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1. Summary
The functional identity of centromeres arises from a set of specific nucleoprotein

particle subunits of the centromeric chromatin fibre. These include CENP-A and

histone H3 nucleosomes and a novel nucleosome-like complex of CENPs -T, -W,

-S and -X. Fluorescence cross-correlation spectroscopy and Förster resonance

energy transfer (FRET) revealed that human CENP-S and -X exist principally in

complex in soluble form and retain proximity when assembled at centromeres.

Conditional labelling experiments show that they both assemble de novo during

S phase and G2, increasing approximately three- to fourfold in abundance at

centromeres. Fluorescence recovery after photobleaching (FRAP) measurements

documented steady-state exchange between soluble and assembled pools, with

CENP-X exchanging approximately 10 times faster than CENP-S (t1/2 � 10 min

versus 120 min). CENP-S binding to sites of DNA damage was quite distinct,

with a FRAP half-time of approximately 160 s. Fluorescent two-hybrid analy-

sis identified CENP-T as a uniquely strong CENP-S binding protein and this

association was confirmed by FRET, revealing a centromere-bound complex

containing CENP-S, CENP-X and CENP-T in proximity to histone H3 but not

CENP-A. We propose that deposition of the CENP-T/W/S/X particle reveals a

kinetochore-specific chromatin assembly pathway that functions to switch centro-

meric chromatin to a mitosis-competent state after DNA replication. Centromeres

shuttle between CENP-A-rich, replication-competent and H3-CENP-T/W/S/

X-rich mitosis-competent compositions in the cell cycle.
2. Introduction
The centromere/kinetochore complex guides chromosome movements and

cell-cycle progression through spindle microtubule interactions in dividing

cells [1,2]. These functions are determined by a differentiated chromatin

domain that contains CENP-A, a conserved centromere-specific variant of his-

tone H3 [3–5]. CENP-A itself plays a role in propagating centromere identity as

well as nucleating kinetochore formation [6–8]. Both of these functions are sup-

ported by a group of tightly associated chromatin proteins constitutively
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present at centromeres, collectively known as the constitutive

centromere-associated network (CCAN) [9–12]. CCAN

subunits contribute to the assembly of CENP-A chromatin

and establishment of the kinetochore [12–17].

A distinctive chromatin assembly process maintains cen-

tromeric chromatin. In vertebrates and fungi, a conserved

CENP-A chaperone, HJURP or Scm3, functions in CENP-A

deposition [18–21]. CENP-A assembly in human cells is

uncoupled from DNA replication and takes place principally

in G1, initiated by post-mitotic association of the Mis18 com-

plex and HJURP with centromeres [7,18,19,22–24]. G1 phase

events include CENP-A deposition [25], exchange of histone

H3.3 nucleosomes incorporated in the prior cell cycle [26]

and the action of the RSF complex, which converts loosely

bound CENP-A into a form with nucleosome-like solubi-

lity properties in mid-G1 [27]. At the end of G1, CENP-A

is fully restored and an MgcRacGAP-dependent reaction

stabilizes the newly incorporated CENP-A nucleosomes

prior to S phase [28]. During the ensuing S phase, CENP-A

is distributed to daughter chromatids, where it exhibits

stable association over multiple generations [24,25,29].

During S phase, histone H3-containing nucleosomes are

deposited at the centromere, presumably occupying nucleoso-

mal sites vacated by CENP-A [26]. In addition, a distinct

heterotetrameric nucleoprotein particle, formed by CENPs -T,

-W, -S and -X, is found at centromeres where it functions as a

chromatin-based receptor for the Ndc80 complex, the principal

microtubule-binding protein of the kinetochore [30–33].

CENP-T and -W assemble in late S and G2 phases of the cell

cycle, a process that is required for proper kinetochore assembly

in each cell cycle [14]. The CENP-S/-X complex is itself not

essential for mitosis in DT40 cells but plays a role in stabilizing

kinetochore structure [34]. In addition to their centromeric func-

tion, CENP-S and -X function in association with FANCM in the

DNA damage response [35–37]. To understand their role in

kinetochore assembly, we used biophysical and cell biological

methods to investigate the modes of binding of CENP-S and

-X to both types of sites. We show that CENP-S and -X exist in

complexed form in the nucleoplasm and at kinetochores and

that their binding to the centromere is mechanistically distinct

from binding to DNA damage sites. The CENP-S/-X complex

assembles in S and G2 phases by an open exchange mechanism

into a structure that includes CENP-T in close proximity to

histone H3. These results confirm the existence of the novel

CENP-T/W/S/X particle in vivo and show that it assembles at

a discrete time in the cell cycle, presumably in the context of

post-replicative chromatin. We suggest that, in vertebrates, cen-

tromeric chromatin alternates between two functionally distinct

states during the cell cycle, using different configurations of

chromatin subunits at a single locus to promote centromere

(in G1) and kinetochore function (in G2), respectively.
3. Results
3.1. CENPs -S and -X are complexed together in soluble

and assembled states in living cells
CENP-S and -X have been reported to co-purify and to form

tetrameric complexes with themselves as well as with CENPs

-T and -W [30,34], suggesting stable complex formation.

Here, the presence of such a complex in vivo was probed by

fluorescence cross-correlation spectroscopy (FCCS), using
EGFP-CENP-X and mCherry-CENP-S co-expressed in U2OS

cells (figure 1a,b; electronic supplementary material, figure

S1). Tagged proteins were introduced by transient transfec-

tion and exhibited centromeric targeting independently of

the site of FP fusion and were used to model CENP-S and

-X behaviour in cells (see electronic supplementary material,

figure S1). Experiments with control fluorochromes in

monomeric (EGFP þmRFP) or fused (mRFP–EGFP) forms

established the dynamic range of this system (figure 1a).

Co-diffusion is detected as described by Bacia & Schwille

[38]. EGFP þmRFP measurements resulted in a cross-

correlation coefficient (cc) of 1.004, indicating 0% co-diffusing

molecules, whereas mRFP-EGFP resulted in cc ¼ 1.027, indi-

cating 45% co-diffusion. This low value is most likely due to

partial maturation of mRFP, which results in a heterogeneous

population containing mono- and difluorescent molecules

[39]. For the CENPs, measurements of EGFP-CENP-X and

mCherry-CENP-S in the nucleoplasm show individual auto-

correlation values of 1.126 (EGFP) and 1.104 (mCherry).

Cross-correlation measurements resulted in a cc ¼ 1.052, indi-

cating that 50% of the molecules are co-migrating (figure 1a).

In total, 19 FCCS measurements were carried out in the

nucleoplasm, all indicating that at least 30–50% of EGFP-

CENP-X and mCherry-CENP-S are co-diffusing and thus

co-resident in a single complex. Similar values were obtai-

ned in 12 cytoplasmic FCCS measurements. By contrast,

the FCCS analysis of CENP-S association with CENP-T

revealed no detectable soluble complex containing these

proteins (electronic supplementary material, figure S2). In

parallel experiments, biochemical fractionation of HeLa cells

revealed that small fractions of both CENP-S and CENP-X

are detectable in the cytosol (figure 1c). CENP-X was quanti-

tatively extracted from nuclei with 0.35 M NaCl, while

histone H4 was quantitatively retained in the chromatin-

bound fraction as expected. CENP-S showed intermediate

behaviour with more than 50% extracted by 0.35 M NaCl.

Taken together, these results show that CENP-S and CENP-

X form a soluble co-complex detectable in both nucleus and

cytoplasm. The value of 30–50% CENP-S/-X co-diffusion is

a minimal estimate owing to RFP maturation behaviour.

We conclude that CENP-S and -X exist in a preformed com-

plex similar to other histone fold dimers and that the

soluble complex is independent of CENP-T.

In situ Förster resonance energy transfer (FRET) analysis

was carried out to determine whether the CENP-S/-X com-

plex assembles intact at centromere/kinetochore loci (figure

1d ). Using the acceptor photobleaching method, we detected

FRET between CENP-S-mCherry and EGFP-CENP-X at cen-

tromeres. We measured mean EFRET values of 4.5 (34

kinetochores in 12 cells) with the control EVAR ¼ 20.9 (33

kinetochores in 12 cells), resulting in a difference of 5.4

with p , 0.001 (Mann–Whitney rank-sum test). Figure 1d
shows bar diagrams of FRET measurements between fluoro-

phore-tagged CENP-S and -X. The measured FRET values are

listed in table 1. In negative control experiments, unfused

EGFP and mCherry, co-transfected in living human cells at

similar expression levels, showed no FRET, allowing us to

exclude that FRET detected for the protein fusions might be

caused by an incidental association of the fluorescent proteins

[40]. As a positive control, an EGFP-mCherry hybrid protein

was analysed in which both fluorescent proteins are closely

connected by a short linker. The mean fluorescence lifetime

of EGFP within eight nuclei was significantly decreased,
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functions of EGFP and mCherry/mRFP as described in the text, while the red line shows the fitted curve derived from the cross-correlation values. The number of co-
localized molecules for EGFP-CENP-X þ mCherry-CENP-S (50%) and the positive control (45%) is similar, indicating CENP-S/-X co-localization. (b) Immunofluor-
escence confirms that CENP-FP constructs target normally to centromeres. U2OS cells transfected with CENP-S-mCherry were immunostained with
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indicating that FRET occurred between the two fluorophores

with a FRET efficiency of 15%. This value is in good quantitat-

ive agreement with the results of Tramier et al. [41]. We

observed FRET between CENP-S and CENP-X irrespective of

termini at which these proteins were tagged, confirming

in vitro data [30,34], being consistent with a stable heterodimeric

or higher order complex at centromeres.
3.2. Relative abundance of CENP-S/-X through the
cell cycle

The presence of a CENP-S/-X complex in the cytoplasm and

nucleoplasm suggests that both proteins assemble at centro-

meres as a unit consisting of at least a histone fold dimer.

In order to examine the assembly properties of this complex

during the cell cycle, we first examined the relative abun-

dance of transcripts encoding the two subunits as well as

other CCAN components using qRT-PCR. HeLa cell
populations were synchronized with the double-thymidine

protocol and sampled following release into the cell cycle

(figure 2a). Western blot analysis of fractions with cyclin B

and histone H3-phospho-Ser10 antibodies confirmed cell-

cycle progression through mitosis and into G1 (figure 2b).

At the RNA level, cyclin A, cyclin B and histone H2A exhib-

ited profiles of transcript abundance across the cell cycle

consistent with previous studies [42–44] (figure 2c). CENP-

A, CENP-B and CENP-C all showed similar trends in their

relative transcript abundance with maximum levels reached

8 h after release, when cells are predominantly in G2 phase.

By contrast, CENP-S did not exhibit statistically significant

modulation in transcript abundance through the cell cycle

(figure 2c), similar to the other histone fold-containing

CCAN members, CENP-T and CENP-W [14]. CENP-X exhib-

ited a trend towards increased expression early in S phase,

though this was not statistically significant. While cyclins A

and B as well as CENP-C exhibited robust statistically signi-

ficant modulation across the cell cycle, other transcripts



Table 1. Summary of FRET measurements in this study. Summary of FRET measurements between CENP-S and CENP-A, CENP-R, CENP-T, CENP-X and
nucleosome H3.1, respectively. CENP-S-mCherry and EGFP-CENP-T were measured twice. Nkin is the number of analysed kinetochores in a bleached area. EFRET is
the mean value of difference in donor-fluorescence after acceptor-bleach in a bleached region of the nucleus. EVAR is the mean value of difference in donor-
fluorescence after acceptor-bleach in an unbleached region of the nucleus. DE ¼ EFRET – EVAR. p-value obtained from Mann – Whitney rank-sum test. þþ,
positive FRET; þ, non-significant FRET; 2, no FRET.

proteins
measured
variant

analysed
termini Nkin EFRET EVAR DE p-value FRET?

CENP-S CENP-R EGFP-S mCh-R N – N 35 20.857 20.703 20.154 0.962 2

S-mCh R-EGFP C – C 37 1.027 20.700 1.727 0.093 2

S-mCh EGFP-R C – N 38 0.947 20.105 1.053 0.471 2

mCh-S R-EGFP N – C 31 0.065 21.125 1.190 0.394 2

CENP-S CENP-T EGFP-S mCh-T N – N 40 1.900 20.190 2.090 0.067 2

S-EGFP T-mCh C – C 39 4.154 20.341 4.495 ,0.001 þþ
S-mCh EGFP-T C – N 47 2.851 0.118 2.733 0.027 þ
S-mCh EGFP-T C – N 29 0.345 21.412 1.757 0.142 2

EGFP-S T-mCh N – C 32 3.000 21.250 4.495 ,0.001 þþ
CENP-S CENP-X mCh-S EGFP-X N – N 33 4.788 0.250 4.538 ,0.001 þþ

S-EGFP X-mCh C – C 36 4.778 20.778 5.556 ,0.001 þþ
S-mCh EGFP-X C – N 34 4.471 20.909 5.380 ,0.001 þþ
EGFP-S X-mCh N – C 38 4.421 22.000 6.421 ,0.001 þþ

CENP-S H3.1 EGFP-S H3.1-mCh N – C 50 2.880 21.360 4.240 ,0.001 þþ
S-EGFP H3.1-mCh C – C 47 2.085 21.565 3.650 ,0.001 þþ

CENP-S CENP-A S-EGFP A-mCh C – C 37 1.351 21.368 2.720 0.008 þ
EGFP-S A-mCh N – C 38 0.737 20.100 0.837 0.268 2
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analysed, including CENP-A, did not, suggesting substantial

population variation in expression of these transcripts.

The abundance of CENP-S and -X proteins in the HeLa cell

cycle was then examined by quantitative western blotting

(figure 2d). CENP-S reached maximum protein levels 8 h fol-

lowing release, with an approximate 1.5-fold increase across

the cell cycle. CENP-X protein increased in a similar fashion

but accumulated earlier in S phase with maximum levels

reached 4 h after release. In general, there appears to be a

trend of downregulation of CCAN protein abundance at mito-

sis, 12 h following the release from the double-thymidine block,

perhaps coupled to proteosome activity, as cells exit mitosis.
3.3. Assembly of CENP-S and -X at centromeres during
the cell cycle

A combined approach was used to investigate the dynamics

of assembly of the CENP-S/-X complex at centromeres

during the cell cycle. We first used a conditional chemical lab-

elling method (SNAP/CLIP) to examine the abundance and

dynamics of tagged derivatives of CENP-S/-X at centromeres

in HeLa cells [14,24,45]. HeLa cell lines stably expressing

CLIP-tagged derivatives of each protein were established

which showed appropriate centromeric targeting of the

tagged proteins (figure 3a; electronic supplementary material,

figure S3) and normal growth kinetics. The conditional CLIP-

labelling method allowed us to assay at centromeres: (i) relative

abundance in the cell cycle (steady-state labelling) and (ii) the

timing of protein assembly (quench-chase-pulse labelling)

using microscopic analysis.
The relative steady-state abundance of each subunit at

centromeres across the cell cycle was first estimated by

direct CLIP-505 labelling in unsynchronized cell populations.

Immunofluorescence was used to label centromeres (CENP-

A) while cell-cycle phases were established using PCNA

and Zwint (figure 3b). The intensity of CENP-S-CLIP or

CENP-X-CLIP was measured within centromeres, defined

by CENP-A staining, and cells were also classified as G1

(no PCNA or Zwint), early or late S phase (PCNA pattern)

or G2 or M phases (Zwint). Intensity of CLIP-505 in centro-

meres was determined from a minimum of 300 centromeres

in each of three independently replicated experiments. Aver-

age signal intensity values from each stage of the cell cycle

were normalized to G1 values to determine the relative abun-

dance of both proteins during the cell cycle. The lowest signal

intensities for both CENP-S and CENP-X were found during

G1 and early S phase. Both CENP-S and CENP-X showed a

significant increase in intensity of three- to fourfold in late S

and G2 cells as compared with G1 (figure 3c).

A quench-pulse-chase experiment was performed to

examine the relative incorporation of newly synthesized

CENP-S and CENP-X at centromeres during the cell cycle

(figure 3d ). CLIP-tagged proteins were first blocked in asyn-

chronous populations that were then incubated for a further

8 h to allow incorporation of newly synthesized protein.

Cells were then labelled with CLIP-505 and examined by

immunofluorescence with CENP-A and cell-cycle markers, as

described above. Cells were scored by inspection as either

positive or negative for CLIP-505 signal at centromeres. For

both subunits, robust CLIP signals were detected in late S

and G2 cells, with approximately 50% of these cells being
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Figure 2. Cell-cycle regulation of CENP-S and CENP-X gene products in HeLa cells. HeLa cells were fractionated across the cell cycle using a double-thymidine protocol.
Samples were taken at intervals for quality control and analysis of CENP regulation. (a) Flow cytometry confirms synchronous progression of cells through the cell cycle
following release from thymidine block. (b) Western blot analysis with cyclin B (i) and Ser10-phospho histone H3 (ii) demonstrates normal progression through mitosis
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used to examine the relative abundance of control genes cyclin A, cyclin B and histone H2A (i), documenting normal cell-cycle regulation of these transcripts. CENP-S and
CENP-X transcripts (ii) showed no significant modulation during the cell cycle. (d ) Western blot analysis of cell cycle fractions (i) shows that CENP-S and CENP-X are
uncoordinated in abundance across the cell cycle, with CENP-S maximal in G2 in parallel with CENP-A (ii). Statistical significance of signal at each time point was
measured by one way analysis of variance (ANOVA) followed by a Dunnett’s multiple comparison versus the 4 h time point; *p � 0.01, ***p � 0.001.
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CLIP positive. Less than 5% of G1 cells analysed were posi-

tive for CENP-S/-X assembly, while none of the early

S-phase cells analysed were positive for either protein

(figure 3d ). Although the labelling window is broad, the

lack of labelling in cells in early S phase suggests that these

cells do not assemble detectable amounts of CENP-S and

-X by this assay. These results are consistent with assembly

principally during mid–late S phase which is complete

by G2, compatible with the steady-state measurements

reported above.
3.4. Long-term fluorescence recovery after
photobleaching indicates low mobility of CENP-S-
EGFP at centromeres in G1, S and G2 phase

The CENP-T/-W complex exhibits dynamic interaction

with centromeres in vivo, in contrast to that observed for

CENP-A [14,29]. To determine what type of binding mediates

CENP-S and -X association with centromeres, fluorescence

recovery after photobleaching (FRAP) was applied to FP-tagged
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signal intensity relative to G1; *p � 0.01, ***p � 0.001. (d ) CENP-CLIP fusion proteins were blocked and allowed to recover for 8 h prior to labelling with CLIP-505. They were
simultaneously labelled for cell-cycle analysis and the percentage of cells in the population positive for CLIP-505 staining is shown versus cell-cycle stage.
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centromeric CENP-S and -X during defined cell-cycle stages.

Subunit exchange was examined as well as at sites of DNA

damage. Cells expressing FP constructs at levels suitable for

measurement were chosen for analysis to minimize pertur-

bation to the protein pool. Short-term (6 min time course)

FRAP was analysed in G1-, early S-, mid-S-, late S- and G2-

phase cells identified by PCNA localization, revealing an

absence of recovery of CENP-S in this time frame irrespective

of which terminus was tagged (EGFP-CENP-S shown in

figure 4i; electronic supplementary material, figure S4A). In

order to detect slow CENP-S exchange at kinetochores,

long-term FRAP (4 h) was carried out in cell-cycle phases

defined at the prebleach time point using C-terminally

tagged CENP-S-EGFP to ensure all EGFP signal derived

from fully translated protein (figure 4a–e). At least four

cells in each cell-cycle phase were analysed at 30 min time

intervals for 4 h to determine the relative intensity of fluor-

escence following a bleach event (at t¼ 20 s). In each cell, the

fluorescence intensity of five kinetochores located in bleached

area was compared with five kinetochores in an unbleached

area (electronic supplementary material, figure S5). In all cells

examined, CENP-S-EGFP exhibited fluorescence recovery, to

an extent of 90% or more. We assume that the CENP-S-EGFP

fraction exchanges completely without an immobile protein frac-

tion. In G1, the half recovery time, t1/2, is 90+20 min, while in

all other cell-cycle phases t1/2 is slower at 120+20 min (figure

4f). The reproducibility of measurements indicates that consist-

ent conditions are established in this transfection model but it

is noted that the quantitative values may be affected by protein

overexpression. Notably, recovery curves approximated an

asymptotic approach to 100% in all cell-cycle phases except

late S (figure 4d), where recovery showed no sign of reaching
saturation. This is consistent with de novo assembly occurring

in this phase of the cell cycle, as indicated by CLIP-labelling

experiments described above.

In order to compare CENP-X dynamics with that of CENP-

S, EGFP-CENP-X was analysed by FRAP in S phase (electronic

supplementary material, figure S6). Surprisingly, we found

a much higher mobility of EGFP-CENP-X at centromeres com-

pared with EGFP-tagged CENP-S. The estimated half-time

of fluorescence recovery of EGFP-CENP-X in early S phase

(t1/2 � 3 min) is shorter than in mid- and late S phase (t1/2 �
9 min). Thus, at centromeres CENP-X binds to CENP-S by

moderately fast exchange indicating that CENP-S is more

stably bound at the kinetochore than CENP-X.
3.5. CENP-S interaction with sites of DNA damage
occurs through a distinct binding mode

CENP-S and -X also play a role in DNA damage repair in associ-

ation with the FANCM complex [35,36]. To determine whether

binding to these sites is similar to the binding reactions at

centromeres, CENP-S behaviour after DNA damage was ana-

lysed in live cell experiments. A HeLa cell line expressing

mRFP-PCNA was transfected with EGFP-CENP-S. Two days

later, UV349nm-mediated DNA damage was induced in a

0.2 mm2 area within the nucleus followed by recording of EGFP

fluorescence. PCNA was rapidly recruited while EGFP-CENP-S

was more slowly (t1/2� 20 min) recruited to the DNA damage

site, reaching a plateau after approximately 40 min (figure 4g).

CENP-S dwelled at DNA damage foci for a few hours and was

no longer detectable after approximately 4 h. These results are

similar to data obtained for endogenous CENP-S using
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immunofluorescence, indicating that after UV-mediated DNA

damage, EGFP-CENP-S behaves as endogenous CENP-S [36].

EGFP-CENP-S FRAP experiments were then carried out to

examine dynamics of protein binding at DNA damage sites.

For EGFP-CENP-S localized at DNA damage foci, we observed

a half-time of fluorescence recovery of t1/2¼ 160+20 s

irrespective of the cell-cycle phase and time after UV-damage

(figure 4h). This value is much faster than the half-time of

EGFP-CENP-S recruitment to the DNA damage site (t1/2 �
20 min), indicating that the accrual of CENP-S at DNA

damage sites is not limited by rates of binding. This is also

in stark contrast to the EGFP-CENP-S exchange at kinetochores

(t1/2� 90–120 min). CENP-S total fluorescence recovery at

DNA damage sites varied from 35 to 60%, indicating that

about half of the EGFP-CENP-S bound at DNA damage sites

is immobile. At these sites, by live cell imaging, we did not

detect CENP-T. Taken together, these experiments clearly

show that the mechanisms of CENP-S binding to centromeres

and DNA damage sites are distinct, suggesting that the

architecture of the binding site for the CENP-S/-X complex

determines its mode of binding.
3.6. Centromeric binding site of the CENP-S/X complex
Examination of the assembly and binding of the CENP-S/-X

complex reveals that its centromere association is specifically

regulated during the cell cycle and that its mode of bind-

ing to centromeres is distinct from that observed at sites of

DNA damage. To ask which centromere components could

be associated with this binding, we applied two-hybrid

assays to characterize the interactions of CENP-S with CENPs

-A, -M, -R and -T. Using yeast two-hybrid assays, we could

not detect any interaction of CENP-S with other CENPs. How-

ever, using a mammalian fluorescent two-hybrid assay (F2H)

based on a lac repressor array [46], specific interactions were

observed (figure 5a; electronic supplementary material, table

S3). In this assay, a GFP-CENP fusion protein bait is tethered

to an integrated lac-operator array and its ability to recruit

other mRFP-CENP fusion proteins is analysed, though it is

not clear that recruitment is through direct interactions.

CENP-S showed strong and slightly less strong interactions

with CENP-T and CENP-R, respectively, while CENPs -A

and -M indicated weaker or no co-localization.
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Figure 5. Centromere protein interactions analysed by F2H and FRET assays. (a) EGFP-mCherry fluorescent hybrid analysis of CENP-S interactions. EGFP-tagged
centromere proteins were recruited to the lac-operator repeat array as bait by the GFP-binding protein fused to the Lac repressor (LacI-GBP) forming a green
spot in the nucleus, stained by DAPI. Co-expressed mCherry-tagged centromere proteins ( prey) may either interact with the GFP-tagged protein at the lac-operator
array (visible as red spot and yellow in the overlay) or may not interact resulting in a disperse distribution. A strong interaction was observed between EGFP-CENP-S
and mCherry-CENP-T (i). While mCherry-CENP-R interacts with EGFP-CENP-S weakly (ii), there is no interaction between mCherry-CENP-R and EGFP-CENP-T (iii). For
each mCherry fusion, EGFP was used to control for unspecific interactions. The bar represents 5 mm. (b) FRET reveals CENP-T/W/S/X particle assembly proximal to
histone H3. Bar diagram of in situ acceptor photobleaching-based FRET measurements between fluorophore-tagged CENP-S and CENP-T. FRET efficiency values within
the bleached region were classified into 4% deviating categories (x-axis) resulting in EFRET (black bars). As control, FRET efficiency values in the same nucleus at
centromeres, where mCherry was not bleached, were also categorized resulting in EVAR (grey bars). On y-axis, the number of counts for each category is displayed.
Mann – Whitney rank-sum test was used to determine p-values as indicator for differences between the input groups (i.e. all EFRET and EVAR values). Examples are
shown for CENP-S:CENP-T interaction analysis. No interaction between CENP-S and an N-terminally labelled CENP-T probe was observed (FP-CENP-S (i) and CENP-S-
FP (iii)). Positive FRET was observed between either CENP-S probe and a CENP-T-FP probe ((ii) and (iv)). (c) Diagrammatic representation of FRET analysis. Red arrows
indicate positive FRET interaction signal, while black arrows signify a lack of signal detected. The CENP-T/W/S/X particle shows intraparticle FRET throughout the
network, as expected for proteins of this size. CENP-S interacts with C-terminally labelled histone H3, but not with CENP-A.
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To examine the interactions of the CENP-S/-X complex at

centromeres in vivo, acceptor-bleaching (AB)FRET methods

were applied with other proteins known to be resident in

centromeric chromatin. EGFP-fluorescence at centromeres

was measured before and after bleaching an mCherry test

protein in a 4–10 mm2 region of the nucleus. At least 30 centro-

meres were analysed for each complete FRET measurement.

Although CENP-S and CENP-R showed weak F2H interaction,

we could not detect FRET between the tagged variants at the

human kinetochore. Positive FRET was observed between

CENP-S labelled at either terminus and the C-terminal

domain of CENP-T (figure 5b). By contrast, the CENP-T N-ter-

minus showed no or non-significant FRET with both CENP-S

termini (see table 1). These FRET data support the F2H results

discussed above and confirm that the CENP-S/-X interaction

with CENP-T shown by biochemical and crystallographic

methods [30,34] can be detected in situ at centromeres.

CENP-T/-W has been reported to interact specifically with

histone H3 nucleosomes within centromeric chromatin rather

than with CENP-A [9]. To determine which nucleosomal com-

partment the CENP-S/-X complex is most closely associated

with in vivo, the proximity of CENP-S to histone H3 and to

CENP-A was analysed by FRET. These experiments revealed

close proximity of CENP-S to the C-terminus of histone H3.1,

but not to CENP-A (table 1; diagrammed in figure 5c). Thus,

these results are consistent with structural studies and confirm

a series of immunoprecipitation experiments that show inter-

actions among the CENP-T/W/S/X network, documenting

the preferential interaction of the novel nucleoprotein particle

with histone H3 nucleosomes in vivo.
4. Discussion
The CENP-S/-X complex is part of a unique histone fold par-

ticle that participates in kinetochore assembly and in DNA

repair processes [15,30,34–36,47,48]. Here, we studied CENP-

S/-X assembly in living human cells, revealing a window in S

phase and G2 in which de novo assembly of the complex from

a soluble precursor occurs through a dynamic exchange mech-

anism. CENP-S is not found in a soluble complex with its

binding partner CENP-T but it interacts strongly and specifi-

cally with immobilized CENP-T in an in vivo binding assay.

The in vivo FRET analysis reported here reveals co-assembly

of CENP-S and -X with CENP-T at centromeres in proximity

to histone H3, but not to CENP-A, consistent with the structure

and biochemistry of this complex reported by others [30,34].

CENP-T and -W assemble in the same time frame during the

cell cycle [14]. These assembly events point towards a distinct

kinetochore-associated chromatin assembly pathway that oper-

ates after DNA replication at centromeres, perhaps coordinated

with histone H3 nucleosome assembly events [26].

4.1. Centromeric chromatin
Our FRET proximity analysis of CENP-T/W/S/X proteins and

the H3 C-terminal domain constrains the relative positioning of

these two complexes: the CENP-T/W/S/X complex might lie

close to the DNA exit of the H3 nucleosome (see figure 6a) or

partly in between two H3 nucleosomes (not shown). We con-

sider the path of the DNA in the centromeric complex still

unresolved: either all three nucleosomal particles (the two

either CENP-A or H3-containing nucleosomes and the
CENP-T/W/S/X tetramer) lie in cis along the chromosomal

DNA strand, or alternatively, proximity is established by the

folding of the chromatin fibre that brings regions distant with

respect to DNA into contact in trans.

Assembly of CENP-S and -X and its partner subunits

CENP-T and -W occurs through a dynamic exchange mechan-

ism. The distinct kinetics of CENP-S/-X interaction with

centromeres versus sites of DNA damage is consistent with

the different structures proposed for CENP-S/-X hetero-

tetramers versus centromeric CENP-T/W/S/X particles [30],

and separation of centromeric and DNA damage functions

has been shown for Schizosaccharomyces pombe CENP-S and

-X homologues [48]. At centromeres, CENP-T and -W exhibit

FRAP recovery half-times of approximately 60 min [14]

while CENP-S exchanges with approximately 120 min half-

time. CENP-X exhibits very dynamic association with the

centromeric complex, with a turnover half-time of approxi-

mately 10 min during S phase. Thus, the complex has a

distinct kinetic signature compared with normal or CENP-A

nucleosome components, in which core tetramer half-lives are

measured in the framework of hours [50] or generations in

the case of CENP-A [24,25]. The results indicate that although

exchange is continuous in the cell cycle, de novo assembly is

only observed in mid–late S and G2 phase cells. The observed

assembly in S and G2 phases probably represents a combination

of increase in the number of binding sites as well as the affinity of

the complex. Alternatively, or as well, there could be a difference

in the activity of G1 versus S/G2 pools of soluble protein and a

distinct loading reaction with similar kinetics is responsible for

de novo assembly. Attempts to directly measure affinity with

photoswitching proteins were unsuccessful. Taken together,

these results suggest that the uniquely dynamic CENP-T/W/

S/X chromatin subunit may be particularly adapted to the

open, self-organizing environment of the mitotic spindle.

4.2. Just-in-time mode of assembly
Examination of transcript profiles for CCAN components has,

in general, revealed little evidence for strong transcript-level

control in this family of proteins (N Quinn and KF Sullivan

2011, unpublished data). Rather, we propose, assembly is

initiated by key events, such as DNA replication and mitosis,

and is probably driven by post-translational controls [51],

nucleocytoplasmic transport [52] as well as control of protein

abundance in S phase and G2. The open exchange observed

for most CCAN components [14,29,53,54] indicates that the

composition of the kinetochore is a steady-state configuration

rather than a fixed architecture, such as a centriole or nuclear

pore. Tethering experiments in which CCAN components

CENP-T and -C [12,15], HJURP [7] or CENP-A itself [6]

are used as initiators invariably result in the formation of

microtubule-binding kinetochore-like structures in mitosis,

demonstrating that the endpoint can be reached from a variety

of starting configurations. The open, adaptive potential of sto-

chastic, just-in-time type ‘triggered’ assembly mechanisms has

been suggested to stabilize cell-cycle-dependent pathways by

providing ways for translational and post-translational mech-

anisms to evolve while maintaining the functional outcome

of timely assembly [55]. A just-in-time mode of kinetochore

assembly provides a dynamic, open chromosomal interface

for the highly stochastic mechanisms of microtubule binding,

dynamic motility and error correction that are necessary for a

robust mitosis [1].
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Figure 6. Model of CENP-T/W/S/X in chromatin. (a) Potential position of the CENP-TWSX tetramer relative to a classical nucleosome. Top: top view of the nucleo-
somal structure including DNA (1kx5, [49]) with both H3 molecules coloured in red and blue, respectively; the H3 C-termini are indicated by coloured spheres.
Bottom: structure of the CENP-TWSX tetramer (3vh5; [30]) positioned in the plane relative to the nucleosomal structure. The tetramer is assumed to be partly
surrounded by DNA, and accordingly, space is left between the two structures (2 nm). Colour coding: CENP-T, red with C-terminus indicated by a large
sphere; CENP-W, green with C-terminus indicated by a large sphere; CENP-S, blue with both termini marked with a large sphere; CENP-X, grey with both termini
marked with a large sphere. Only well-determined termini positions are shown. The largest distance of 8.4 nm is found between the H3 C-terminus and the CENP-X
N-terminus, thus all termini shown are sufficiently proximal for FRET. Note the close proximities of the CENP-S and -X termini, explaining well the measured FRET.
Shown is one potential positioning of the two complexes, also alternative arrangements (for example, the CENP-TWSX tetramer between two classical nucleosomes)
would explain well the measured FRET results. (b) Proposed switching mechanism for converting centromeric chromatin between functional states. Completion of
CENP-A assembly results in replication-competent chromatin, top, which is segregated to daughter chromatids during S phase. Assembly of CENP-T/W/S/X, probably
in conjunction with histone H3, is activated by DNA replication, resulting in kinetochore-competent chromatin, bottom, with a distinctive subunit composition for
function in mitosis.
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4.3. Switching model
These results suggest that the centromere naturally cycles

between two functional states, typified by distinct nucleo-

some/nucleoprotein composition and ‘primary structural’

organization (figure 6b). A multistep pathway for CENP-A

deposition has been described in which CCAN components

interact both with CENP-A and with CENP-A-HJURP

complexes to initiate CENP-A assembly in telophase [7,18,

19,56,57]. CENP-A assembly occurs in G1 and involves

RSF-dependent remodelling and a G protein-dependent

stabilization reaction [27,28]. This extended CENP-A chroma-

tin assembly process leads to a fully assembled CENP-A

chromatin structure at centromeres at the end of G1. A critical

role for CENP-T in kinetochore formation through its inter-

action with Ndc80 has been documented by tethering and

structural studies. The assembly of the CENP-T/W/S/X par-

ticle documented here and by Prendergast et al. [14] suggests

the existence of a functional chromatin assembly pathway

that operates in complement to the CENP-A pathway to pre-

pare the centromere for kinetochore formation and function.

In this model, the product of the CENP-A cycle is a ‘replica-

tion-competent’ centromeric chromatin. During the next

major cell-cycle event, DNA replication, these CENP-A

nucleosomes will be passed to daughter chromatids with

100% efficiency [24,25]. S phase initiates a chromatin

pathway that specifically enriches CENP-T/W/S/X at cen-

tromeres, probably in association with histone H3.1 and 3.3,

both shown to assemble at centromeres at this time in Droso-
phila [26]. The resulting ‘kinetochore-competent’ chromatin is

specifically adapted to mitosis through this reprogramming

of its component particles. In addition to the nucleosome-
like CENP-T/W/S/X particle, much of the CCAN assembles

during this time period, including the CENP-P/O/R/Q/U

subcomplex and CENP-N [53,54]. Unlike CENP-A, whose

presence is strictly conserved at centromeres [25], the

CENP-T/W/S/X particle and most CCAN-binding com-

ponents are in dynamic equilibrium with the centromere,

some in direct coupling to kinetochore functional state [58].

We propose that segregation of CENP-A and kinetochore

chromatin-associated assembly events promotes integration

of the stability required of an epigenetic transmitter with

the dynamic, stochastic nature of the kinetochore in mitosis.
5. Material and methods
5.1. Cell culture
HeLa and U2OS cells were cultured in DMEM with 10% FCS, as

previously described [51,59]. Cell synchrony using the double-

thymidine protocol was as described by Prendergast et al. [14].

5.2. Plasmids
Plasmids pIC235, pDF180, pDF197, encoding LAP-CENP-R, -S

and -T fusions proteins, respectively, were a kind gift of Dan

Foltz and Iain Cheeseman. CENP-X was obtained directly

by PCR from cDNA prepared from HeLa total RNA. Full-

length coding sequences were amplified by PCR (Expand high

fidelityPLUS PCR System, Roche, Penzberg, Germany) using pri-

mers incorporating flanking attB recombination sites and

transferred into vector pDONR221 by BP recombination reac-

tion (Invitrogen, Carlsbad, CA, USA; electronic supplementary
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material, table S1). Genes were then transferred by LR recom-

bination reactions into modified pFP-C- and pFP-N (BD

Biosciences, Clontech, Palo Alto, CA, USA)-based Destination

vectors. CLIP-tagged proteins were generated by recombination

into a Gateway modified pCLIPm vector (New England Biolabs,

Isis Ltd, Bray, Co. Wicklow, Ireland) as described by Prendergast

et al. [14]. All constructs were verified by DNA sequencing

(MWG Biotech, Ebersberg, München, Germany).

5.3. Cell lines and transfection
Stably transfected cell lines expressing CENP-S-CLIP and

CENP-X-CLIP were established in HeLa cells by electro-

poration using a NucleofectorII device (Lonza Biologics,

Slough, UK). One CENP-S-CLIP and three independent

CENP-X-CLIP cell lines were used for all experiments in

this study. For FRAP, FRET and FCCS experiments, appropri-

ate constructs were transfected into HeLa and U2OS cells by

electroporation and assayed after 24–48 h. FRAP experiments

were performed using a HeLa cell line that stably expresses

mRFP-PCNA [60].

5.4. Western blot and real-time PCR
For protein detection, whole-cell extracts equivalent to 50 000

cells were separated by SDS-PAGE, transferred to PVDF

membranes (Millipore) and processed for immunodetection,

as previously described [14]. Antibodies are specified in the

electronic supplementary material, table S2. Following detec-

tion by ECL (Millipore Ireland B.V., Tullagreen Carrigtwohill,

County Cork, Ireland), blots were imaged using a Syngene

G:BOX imager (Mason Technologies, Dublin, Ireland) and

quantitated using IMAGE J (http://rsb.info.nih.gov/ij/). Rela-

tive protein abundance was calculated as the mean intensity

normalized to tubulin and is presented as the mean+ s.e.m.

(n ¼ 3 independent experiments).

Total RNA was isolated using Qiagen RNeasy Mini Kits

(Qiagen, Crawley, West Sussex, UK) and reverse transcribed

using random nonamer primers with a Precision qScript

Reverse-Transcript Kit supplied by Primer Design (Southamp-

ton, UK). Quantitation of transcripts was performed using

SYBR green reagents (Primer Design) on a StepOnePlus Real-

Time PCR System (Life Technologies, Paisley, UK). Primers

were prepared by Primer Design and are specified in the elec-

tronic supplementary material, table S1. Primer efficiencies

were determined empirically and specificity was verified by

DNA sequence analysis of PCR products. The endogenous

control used in this study (GAPDH) was determined to be opti-

mal using the GeNorm kit and software (Primer Design).

Target abundance was calculated from qPCR data using the

Pfaffel method, which incorporates specific primer efficiencies

in calculation of DDCT values, and the relative fold changes

(relative quantitation, RQ) were then calculated by the formula,

E2DDCT where E is the primer efficiency [61].

5.5. Immunofluorescence and CLIP labelling
Immunofluorescence and CLIP labelling were performed

essentially as described previously [14] using antibodies speci-

fied in the electronic supplementary material, table S2 and

reagents supplied by New England Biolabs (ISIS Ltd, Bray,

Co. Wicklow, Ireland). For direct quantitation of CLIP-tagged

proteins, cells grown on coverslips were labelled with 2 mM
CLIP-505 in complete DMEM supplemented with 1% BSA for

45 min prior to washing and fixation. For quench-pulse label-

ling, CLIP-tagged proteins were first blocked with CLIP cell

block at 10 mM in DMEM supplemented with 1% BSA for

30 min. After washing, cells were returned to the incubator

and cultured for 8 h prior to labelling with CLIP-505.

5.6. F2H cell culture and transfections
BHK cells containing a lac-operator repeat array [62] were cul-

tured in DMEM medium with 10% FCS and seeded on

coverslips in six-well plates for microscopy. After attachment,

cells were co-transfected with expression vectors for the indi-

cated fluorescent fusion proteins and a LacI-GBP fusion [46]

using polyethylenimine (Sigma, St. Louis, MO, USA). After

about 16 h cells were fixed with 3.7% formaldehyde in PBS

for 10 min, washed with PBST (PBS with 0.02% Tween),

stained with DAPI and mounted in Vectashield medium

(Vector Laboratories, Servison, Switzerland). Samples were

analysed with a confocal fluorescence microscope (TCS SP5,

Leica, Wetzlar, Germany) equipped with a 63�/1.4 numeri-

cal aperture Plan-Apochromat oil immersion objective, as

described [46].

5.7. Fluorescence cross-correlation spectroscopy
FCCS analyses [63] were performed at 378C on an LSM 710

Confocor3 microscope (Carl Zeiss, Jena, Germany) using a

C-Apochromat infinity-corrected 1.2 NA 40� water objective.

U2OS cells were double transfected with vectors for the sim-

ultaneous expression of EGFP- and mCherry-fusion proteins

and analysed. On cells expressing both fusion proteins at rela-

tively low and comparable levels, we selected spots for the

FCCS measurements in areas of the nucleoplasm that were

free of kinetochores. EGFP-fusion proteins were excited

using the 488 nm laser line of a 25 mW Argon/2-laser (Carl

Zeiss) and mCherry-fusion proteins with a DPSS 561-10-

laser (Carl Zeiss), both at moderate intensities between 0.2

and 0.5%. The detection pinhole was set to a relatively

small diameter of 40 mm. After passing a dichroic beam split-

ter for APDs (avalange photodiode detectors; NTF 565), the

emission of mCherry was recorded in channel 1 through a

BP-IR 615–680 nm bandpath filter by an APD (Carl Zeiss),

whereas the emission of EGFP was simultaneously recorded

in channel 2 through a BP-IR 505–540 nm bandpath filter by

the second APD. Before each measurement, we analysed poss-

ible crosstalk between the channels and used only cells without

or with very little crosstalk. In addition, measurements with

autocorrelation values below 1.06 for both the mRFP and

EGFP channels were not further analysed. For the measure-

ments, 10 time series of 10 s each were simultaneously

recorded for mCherry and EGFP. After averaging, the data

were superimposed for fitting with the Fit-3Dfree-1C-1Tnw

model of the ZEN-software (Carl Zeiss), a diffusion model in

three dimensions with triplet functions.

5.8. Acceptor photobleaching-based FRET
measurements

FRET experiments were conducted, as described previously by

Orthaus et al. [40] and Hellwig et al. [53]. EGFP-fluorescence

before and after mCherry-bleaching of a 4–10 mm2 region of

http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/
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interest that contained 2–5 centromeres was compared, result-

ing in FRET efficiency (EFRET) values. Additionally, EGFP

fluorescence in an unbleached area that contained an equal

amount of centromeres (+1) was analysed resulting in control

FRET efficiency (EVAR). The determined EFRET and EVAR values

were classified into 4% deviating categories and the number of

counts for each category is shown in a bar diagram. Both input

groups (EFRET and EVAR values) were statistically evaluated

using Mann–Whitney rank-sum test.

5.9. Fluorescence recovery after photobleaching
FRAP experiments were carried out on a Zeiss LSM 510Meta

confocal microscope (Carl Zeiss) using a C-Apochromat

infinity-corrected 1.2 NA 63� water objective and the 488 nm

laser line for GFP, essentially as described previously [14,51].

Measurements were made by transfection of the indica-

ted FP constructs into HeLa cells stably transfected with
mCherry-PCNA. Five or 10 images were taken before the

bleach pulse and 50–200 images after bleaching of two to

four kinetochores of a nucleus with an image acquisition fre-

quency of 0.5–1.0 frames per second at 1% laser transmission

to avoid additional bleaching. In long-term FRAP experiments,

the pinhole was adjusted to 1 airy unit and image stacks were

taken every 30 min. Relative fluorescence intensities were quan-

tified as described by Chen & Huang [64] and Schmiedeberg

et al. [65] using EXCEL (Microsoft, Redmond, WA, USA) and

ORIGIN software (OriginLab, Northampton, MA, USA).
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