4 and 5 extend into the boundaries of

both the þþþ and the ��� branches of N. Even though

the polytopes 3, 4 and 5 do not contain any valid Niggli-

reduced þþþ cells, they are part of both branches of @ðNÞ
even for þþþ.

A7. The three-dimensional boundary polytopes

The three-dimensional boundary polytopes are created by

the intersection of three five-dimensional boundary polytopes.

In some cases the boundary polytope is better represented by

a fourfold intersection. The boundary polytope 34CD is

equivalent to 34C and 34D, 359A is equivalent to 359 and 35A,

4567 is equivalent to 456 and 457, 679C is equivalent to 69C

and 79C, and 9ACD is equivalent to 9AD and ACD. These are

‘flat boundary intersection’ cases in which one side of the flat

boundary intersection implies the other. On the other hand

126 and 127, 12A and 129, 12C and 12D, 2AD and 29C, and

69C and 79C are distinct rather than equivalent pairs of flat

boundary intersections. Six twofold intersections of five-

dimensional boundary polytopes (6A, 6C, 79, 7D, 9D and AC)

result in three-dimensional boundary polytopes, rather than in

four-dimensional boundary polytopes. In each case both

boundary polytopes have mismatched partners from ‘flat

boundary intersections’. Let us examine the 6A case in detail,

elaborating on the discussion of the four-dimensional

boundary polytopes above.

Cases 6 and A are g2 ¼ g4 and g5 � g6, and g1 ¼ g5 and

g4 < g6, respectively. For intersections, we use the closures of

the boundary polytopes, so we have the closure of A as g1 ¼ g5

and g4 	 g6. The Niggli cone itself imposes the additional
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restrictions g6 	 g1 and g1 	 g2, but from 6, g2 ¼ g4, and from

the closure of A, g4 	 g6, so we have

g2 ¼ g4 	 g6 	 g1 ) g2 	 g1 ð24Þ

and from the Niggli reduction conditions

g1 	 g2: ð25Þ

Thus g1 ¼ g2 and g4 ¼ g6, meaning that, in addition to satis-

fying the constraints of case A, we also satisfy the constraints

of case 9, g1 ¼ g5 and g4 � g6. Thus case 6A is actually case

69A, producing a true three-dimensional boundary polytope

from the intersection of two five-dimensional boundary

polytopes owing to the additional constraints of Niggli

reduction. As we will see in the discussion of the two-

dimensional boundary polytopes, the Niggli reduction

constraints can result in shedding one or more degrees of

freedom, allowing some twofold intersections of five-dimen-

sional boundary polytopes to result in two-dimensional

boundary polytopes.

After excluding the cases that involve any of gf1;2;3g ¼ 0,

there are 79 cases as shown in Appendix B, Table 4. The

relative populations for all the three-dimensional boundary

polytopes have Z scores greater than �1.1.

For completeness, if one wished to include the boundary

polytope with g1 ¼ 0 it would be considered in the three-

dimensional polytopes. In clðNÞ, g1 ¼ 0 forces g5 ¼ g6 ¼ 0,

g2 ¼ 0, leaving only three degrees of freedom at @ðNÞ. Note

that g2 ¼ 0 is of even lower dimension, one, because g2 ¼ 0

forces g4 ¼ 0 as well as g1 ¼ g5 ¼ g6 ¼ 0, leaving only one

degree of freedom (g3). g3 ¼ 0 is just the origin.

A8. The two-dimensional boundary polytopes

The two-dimensional boundary polytopes are, in general,

created by the intersection of four five-dimensional boundary

polytopes, but several well populated fourfold intersections

result in three-dimensional boundary polytopes rather than

two-dimensional boundary polytopes. Several fourfold inter-

sections are most naturally presented as higher multiplicity

intersections, and in some cases the intersection of as few as

two five-dimensional boundary polytopes is sufficient to create

a two-dimensional boundary polytope. After excluding the

cases that involve any of gf1;2;3g ¼ 0, there are 55 cases as

shown in Appendix B, Table 5. The combination of seven

boundary polytopes 1679ACD is the hexagonal rhombohedral

hR, lattice character 9, Roof/Niggli symbol 49B, subspace

ðr; r; s; r; r; rÞ. Alternatively, lattice character 9 can be viewed

as any of 81 other intersections, including two twofolds (6D,

7A), 18 threefolds (179, 16A, 16C, 16D, 17A, 17D, 19D, 1AC,

67A, 67D, 69D, 6AC, 6AD, 6CD, 79A, 79D, 7AC, 7AD), 33

fourfolds (1679, 167A, 167C, 167D, 169A, 169C, 169D, 16AC,

16AD, 16CD, 179A, 179C, 179D, 17AC, 17AD, 17CD, 19AC,

19AD, 19CD, 1ACD, 679A, 679D, 67AC, 67AD, 67CD, 69AC,

69AD, 69CD, 6ACD, 79AC, 79AD, 79CD, 7ACD), 21 fivefolds

(1679A, 1679C, 1679D, 167AC, 167AD, 167CD, 169AC,

169AD, 169CD, 16ACD, 179AC, 179AD, 179CD, 17ACD,

19ACD, 679AC, 679AD, 679CD, 67ACD, 69ACD, 79ACD)

and seven sixfolds (1679AC, 1679AD, 1679CD, 167ACD,

169ACD, 179ACD, 679ACD), and is a very highly populated

two-dimensional boundary polytope. If we exclude this case,

the remaining 54 cases have Z scores ranging from �1.36 (for

1456) to 0.84 (for 123E) to 2.75 (for 29ACD).

Let us consider how one of the twofolds, 6D, results in only

two degrees of freedom. Cases 6 and D are g2 ¼ g4 and

g5 � g6, and g1 ¼ g6 and g4 < g5, respectively. The closure of D

is g1 ¼ g6 and g4 	 g5, and Niggli reduction requires

g6 	 g1 	 g2, from which it follows that

g6 ¼ g1 	 g2 ¼ g4 	 g5 	 g1 ð26Þ

and therefore

g6 ¼ g1 ¼ g2 ¼ g4 ¼ g5; ð27Þ

creating the subspace ðr; r; s; r; r; rÞ, i.e. two degrees of

freedom.

A9. The one-dimensional boundary polytopes

There are 14 distinct one-dimensional boundary polytopes,

with many equivalent presentations. The most complex

situation is best presented as an eightfold intersection,

12679ACD, i.e. g1 ¼ g2 ¼ g3 ¼ g4 ¼ g5 ¼ g6, which is the face-

centered cubic ðr; r; r; r; r; rÞ. There are 81 other equivalent

presentations of the face-centered cubic, inherited from the

sevenfold intersection hexagonal rhombohedral discussed

above by adding case 2 to each of those presentations, thereby

providing two threefolds for the face-centered cubic case (26D

and 27A). The remaining 13 one-dimensional boundary

polytopes are 12345 ðr; r; r; 0; 0; 0Þ, 1234CD ðr; r; r; 0; 0; rÞ

(equivalent to 1234C, 1234D, 123CD, 124CD), 1234E ðr; r; r;
0; 0;�rÞ, 12359A ðr; r; r; 0; r; 0Þ (equivalent to 12359, 1235A,

1239A, 1259A), 1235B ðr; r; r; 0;�r; 0Þ, 123AD ðr; r; r; 0; r; rÞ,

123BEF ðr; r; r; 0;�r;�rÞ (equivalent to 123BE, 123BF,

123EF, 12BEF, 23BEF), 124567 ðr; r; r; r; 0; 0Þ (equivalent to

12456, 12457, 12467, 12567), 12458 ðr; r; r;�r; 0; 0Þ, 1247C

ðr; r; r; r; 0; rÞ, 1248EF ðr; r; r;�r; 0;�rÞ (equivalent to 1248E,

1248F, 124EF, 128EF), 12569 ðr; r; r; r; r; 0Þ and 1258BF ðr; r; r;
�r;�r; 0Þ (equivalent to 1258B, 1258F, 125BF, 128BF).

These 14 one-dimensional boundary polytopes of N corre-

spond exactly to the 14 vertices of the hyperpolyhedra given

by Gruber (1997, Table 1) for which none of gf1;2;3g are zero.

The 14 that match are a confirmation of the completeness of

this analysis. Owing to the distortion introduced by projection,

the rejection of the cases for which any of gf1;2;3g are zero is

important in preserving the metric for incommensurate edges

near the origin.

If we exclude the highly populated face-centered cubic, the

Z scores for the relative populations of the remaining 13 one-

dimensional boundary polytopes range from more than �1.1

for 12569 to 1.44 for 123BEF.

A10. Relationship between boundary polytopes and lattice
type

‘Lattice characters’ provide a finer-grained division of

lattice type than the 14 Bravais lattice types (International

Tables for Crystallography, Vol. A, Burzlaff et al., 1992). In
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order to understand the relationship between the 216 G6

boundary polytopes and the 44 lattice characters in Interna-

tional Tables, we use combinations of the 15 five-dimensional

boundary polytopes and of the special-position subspaces of

those polytopes. There are multiple alternative representa-

tions of some of the lattice characters. We discuss some of

them below.

We refer to Roof’s redrawn Niggli figure identifiers

(Roof, 1967) as ‘Roof/Niggli symbols’. We may associate

the Roof/Niggli symbols, lattice characters and Bravais

lattice types with the indicated subspaces of G6 and

combinations of boundary polytopes and special condi-

tions as shown in Table 4. The triclinic lattice characters

31 and 44 are not included because no boundary poly-

topes are needed for the triclinic case as they fill the

Niggli-reduced cone.

The primitive Bravais lattice types have a simple

relationship to the boundary polytopes. The primitive

cubic, which has one degree of freedom as a G6 subspace,

is the intersection of five five-dimensional boundary

polytopes. The primitive tetragonal and primitive hexa-

gonal lattice types each have two degrees of freedom as

G6 subspaces and each is the intersection of four five-

dimensional boundary polytopes. The primitive ortho-

rhombic lattice type has three degrees of freedom as a G6

subspace and is the intersection of three five-dimensional

boundary polytopes. The primitive monoclinic lattice

types each have four degrees of freedom as G6 subspaces,

and each is the intersection of two five-dimensional

boundary polytopes.

The combination of eight boundary polytopes

12679ACD (equivalent to the threefold combinations

26D and 27A) is the face-centered cubic cF, lattice

character 1, Roof/Niggli symbol 44C, subspace

ðr; r; r; r; r; rÞ (Andrews & Bernstein, 1988). Alter-

natively, cF can be viewed as any of 1̂12̂27, 1̂12̂2A or 1̂12̂2D and

of several other intersections. As one would expect from

the large number of intersecting boundary polytopes, this

is a very complex region of G6 and will be the subject of a

later article.

The one-dimensional combinations of six boundary

polytopes 1234CD (equivalent to the fivefolds 1234C,

1234D, 123CD, 124CD), 12359A (equivalent to the five-

folds 12359, 1235A, 1239A, 1259A), 123BEF (equivalent

to the fivefolds 123BE, 123BF, 123EF, 12BEF, 23BEF),

124567 (equivalent to the fivefolds 12456, 12457, 12467,

12567), 1248EF (equivalent to the fivefolds 1248E, 1248F,

124EF, 128EF) and 1258BF (equivalent to the fivefolds

1258B, 1258F, 125BF, 128BF) form the subspaces

ðr; r; r; 0; 0; rÞ;

ðr; r; r; 0; r; 0Þ;

ðr; r; r; 0;�r;�rÞ;

ðr; r; r; r; 0; 0Þ;

ðr; r; r;�r; 0;�rÞ;

ðr; r; r;�r;�r; 0Þ;

ð28Þ

of which none are Niggli-reduced and which are therefore a

set of open-boundary polytopes.

Most of the 216 G6 boundary polytopes are non-Niggli-

reduced open-boundary polytopes of the Niggli region.

Therefore only two of the fivefold boundary polytopes, five of

the fourfold boundary polytopes, eight of the threefold
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Table 4
Roof/Niggli symbol, International Tables (IT) lattice character, Bravais lattice
type, G6 subspace (Andrews & Bernstein, 1988) and G6 boundary polytope.

Roof/
Niggli
symbol

IT
lattice
character

Bravais
lattice
type G6 subspace G6 boundary polytope

44A 3 cP ðr; r; r; 0; 0; 0Þ 12345 ¼ 123̂3 ¼124̂4 ¼125̂5

44C 1 cF ðr; r; r; r; r; rÞ 12679ACD

44B 5 cI ðr; r; r;�2r=3;�2r=3;�2r=3Þ 12F20F0 ¼ 12̂2F̂F

45A 11 tP ðr; r; s; 0; 0; 0Þ 1345 ¼ 13̂3 ¼ 14̂4 ¼ 15̂5
45B 21 tP ðr; s; s; 0; 0; 0Þ 2345 ¼ 23̂3 ¼ 24̂4 ¼ 25̂5

45D 6 tI ðr; r; r;�rþ s;�rþ s;�2sÞ 12FF0 ¼ 12F̂F
45D 7 tI ðr; r; r;�2s;�rþ s;�rþ sÞ 12F20 ¼ 12̂2F
45C 15 tI ðr; r; s;�r;�r; 0Þ 158BF
45E 18 tI ðr; s; s; r=2; r; rÞ 2ADA0 ¼ 2ÂAD

48A 12 hP ðr; r; s; 0; 0;�rÞ 134E
48B 22 hP ðr; s; s;�s; 0; 0Þ 2458

49C 2 hR ðr; r; r; s; s; sÞ 121020 ¼ 1̂12̂2
49D 4 hR ðr; r; r;�s;�s;�sÞ 121020 ¼ 1̂12̂2
49B 9 hR ðr; r; s; r; r; rÞ 1679ACD
49E 24 hR ðr; s; s;�sþr=3;�2r=3;�2r=3Þ 2F20F0 ¼ 2̂2F̂F

50C 32 oP ðr; s; t; 0; 0; 0Þ 345 ¼ 3̂3 ¼ 4̂4 ¼ 5̂5

50D 13 oC ðr; r; s; 0; 0;�tÞ 134
50E 23 oC ðr; s; s;�t; 0; 0Þ 245
50A 36 oC ðr; s; t; 0;�r; 0Þ 35B
50B 38 oC ðr; s; t; 0; 0;�rÞ 34E
50F 40 oC ðr; s; t;�s; 0; 0Þ 458

51A 16 oF ðr; r; s;�t;�t;�2rþ 2tÞ 1F10 ¼ 1̂1F
51B 26 oF ðr; s; t; r=2; r; rÞ ADA0 ¼ ÂAD

52A 8 oI ðr; r; r;�s;�t;�2rþ sþ tÞ 12F
52B 19 oI ðr; s; s; t; r; rÞ 29C = 2AD
52C 42 oI ðr; s; t;�s;�r; 0Þ 58BF

53A 33 mP ðr; s; t; 0;�u; 0Þ 35
53B 35 mP ðr; s; t;�u; 0; 0Þ 45
53C 34 mP ðr; s; t; 0; 0;�uÞ 34

55A 10 mC ðr; r; s; t; t; uÞ 110 ¼ 1̂1
55A 14 mC ðr; r; s; t; t; uÞ 110 ¼ 1̂1
57B 17 mC ðr; r; s;�t;�u;�2rþ t þ uÞ 1F
55B 20 mC ðr; s; s; t; u; uÞ 220 ¼ 2̂2
55B 25 mC ðr; s; s; t; u; uÞ 220 ¼ 2̂2
57C 27 mC ðr; s; t; u; r; rÞ 9C = AD
56A 28 mC ðr; s; t; u; r; 2uÞ AA0 ¼ ÂA
56C 29 mC ðr; s; t; u; 2u; rÞ DD0 ¼ D̂D
56B 30 mC ðr; s; t; s; u; 2uÞ 770 ¼ 7̂7
54C 37 mC ðr; s; t;�u;�r; 0Þ 5B
54A 39 mC ðr; s; t;�u; 0;�rÞ 4E
54B 41 mC ðr; s; t;�s;�u; 0Þ 58
57A 43 mC ðr; s; t;�sþ u;�rþ u;�2uÞ FF0 ¼ F̂F



boundary polytopes and 11 of the twofold boundary polytopes

correspond directly to lattice characters. None of the single

five-dimensional boundary polytopes correspond to lattice

characters.

We are working from the boundary polytopes, looking for

the resulting symmetries. Hosoya (1990) started, instead, from

the three highest-symmetry lattice types (the three cubics),

added the lower-symmetry primitive hexagonal lattice type,

and inferred boundary polytopes from the symmetries, having

to treat open-boundary polytopes as if they were Niggli

reduced. The resulting six boundary polytopes of the three

cubics and the primitive hexagonal restated in terms of G6 are

given in Table 5.

A11. Boundary polytope summary

The widespread use of Niggli reduction in crystallography

implies that it should be thoroughly understood. Robust

identification of Bravais lattices and lookup of unit-cell

parameters in databases would be improved if a successful

embedding of the Niggli space could be achieved. We have

investigated and enumerated the several kinds of boundary

polytopes on the Niggli cone and enumerated the transfor-

mations and projectors specific to each. While other, related,

work has often used three-dimensional sections, our work

natively addresses the boundary polytopes and transforma-

tions in the Euclidean space G6. The single point of view and

the simple linear algebra involved makes the presentation

more consistent.

Some unexpected complexities have been encountered,

such as the occurrence of one boundary polytope that is the

intersection of eight five-dimensional boundary polytopes, a

fruitful area for further investigation.
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Table 5
The Hosoya boundary polytopes of the three cubic lattice types and the
primitive hexagonal in terms of G6.

Hosoya1 2g1 ¼ g5 þ g6

Hosoya2 2g2 ¼ g4 þ g6

Hosoya3 2g3 ¼ g4 þ g5

Hosoya4 g4 ¼ g5, the special-position subspace of case 1
Hosoya5 g5 ¼ g6, the special-position subspace of case 2
Hosoya6 g4 ¼ g5=2, the special-position subspace of case D
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