
F1000Research

Open Peer Review

, University of Edinburgh UKMick Watson

, Washington UniversityCyriac Kandoth

USA

, University of Michigan USAAnuj Kumar

Discuss this article

 (0)Comments

3

2

1

WEB TOOL

 StatsDB: platform-agnostic storage and understanding of
 next generation sequencing run metrics [v2; ref status: indexed,

http://f1000r.es/2x1]
Ricardo H. Ramirez-Gonzalez, Richard M. Leggett, Darren Waite, Anil Thanki,

 Nizar Drou, Mario Caccamo, Robert Davey
The Genome Analysis Centre, Norwich Research Park, Norwich, NR4 7UH, UK

Abstract
Modern sequencing platforms generate enormous quantities of data in
ever-decreasing amounts of time. Additionally, techniques such as multiplex
sequencing allow one run to contain hundreds of different samples. With such
data comes a significant challenge to understand its quality and to understand
how the quality and yield are changing across instruments and over time. As
well as the desire to understand historical data, sequencing centres often have
a duty to provide clear summaries of individual run performance to
collaborators or customers. We present StatsDB, an open-source software
package for storage and analysis of next generation sequencing run metrics.
The system has been designed for incorporation into a primary analysis
pipeline, either at the programmatic level or via integration into existing user
interfaces. Statistics are stored in an SQL database and APIs provide the ability
to store and access the data while abstracting the underlying database design.
This abstraction allows simpler, wider querying across multiple fields than is
possible by the manual steps and calculation required to dissect individual
reports, e.g. ”provide metrics about nucleotide bias in libraries using adaptor
barcode X, across all runs on sequencer A, within the last month”. The software
is supplied with modules for storage of statistics from FastQC, a commonly
used tool for analysis of sequence reads, but the open nature of the database
schema means it can be easily adapted to other tools. Currently at The
Genome Analysis Centre (TGAC), reports are accessed through our LIMS
system or through a standalone GUI tool, but the API and supplied examples
make it easy to develop custom reports and to interface with other packages.

 Referee Status:

 Invited Referees

version 2
published
19 Feb 2014

version 1
published
15 Nov 2013

 1 2 3

report

report

report

report

report

 15 Nov 2013, :248 (doi:)First published: 2 10.12688/f1000research.2-248.v1
 19 Feb 2014, :248 (doi:)Latest published: 2 10.12688/f1000research.2-248.v2

v2

Page 1 of 17

F1000Research 2014, 2:248 Last updated: 05 MAR 2015

http://f1000research.com/articles/2-248/v2
http://f1000research.com/articles/2-248/v2
http://f1000r.es/2x1
http://f1000research.com/articles/2-248/v2
http://f1000research.com/articles/2-248/v1
http://dx.doi.org/10.12688/f1000research.2-248.v1
http://dx.doi.org/10.12688/f1000research.2-248.v2
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.2-248.v2&domain=pdf&date_stamp=2014-02-19

F1000Research

 Richard M. Leggett (), Robert Davey ()Corresponding authors: richard.leggett@tgac.ac.uk robert.davey@tgac.ac.uk
 Ramirez-Gonzalez RH, Leggett RM, Waite D How to cite this article: et al. StatsDB: platform-agnostic storage and understanding of next

 2014, :248 (doi: generation sequencing run metrics [v2; ref status: indexed,]http://f1000r.es/2x1 F1000Research 2
)10.12688/f1000research.2-248.v2

 © 2014 Ramirez-Gonzalez RH . This is an open access article distributed under the terms of the Copyright: et al Creative Commons Attribution
, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associatedLicence

with the article are available under the terms of the , which permits unrestricted use, distribution, andCreative Commons Attribution Licence
reproduction in any medium, provided the original data is properly cited.

 The development of StatsDB has been funded by a Biotechnology and Biological Sciences Research Council (BBSRC)Grant information:
National Capability Grant at TGAC.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 Competing interests: The authors declare that there are no competing interests.

 15 Nov 2013, :248 (doi:) First published: 2 10.12688/f1000research.2-248.v1
 27 Dec 2013, :248 (doi:)First indexed: 2 10.12688/f1000research.2-248.v1

Page 2 of 17

F1000Research 2014, 2:248 Last updated: 05 MAR 2015

http://f1000r.es/2x1
http://dx.doi.org/10.12688/f1000research.2-248.v2
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.12688/f1000research.2-248.v1
http://dx.doi.org/10.12688/f1000research.2-248.v1

Introduction
Next generation short-read sequencers are now capable of generat-
ing hundreds of gigabases of sequence data per run. This increase in
throughput is complemented by technologies such as long-read single
molecule platforms, multiplex sequencing and RADSeq1,2, that lead
to differing analytical techniques and enable hundreds of samples to
be combined into a single sequencing experiment, respectively. With
this data heterogeneity and abundance comes a significant challenge
to keep track of samples, to understand data quality and to understand
how quality control (QC) and yield are changing across instruments
and over time. As well as the desire to understand historical data,
centres often have a duty to provide clear summaries of individual
run performance to collaborators or customers.

A user’s initial attempts to understand the QC profile of a run usu-
ally involve using manufacturer-supplied software, for example
Illumina’s Sequence Analysis Viewer or PacBio’s SMRTAnalysis.
As well as these, a number of community-developed tools have
emerged for assessing run quality and they are often included in
the primary analysis pipelines of sequencing centres. FastQC3 is a
popular tool for analysing FASTQ files and is able to report a wide
range of information related to the quality profile of the reads, as
well as analysing GC content and over-represented sequence, such
as PCR duplicates or over-abundance of adaptors. FastQC will out-
put a set of HTML files and also a single plain-text flat file suitable
for parsing by third party tools. HTQC, another toolkit for FASTQ
data analysis, is composed of a set of six tools for analysis and trim-
ming of reads4. PRINSEQ also analyses and trims reads, with an
emphasis on metagenomic datasets5. Other tools include NGSQC6,
QRQC7 and SAMStat8. The latter tool, as the name implies, works
with SAM files rather than FASTQ files.

The new generation of single molecule sequencing technologies,
such as the RS platform from Pacific Biosciences with longer reads
and different error profiles, have brought their own QC challenges.
While it is still possible to get useful information from next gen-
eration tools such as FastQC, new tools are emerging which are
tailored to the platform. Examples include stsPlots, which provides
graphical summaries of data included in the sts.csv files output by
the instrument9 and PacBioEDA which operates on the .bas.h5 files
produced by the PacBio primary analysis10.

While there are a range of useful tools available to generate QC sta-
tistics for individual runs, we are not aware of any currently available
solution for facilitating the easy storage and access of this valuable

information. This tends to lead to many flat files stored on disc in mul-
tiple locations and a lack of coherent analysis. For this reason, we have
created StatsDB, a platform-independent, tool-independent run QC
and metadata database with APIs in Perl and Java. StatsDB features
a generic database schema which enables the storage of data from any
QC tool designed for any sequencing platform. StatsDB is designed
to automate the storage of run QC metrics, enabling more granular
queries over the data held within. Installation is simple and use of the
software and API requires no knowledge of SQL.

Methods and implementation
Figure 1 illustrates the overall structure of the StatsDB system. At
the core of StatsDB is a MySQL database which stores run metrics
on a per-base, per-partition or per-run basis. On top of the database
sits an API - currently implemented in both Perl and Java - which
abstracts the database design from the tools that use the data and
provides a simple interface for adding or querying data.

We envisage two types of programs utilising the API - parsers and
consumers. Parsers process external data output from QC tools and
use the StatsDB API to write the data. Conversely, consumers query
the data stored in StatsDB and present it to the user, typically in
the form of text and graphs. The StatsDB package includes parser
implementations and examples of consumers, and the API enables
others to be developed quickly and easily. Additionally, integrating
these consumers into third-party applications is promoted - the open
source LIMS system currently in development at TGAC, MISO11,
provides support for accessing data in StatsDB out-of-the-box.

Database installation
The StatsDB framework supplies two SQL files that are used to set
up the database for use, comprising the schema and the stored pro-
cedures, respectively, and detailed in the following sections.

The first step is to create a new MySQL database called ‘statsdb’
and grant a user read-write access to it, e.g. a new ’statsdb’ user with
a suitable password, e.g. ‘statsdb’:

Figure 1. At the core of StatsDB is a MySQL database supported
by Perl and Java APIs. Parsers are simple scripts to write the output
of QC tools to the database, while Consumers present the database
contents to users.

       Amendments from Version 1

We are grateful to the three reviewers who took the time to consider
our article. In the light of their comments, we have made a number
of adjustments to the manuscript in the interests of clarity. Specifically,
we have noted the output format of FastQC, noted that currently
many QC statistics are stored on disc leading to a lack of coherent
analysis, expanded the description of the analysis table and
latest_run view and described the ways in which smaller labs can
benefit from StatsDB. Detailed responses to the reviewers are
given in the comments below.

See referee reports

REVISED

Page 3 of 17

F1000Research 2014, 2:248 Last updated: 05 MAR 2015

mysql > CREATE DATABASE statsdb;
mysql > USE statsdb;

mysql >  GRANT  ALL  ON  ‘statsdb‘.*
           TO ’statsdb’@’localhost’;

mysql >  GRANT  ALL  ON  ‘statsdb‘.*
           TO  ’statsdb’@’localhost’
           IDENTIFIED  BY  ’statsdb’;

The two SQL files are then imported into the database as follows:

$ mysql -D statsdb -u statsdb -p \\
            < statsdb_schema.sql

$ mysql -D statsdb -u statsdb -p \\
            < stored-procedures.sql

This will populate the ‘statsdb’ database with the tables and proce-
dures required.

Testing a successfully installed database can be undertaken by run-
ning the FastQC parser on the supplied example data, as follows:

$ cd Perl
$ perl parse_fastqc.pl \\

 -i examples / metadata_test.txt \\
 -d examples / template_db.txt

This will result in data being inserted into the database. In order to
revert back to an empty state, reimport the schema SQL as detatiled
previously.

Database design
The StatsDB database is designed to be flexible and to hold vir-
tually any type of QC analysis. Figure 2 illustrates the database
schema. The database is normalised to the third normal form (3NF)
and has stored procedures and views to facilitate consistent access
to the stored information. The tables in the core of the database are
as follows:

analysis holds the ID and timestamp of when the analysis was
recorded. If an analysis is carried out with the same parameters,
this constitutes a new analysis and an additional unique analysis
table entry will be created.

analysis_property holds general information about the analy-
sis and the run from which it originated. The values contained
within this table are populated directly from a user-specified
tab-delimited table of property headings and respective values, i.e.
the RunTable object (see ’Parsers’ below). The following proper-
ties are used to define common denominators across platforms
and analyses:

• �tool - the name of the tool that was used to undertake the
analysis (for example, FastQC, PRINSEQ).

Figure 2. StatsDB database schema.

Page 4 of 17

F1000Research 2014, 2:248 Last updated: 05 MAR 2015

•  �encoding - the encoding of the input, for example ‘Illumina
1.5’, ‘fasta+qual’.

•  �chemistry - a short name for the chemistry or type of experi-
ment run.

•  �instrument - the ID of the instrument.

•  �software - the basecaller software or software version of the
instrument.

•  �type - type of experiment, for example ‘RNA-Seq’, ‘WGS’.

•  �pair - if the experiment is paired end or mate pair, then 1 if
the first read or 2 if the second read.

•  �sample_name - the name of the sample as assigned during
the library construction.

•  �lane - the lane or flowcell of the instrument.

•  �run - the name of the run, as given by the instrument.

•  �barcode - if the sample is multiplexed, the adaptor barcode
of the sample, for example ‘ACCTTG’.

analysis_value is used to store the properties that can be represent-
ed as a value for the whole run, e.g. overrepresented sequences,
counts of multiplexed tags.

per_position_value stores values related to a absolute position that
is never grouped, such as counts of how many times a certain
quality is represented.

per_partition_value is similar to per_position_value, but allows
grouping by some range or factor.

value_type is an auxiliary table that holds descriptions for the val-
ues and the scope of the value.

type_scope is an auxiliary table defining the scope relevant to the
analysis to group the values consistently. Currently, the following
are the scopes supported by StatsDB.

•  �analysis - global values for the analysis, for example ‘Total
GC content’.

•  �base_partition - values of summaries per base, allowing
grouping of ranges, for example quality mean per position.

•  �sequence_cumulative - for cumulative counts, such as qual-
ity scores or read counts.

In addition to the tables, StatsDB has three auxiliary views, used to
facilitate complex queries:

property transposes the analysis_property table, transforming the
row values to columns.

run merges the corresponding values from property, according to
the run.

latest_run selects the latest run from the run view, so if an analysis
has been carried out more than once (see analysis table above),
only the latest results are stored.

Stored procedures
Most of the functionality of StatsDB is embedded directly in the
database as views and stored procedures. This enables it to have

lightweight APIs which behave consistently across languages and
means that the API can easily be ported to other languages should
the implementation require it.

The following stored procedures are used by the APIs to query the
database:

list_runs will list all available runs.

list_selectable_properties will list the properties that can be used
as queries.

list_selectable_values_from_property will list the values for a
given property.

list_summary_per_scope will return the descriptions present for
a given scope. This is useful to know if a value_type is already
present or not, before trying to insert it again.

The following stored procedures are used to generate reports. To make
queries, the common arguments to specify the run or runs to group are:
instrument_in, run_in, lane_in, pair_in and barcode. The arguments
are optional and if more than one analysis meets the query criteria, a
summary is produced. This can be used, for example, to query the qual-
ity of a given lane and use this information to find systematic issues.

general_summaries_for_run returns a summary of all the values
global to the analysis.

summary_per_position_for_run returns all the values queried
from the per_partition_value table.

summary_value_with_comment returns the summary values with
a descriptive text, if it was present as a note for a value. For ex-
ample, this can be used to retrieve further description of the over-
represented sequences in a FastQC report.

API
The StatsDB framework provides two APIs, one in the Perl lan-
guage and the other in Java, both of which offer the same function-
ality. They call the stored procedures and provide a sufficient layer
of abstraction such that parsers and consumers do not need to access
the stored procedures directly. Therefore, the typical method of access-
ing the data held within StatsDB is through the following APIs.

Perl API
Before using the Perl API, a connection to the database has to be
created as defined by the Perl DBI API12. A template for the con-
figuration file is provided in Perl/examples/template_db.txt, and the
values need to match those used in the database installation instruc
tions above:

db_string   dbi:mysql:statsdb;host=localhost
db_user     statsdb
db_password statsdb

The Perl API comprises modules to import analysis information to
the StatsDB database, as well as functions to query the database.
The abstraction of the database is contained in the QCAnalysis
module, which is used to add an analysis to the database. It auto-
matically fills the missing types of value in the database, so it is not

Page 5 of 17

F1000Research 2014, 2:248 Last updated: 05 MAR 2015

necessary to have a comprehensive list of types of analysis that are
going to be stored a priori. However, a parser needs to define valid
types for the QCAnalysis object, i.e. value_type, and to which scope
they should be assigned, i.e. the type_scope, as described in the
Database design section above, and in the following code:

// function signature

$analysis->add_valid_type ($value_type,
                 $value_scope);

// examples

$analysis->add_valid_type ("general_gc_content",
                  "analysis");
$analysis->add_valid_type  ("gc_content_percentage",

"base_partition");
$analysis->add_valid_type  ("gc_content_count",

"sequence_cumulative");
$analysis->add_valid_type  ("base_content_c",

"base_partition");

After defining the valid values and scopes, the properties of the anal-
ysis should be added. The following example adds a ‘tool’ property
with a ‘FastQC’ value, to represent a FastQC analysis property type:

$analysis->add_property   ("tool","FastQC");

Global values are supported in StatsDB to represent generalised
properties that are permissible across analyses. To add global values
to the analysis, the add_general_value function is used. General val-
ues can have an optional description. When the description is present,
and if the value is new to the database, the description is added. If the
value is already present in the database, the description is ignored.
This is by design and allows for consistency across analyses:

// function signature

$analysis->add_general_value ($key,
                    $value,
                   $description);

// examples

$analysis->add_general_value (

  "ACCTGATAT",
  10,
  "over-representedcommonprimerinlibraryA"
);

$analysis->add_general_value (

  "average_length",
  100

);

To add values with a discrete count the add_position_value func-
tion is called. The following example specifies that 15,000 reads in
the analysis had a quality score of 30:

// function signature
$analysis->add_position_value ($position,
                  $key,
                  $value);

$analysis->add_position_value(
  30,
  "quality_score_count",
  15000
);

Finally, to add values that can be grouped in ranges the function
add_partition_value is called. A range is an array specifying the
first and last position (inclusive). The following example inserts a
quality mean from position 10 to position 14 (5 values) of the run:

// function signature

$analysis->add_partition_value ($range,
                   $key,
                   $value);

$analysis->add_partition_value (

  [10-14],
  "quality_mean",
  38.7

);

An auxiliary function, parse_range, is provided to convert a string
representation of a range into an array type. If a single string value
is provided, it returns an array with the value repeated, representing
a partition of size 1. If a range string is passed, it returns an array
with the positions as needed by add_partition_value:

$analysis->parse_range {"10"} -> [10,10]
$analysis->parse_range {"10-14"} -> [10,14]

Once the QC Analysis object is constructed with all the required
values, it can be inserted to the database with db- > insert_analysis
($ analysis).

To query the database from the Perl API, the Reports.pm module
is used. To allow flexibility in the querying and to be able to get
summaries at different granularities (barcode, lane, pair, etc) the
convention is that all the queries accept as an argument a properties
hash comprising the required key-value pairs to build the query. A
constant, declared in the Reports.pm module, represents the set of
controlled platform-agnostic keys and is defined as follows:

use constant {

  ENCODING => "encoding",
  CHEMISTRY => "chemistry",
  INSTRUMENT => "instrument",
  SOFTWARE_ON_INSTRUMENT => "softwareOnInstrument"
    ,
  TYPE_OF_EXPERIMENT => "typeOfExperiment",
  PAIR => "pair",
  SAMPLE_NAME => "sampleName",
  LANE => "lane",
  BARCODE => "barcode",
  RUN => "run"
};

An example script to query the different types of tables is provided
with the StatsDB framework, i.e. examples/example_consumer.pl.

Java API
The Java API is supplied as a Maven13 project to ease building and
testing. For convenience, a pre-built JAR file is available to use in
existing Java projects by simply downloading the JAR file from
the TGAC Maven repository14, or including the following reposi-
tory and dependency Maven declarations in your pom.xml build
descriptor to download the artifact:

Page 6 of 17

F1000Research 2014, 2:248 Last updated: 05 MAR 2015

  -v          � Verbose mode. Use if you

like lots of tasty output

  INFO [main] –  �No parser type specified. Using

FASTQC as the default report type

ERROR [main]  -  �No input metadata or report file

specified.

<repository>

 <id>tgac-repo</id>

 <name>TGAC Maven Repository</name>

 <url>https://repos.tgac.ac.uk/maven/repo</url>

</repository>

...

<dependency>

 <groupId>uk.ac.tgac.statsdb</groupId>

 <artifactId>statsdb-api</artifactId>

 <version>1.1</version>

</dependency>

The API is built using the standard Maven command:

mvn clean install

This will compile the source code and provide a library JAR com-
prising the API, but does not attempt the StatsDB database-level
tests. These unit tests make sure the database is accessible, that the
schema is correct, and that the API calls available work correctly. To
turn these tests on, supply the relevant database connection proper-
ties in Java/statsdb – api/src/test/resources/test.statsdb.properties:

statsdb.driver=com.mysql.jdbc.Driver

statsdb.url=jdbc:mysql://localhost:3306/statsdb

statsdb.username=statsdb

statsdb.password=statsdb

Then use the following profile activation when building the library:

mvn clean install -DdbTests=true

An option to build an executable JAR file is available which
includes a dedicated command-line application that allows API
access for loading and querying a StatsDB database. To enable this
option, use the following build command:

mvn clean install -Donejar=true

The resulting JAR can then be executed by the user. This helper
application requires either an input file representing the analysis
report to be parsed, e.g. a fastqc_data.txt file, or a StatsDB metadata
table file (see Table 1) comprising multiple analysis reports. The
helper application will then process the analysis file(s) and load the
data into StatsDB. Supplying the –t option allows testing of a given
parser without writing any information into the database.

$ java -jar statsdb-api.one-jar.jar -h

usage: statsdb.one-jar.jar

  -f <file>        Use given input report file

  -h          Print this help

  -m <file>      � Process multiple reports

using a StatsDB metadata

table file

  -p <fastqc,other>  Use specified parser type
  -r <run>      � Associate the report with

a given run name

  -t         � Test mode. Doesn’t write
anything to the database

Table 1. Example fields in an analysis metadata table file.

Field Example

TYPE_OF_EXPERIMENT NGS

PATH_TO_ANALYSIS /path/to/fastqc_data.txt

ANALYSIS_TYPE FastQC

INSTRUMENT MISEQ-1

CHEMISTRY_VERSION TRUSEQ_SBS_V3

SOFTWARE_ON_INSTRUMENT_
VERSION MCS_2.2.0_RTA_1.17.28.0

CASAVA_VERSION 1.8.2

RUN_FOLDER /path/to/run_folder

SAMPLE_NAME TEST_SAMPLE

LANE 1

BARCODE AAACTGA

PAIR 1

RUN RUN_NAME

Before using the Java API library, a connection to the database has
to be created in a similar way to the Perl API. This file needs to be
called statsdb.properties, needs to reside on the classpath (in the
case of the executable JAR, this would simply be in the same direc-
tory, for example), and contains the same fields as the test proper-
ties example above. Finally, as with the Perl API, the values need
to match those used in the database installation instructions above.

In terms of building and initiating queries within custom applica-
tions, the Java API mirrors the Perl API whereby the abstraction of
the database is contained in the QCAnalysis class. Similarly, the
Reports class is used to query the database from the Java API, and
the query key granularity is represented as a Map < RunProperty,
String > comprising the required key-value pairs to build the query.
For convenience, the API tolerates missing values and, in such a
case, the average is returned by default. When explicitly specify-
ing these values, in the same way as the Perl API constants, the
RunProperty enumeration represents the set of controlled platform-
agnostic keys.

The following is a minimal example to query each of the different
types of tables. Note that the first step is to construct a map of the
values to query. In this particular example, the barcode is explic-
itly specified, i.e. "ACCGTT". If this was to be omitted, a general
summary for lane 1 would be returned instead of a specific sample,
allowing for an overview assessment of the run:

// Setup the query arguments

Map <RunProperty, String> properties
  =  new HashMap<>();

properties.put (RunProperty.lane, "1");
properties.put (RunProperty.barcode, "ACCGTT");
properties.put (RunProperty.run, "RUN-123");

Page 7 of 17

F1000Research 2014, 2:248 Last updated: 05 MAR 2015

// Get summary values of the run

ReportTable table = r.getAverageValues (

   properties

);

log.info (table.toJSON());

// Get the quality mean of the selected run across

     partitions

table = r.getPerPartitionValues (

  "quality_mean",
  properties

);

log.info (table.toCSV());

// Get the quality score count per base position

table = r.getPerPositionValues (

  "quality_score_count",
  properties

);

log.info (table.toCSV());

All javadoc for the StatsDB Java API can be found at https://repos.
tgac.ac.uk/statsdb/javadoc/latest/.

Parsers
StatsDB parsers are small programs, usually scripts, which take the
output of a QC tool and use one of the APIs to store the data. Pars-
ers for StatsDB should have the same structure, e.g. adhering to
the contractual Java interfaces, and only ever need implement the
specific parsing code for the analysis to be added.

Both parsing APIs require analyses to be defined in an analy-
sis metadata table (see Table 1). This is represented as a simple
tab-delimited flat file describing the list of analysis fields and val-
ues. This file should supply one analysis per line, for example a path
to a FastQC data file and related properties.

Every new parser should conform to the contract shown in Figure 3.
To write a parser it is not necessary to know the schema of the
database or to modify the contents directly. StatsDB conveniently
provides the database access objects within its APIs which then
connect to the database. The Wrapper object represents a managerial
entity that calls a SpecificParser to actually undertake the parsing,
but also manages connections to the underlying StatsDB DB object.
The Wrapper should open a connection to the database, then create a
RunTable object to contain a list of runs, its properties and a path to
the analysis to be stored, as described by the metadata table. The path
is then used on the call to the SpecificParser, an object that creates an
Analysis object with the properties from the run and the values in the
file with the analysis. The Analysis object holds the values in the cat-
egories described above. Once the parsing of the file is complete, the
parser forwards the Analysis object to the DB object, which inserts
the properties and values of the analysis. Finally, the Wrapper object
should close the connection in the DB object.

An example Wrapper application would be implemented in Perl as
follows:

Opens a connection to the database

my $db = QCAnalysis::DB->new();

$db->connect ($config);

Reads the metadata table file (Figure 3)

my @analysis = QCAnalysis::RunTable->parse_file (

   $input);

Iterates over each analysis to add

foreach (@analysis){

  # Gets the path to the file

  # The argument is the column name

  my $fast_qc_file = $_->get_property (“
    path_to_counts”);

  # Executes specific TagCount parser

  QCAnalysis::TagCount->parse_file ($fast_qc_file,
     $_);

  # Inserts the analysis to the database

  $db->insert_analysis ($_);

}

Closes the connection to the database.

$db->disconnect ();

A concrete Wrapper and SpecificParser implementation that inter-
rogates FastQC output can be found in Perl/parse_fastqc.pl and
Perl/QCAnalysis/FastQC.pm in the Github repository. Similarly,
the Java version of a SpecificParser can be found in FastQCRe-
portParser.java. Examples of wrapper construction of the parser
and analysis objects can be seen in the StatsDBApp.java and
TestFastQCParser.java classes.

Consumers
Consumers are programs that process StatsDB data through the
API. StatsDB provides a comprehensive API to query for summa-
ries or results of an analysis related to a specific run. The client
needs to know if the value is global to the run, per position, or per
partition in order to select the relevant method to call. To provide a
consistent interface, all the queries are summaries and the following
properties can be used as selecting criteria: encoding, chemistry,
instrument, softwareOnInstrument, typeOf Experiment, pair, sam-
pleName, lane, barcode, run. If all the properties are specified,
only the latest corresponding analysis for the run is returned. This
approach allows consumers to make complex comparative analyses.

The Perl API examples/example_consumer.pl script provides exam-
ple calls to the Reports.pm reporting module, which forms the
basis for any consumer implementation. Similarly, to facilitate these
complex queries in the Java API, we provide a ReportsDecorator
class which contains specific methods to interact with each report,
but also encapsulates related reports. One example is getPerPosi-
tionBaseContent() which produces a matrix of the base content of
each base per position, rather than producing individual queries for
each base.

Figure 4 shows the general approach to query the database. The
consumers call the corresponding summary or the report decorator.
The queried properties are then used to call the stored procedures.
StatsDB reads the result set to produce an internal representation of
the table, which can then be used directly by the consumer, or can
be formatted as CSV or JSON. For further details and the available
methods, the inline perldoc or javadoc documentation provides a
comprehensive description of each method.

Page 8 of 17

F1000Research 2014, 2:248 Last updated: 05 MAR 2015

https://repos.tgac.ac.uk/statsdb/javadoc/latest/
https://repos.tgac.ac.uk/statsdb/javadoc/latest/

Figure 3. StatsDB parser interaction diagram, using the Perl API. To add new parsers, only the SpecificParser has to be written. The rest of
the classes abstract the interaction with the database and ensure the consistency of the data. The Java API utilises different class and method
names but employs the same generalised interactions.

Figure 4. Example of the execution of a query to the database. The client only needs to be aware of the Java/Perl API and StatsDB will
format the result in CSV or JSON, so that the client can display the summary.

Page 9 of 17

F1000Research 2014, 2:248 Last updated: 05 MAR 2015

Reporting tools such as FastQC produce informative plots to visu-
alise run metrics. StatsDB supplies example plots based on those
produced by FastQC, written using the d3.js Javascript library15,
to demonstrate downstream processing and representation of
consumer-generated StatsDB JSON. In this way, developers can
easily integrate StatsDB plots on their own web pages. A dedicated
helper class to generate a set of required JSON fragments is sup-
plied, i.e. D3PlotConsumer.java, and downstream Javascript and
HTML that renders the JSON fragments can also be found in the
GitHub repository in the Web directory. Examples of interactive
plots generated from FastQC per-base quality and per-base GC con-
tent can be seen in Figure 6.

Use case
At TGAC, we use StatsDB as part of our Primary Analysis Pipeline16.
Each Illumina run sequenced at TGAC, both with HiSeq and MiSeq
instruments, passes through this pipeline. Two important steps in
the process are QC analysis with FastQC and contamination analy-
sis using an in-house kmer-based screening tool. The output of both
of these tools is parsed using two separate Perl scripts provided as
part of the StatsDB package, and loaded into StatsDB. As well as
these QC output, we load details of the instrument, chemistry ver-
sion, RTA version and Casava version into StatsDB.

Our PacBio primary analysis pipeline is still under development, but
this currently includes using FastQC to analyse FASTQ files output

as part of the process. We are also working on parsers for the sts.csv
files that are produced by the instrument. With StatsDB, it is perfectly
possible to mix data from different platforms and different tools into
one database. When querying the data, the consumer application can
make the decision about what data comparisons are meaningful.

We currently access data stored in StatsDB using two consumers:
TGAC’s open-source LIMS, MISO, and the prototype StatsDB
Reporter tool. Using the MISO web-based interface, it is possible
to access StatsDB information and produce graph plots of FastQC
data, which are based on the d3.js consumer examples supplied
with the framework (Figure 6). StatsDB Reporter allows selection
of runs by instrument, lane, run, sample or barcode and provides
comparison of data across runs (Figure 5).

Conclusions
Many software tools exist for the generation of run quality statis-
tics and FastQC is possibly the most notable example. However,
until now, there has been no easy solution to the problem of stor-
age and analysis of historical run metadata and statistics. StatsDB
has been designed to address this problem and offers a flexible,
easy to use, platform-agnostic and tool-independent framework for
consolidated access to run metrics.

Installation of StatsDB and integration with existing analysis pipe-
lines is achieved with minimal effort. To perform data entry into

Figure 5. StatsDB Reporter allows overlay plots of QC data across instruments and runs.

Page 10 of 17

F1000Research 2014, 2:248 Last updated: 05 MAR 2015

Figure 6. Examples of d3.js plots, generated from FastQC data parsed into StatsDB.

100%

A C G T

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
Base Position

P
ercentage

1 2 3 4 5 6 7 8 9 1
0

2
0

3
0

1
5

2
5

3
5

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

4
5

11
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

2
4
0

2
5
0

StatsDB, a parser is included for the popular FastQC tool, and pars-
ers for other tools can be written in less than a day by a competent
programmer or scripter. Similarly, command line tools are provided
in both Perl and Java to load parsed data into StatsDB.

To perform downstream analysis and visualisation of data held
within StatsDB, reporting helper entities are provided. We envis-
age that smaller labs with sequencing capability would benefit

from access to simple desktop tools rather than more heavyweight
implementations provided by integration with a LIMS system,
which would suit a larger sequencing centre. As such, an example
lightweight consumer tool is supplied in the form of the StatsDB
Reporter application which currently exists in prototype form but
a mature version will be available in due course from the GitHub
repository for StatsDB, as well as parsers for other tools (for exam-
ple, PacBio sts files).

Page 11 of 17

F1000Research 2014, 2:248 Last updated: 05 MAR 2015

Software details
Homepage: http://www.tgac.ac.uk/tools-resources/ Source code:
https://github.com/TGAC/statsdb and 10.5281/zenodo.7534 Licence:
GPL v3.

Author contributions
MC initiated the project, which RD now leads. RHRG designed the
database, implemented the Perl API and, with RD, implemented
the Java API. RML and DW wrote parsers and consumers to use the
API. AT developed the d3.js plots. RML, RHRG, RD, DW and AT
all contributed to the manuscript.

Competing interests
The authors declare that there are no competing interests.

Grant information
The development of StatsDB has been funded by a Biotechnology
and Biological Sciences Research Council (BBSRC) National
Capability Grant (BB/J010375/1) at TGAC.

The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Acknowledgements
We are grateful to the Library Preparation and Sequencing Opera-
tions teams at TGAC for generating the data that has been used to
test StatsDB.

References

1.	 Miller MR, Dunham JP, Amores A, et al.: Rapid and cost-effective polymorphism
identi.cation and genotyping using restriction site associated DNA (RAD)
markers. Genome Res. 2007; 17(2): 240–248.
PubMed Abstract | Publisher Full Text | Free Full Text

2.	 Baird NA, Etter PD, Atwood TS, et al.: Rapid SNP discovery and genetic mapping
using sequenced RAD markers. PLoS One. 2008; 3(10): e3376.
PubMed Abstract | Publisher Full Text | Free Full Text

3.	 Andrews S: FastQC: A quality control tool for high throughput sequence data.
Reference Source

4.	 Yang X, Liu D, Liu F, et al.: Htqc: a fast quality control toolkit for Illumina
sequencing data. BMC Bioinformatics. 2013; 14: 33.
PubMed Abstract | Publisher Full Text | Free Full Text

5.	 Schmieder R, Edwards R: Quality control and preprocessing of metagenomic
datasets. Bioinformatics. 2011; 27(6): 863–864.
PubMed Abstract | Publisher Full Text | Free Full Text

6.	 Dai M, Thompson RC, Maher C, et al.: Ngsqc: cross-platform quality analysis
pipeline for deep sequencing data. BMC Genomics. 2010; 11(Suppl 4): S7.
PubMed Abstract | Publisher Full Text | Free Full Text

7.	 Buffalo V: QRQC - quick read quality control.
Reference Source

8.	 Lassmann T, Hayashizaki Y, Daub CO: Samstat: monitoring biases in next
generation sequencing data. Bioinformatics. 2011; 27(1):

130–131.
PubMed Abstract | Publisher Full Text | Free Full Text

9.	 Ashby M, Lee L: stsPlots.
Reference Source

10.	 Skelly T: PacBio Exploratory Data Analysis.
Reference Source

11.	 Davey RP, Bian X, Thanki A, et al.: MISO: An open-source LIMS for small-to-large
scale sequencing centres.
Reference Source

12.	 Perl DBI. Perl DBI.
Reference Source

13.	 The Apache Software Foundation. Maven.
Reference Source

14.	 The Genome Analysis Centre. TGAC Maven Repository.
Reference Source

15.	 D3.js - Data-Driven Documents. 2012.
Reference Source

16.	 Leggett RM, Ramirez-Gonzalez RH, Clavijo BJ, et al.: Sequencing quality
assessment tools to enable data-driven informatics for high throughput
genomics. Front Genet. 2013; 4; 288.
PubMed Abstract | Publisher Full Text | Free Full Text

Page 12 of 17

F1000Research 2014, 2:248 Last updated: 05 MAR 2015

http://www.tgac.ac.uk/tools-resources/
https://github.com/TGAC/statsdb
http://dx.doi.org/10.5281/zenodo.7534
http://www.ncbi.nlm.nih.gov/pubmed/17189378
http://dx.doi.org/10.1101/gr.5681207
http://www.ncbi.nlm.nih.gov/pmc/articles/1781356
http://www.ncbi.nlm.nih.gov/pubmed/18852878
http://dx.doi.org/10.1371/journal.pone.0003376
http://www.ncbi.nlm.nih.gov/pmc/articles/2557064
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.ncbi.nlm.nih.gov/pubmed/23363224
http://dx.doi.org/10.1186/1471-2105-14-33
http://www.ncbi.nlm.nih.gov/pmc/articles/3571943
http://www.ncbi.nlm.nih.gov/pubmed/21278185
http://dx.doi.org/10.1093/bioinformatics/btr026
http://www.ncbi.nlm.nih.gov/pmc/articles/3051327
http://www.ncbi.nlm.nih.gov/pubmed/21143816
http://dx.doi.org/10.1186/1471-2164-11-S4-S7
http://www.ncbi.nlm.nih.gov/pmc/articles/3005923
https://github.com/ucdavis-bioinformatics/qrqc
http://www.ncbi.nlm.nih.gov/pubmed/21088025
http://dx.doi.org/10.1093/bioinformatics/btq614
http://www.ncbi.nlm.nih.gov/pmc/articles/3008642
https://github.com/PacificBiosciences/stsPlots
https://github.com/TomSkelly/PacBioEDA
http://www.tgac.ac.uk/miso
http://dbi.perl.org
https://maven.apache.org
https://repos.tgac.ac.uk/maven/repo/
http://d3js.org
http://www.ncbi.nlm.nih.gov/pubmed/24381581
http://dx.doi.org/10.3389/fgene.2013.00288
http://www.ncbi.nlm.nih.gov/pmc/articles/3865868

F1000Research

Open Peer Review

 Current Referee Status:

Version 2

 28 February 2014Referee Report

doi:10.5256/f1000research.3781.r3790

 Cyriac Kandoth
The Genome Institute, Washington University, St Louis, MO, USA

The revised version of this article, and the author's responses to my questions and comments, are
satisfactory. The plan to stick to GPLv3 is commendable. And the FrontiersIn article has a decent figure
showing a data flow with StatsDB in the pipes. I have no further requested revisions. Cheers!

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 21 February 2014Referee Report

doi:10.5256/f1000research.3781.r3788

 Anuj Kumar
Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, MI, USA

The revisions address my comments, and I have no further requested revisions.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Version 1

 27 December 2013Referee Report

doi:10.5256/f1000research.2894.r2794

 Anuj Kumar
Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, MI, USA

The manuscript by Ramirez-Gonzalez presents a software package to store and analyze metricset al.

Page 13 of 17

F1000Research 2014, 2:248 Last updated: 05 MAR 2015

http://dx.doi.org/10.5256/f1000research.3781.r3790
http://dx.doi.org/10.5256/f1000research.3781.r3788
http://dx.doi.org/10.5256/f1000research.2894.r2794

F1000Research

1.

2.

3.

The manuscript by Ramirez-Gonzalez presents a software package to store and analyze metricset al.
from next-generation sequencing runs. The open-source software package, StatsDB, stores statistics
from sequencing reactions in a MySQL database, and APIs provide means to access and analyze the
data. The StatsDB package facilitates easy querying, particularly across multiple fields from respective
tables in the database. StatsDB provides modules that can be used in conjunction with FastQC as well as
with other tools suited for the analysis of sequence data.

From the perspective of a wet-lab genomicist, the StatsDB package seems to be a useful tool, and I can
certainly see the utility in storing data from the sequencing reactions, particularly for a genome analysis
center. I only have a few minor comments.

Since FastQC is commonly used for the analysis of sequencing runs, and since the StatsDB
package works with FastQC, it would be useful to provide a little more explicit information
describing the output/types of data provided by FastQC. Some of these data are presented in the
StatsDB schema, but it would be nice to add a bit more detail in this regard (possibly a very simple
figure) into the Introduction.

I appreciate the use case provided, but I think it would be helpful to provide an additional small
example of how the StatsDB package could be useful to an individual lab that uses a moderate
level of next-generation sequencing in their research (as opposed to a genome center). Possibly,
a summary of the StatsDB Reporter application would suffice.

It would be helpful to add a few sentences to the Introduction to indicate how other sequencing
centers, etc. store output from FastQC or other similar tools. This does not have to be an extensive
overview.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Author Response 20 Jan 2014
, The Genome Analysis Centre, UKRobert Davey

We would like to thank Anuj for taking the time to read and comment on our manuscript.

We have added a sentence in to the Introduction, outlining briefly the data formats outputted by
FASTQC, i.e. a set of HTML files, and a single plain-text flat file from which we parse the data to be
loaded into StatsDB.

We envisage no differences in scaling terms between a small-scale lab with one or two sequencers
and a large multi-platform centre. StatsDB has applications in the smaller centre where quick but
potentially more sporadic access to historical run data would be investigated through the StatsDB
Reporter tool rather than the more "heavyweight" integration with a LIMS or via a web server. As
such, we have added a sentence describing its relevance in this context. We will be publishing the
StatsDB Reporter application separately, or as a software update to this publication, in due course.

We have added a short overview of how the output of QC tools might be kept in different centres,
highlighting the usefulness of StatsDB.

Page 14 of 17

F1000Research 2014, 2:248 Last updated: 05 MAR 2015

F1000Research

1.

2.

3.

4.

1.

2.

3.

4.

 No competing interests were disclosed.Competing Interests:

 16 December 2013Referee Report

doi:10.5256/f1000research.2894.r2565

 Cyriac Kandoth
The Genome Institute, Washington University, St Louis, MO, USA

The authors have developed a tool that is well documented, open sourced, and version controlled. The
first two thirds of the article read like a user's manual, which is appropriate in a technical article, but not in
its entirety. The neatly organized code snippets and commentary will help a programmer who is
considering using the API. However, to encourage them to use it, the section must beUse case
expanded with figures and performance metrics. I have added more details in the comments below.

Major comments:
Title - " " - The word "understanding" seems eitherplatform-agnostic storage and understanding...
ambiguous or inappropriate since StatsDB is just the facilitator for interpreting/visualizing the run
metrics. Consider a title like "StatsDB: platform-agnostic storage schema and API for interpreting

"next-generation sequencing run metrics

Page 4, Database design - The relationship between the table and the auxiliary views isanalysis
unclear. For example, the table stores a unique ID and timestamp of when an analysisanalysis
run was performed. But the view mentions that an analysis can be run more than once.latest_run
Please clarify.

Page 10, Use case - Add a figure with a flowchart showing the TGAC pipeline that is explained in
the text. It is critical to show how StatsDB plugs into a standard analysis pipeline.

For the source code, an LGPL license might be more appropriate than GPL because StatsDB is an
API, rather than a standalone tool in a workflow. LGPL would also allow parsers/consumers for
manufacturer-supplied metrics.

Minor comments:
Page 3, Database installation - The code snippets show file names with accidental whitespace.
Specifically: statsdb_schema.sql, stored_procedures.sql, and parse_fastqc.pl

Page 3, Introduction - " ." - missing comma.With this data heterogeneity and abundance, comes a..

Page 5, Database design - How would you store metrics that depend on genomic positions or
ranges? e.g targeted sequencing coverage. If tables and per_position_value

 stored values based on genomic positions or ranges, it would also dependper_partition_value
on which reference sequence build (e.g. NCBI36, GRCh37) was in use for that analysis. Would we
define that build as a ? And in the stored procedures used by the APIs, how can wevalue_type
handle a mix of different reference builds used across runs?

Page 7, Java API - accidental whitespace in filename fastqc_data.txt

Page 15 of 17

F1000Research 2014, 2:248 Last updated: 05 MAR 2015

http://dx.doi.org/10.5256/f1000research.2894.r2565

F1000Research

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:

Author Response 24 Jan 2014
, The Genome Analysis Centre, UKRobert Davey

We would like to thank Cyriac for taking the time to read and comment on our manuscript.

In terms of the Use Case expansion, we believe the usefulness is inherent in the ability to store,
retrieve and therefore compare historical run metrics, based on a variety of user- or
analysis-specific attributes. We envisage tools like StatsDB Reporter will be the simplest and more
widely-used interface with StatsDB for the average lab technician or bioinformatician. Similarly, we
believe performance metrics at this level would be unhelpful rather than beneficial, as these would
be very dependent on infrastructure, hardware and DMBS used. We aim to publish incremental
updates to the API and surrounding tools, e.g. a full StatsDB Reporter release, and a Python API.

The StatsDB schema was designed to allow the same analysis to be stored multiple times, with
potentially differing or identical parameters. We foresee that if analysis uniqueness is required, this
would be down to an API implementation to check for previous analyses with the same tool and
parameters supplied, rather than at the database level. We have added a description to the
Database Design section (analysis and latest_run table outlines) of the manuscript.

The pipeline that utilises StatsDB has been covered in detail in our recent open-access FrontiersIn
publication, so we have added a reference to this paper in the Use Case main text.

The GPLv3 aims to give free software developers an advantage over proprietary developers. A
parser that supports a proprietary format does not fit within the scope of our vision - we aim to
continue the trend in bioinformatics software whereby fully open-source licences are preferred to
maximise the reusability of a given tool or library.

Yes, you are correct in using value_type for this kind of attribute. There are API calls that let you
pull out analyses by a value_type value, so this should be supported out of the box.

The accidental whitespace has been introduced in the HTML view, from which the PDF download
is generated. We shall contact the editorial office to ensure these are corrected. Thank you for
spotting those!

 No competing interests were disclosed.Competing Interests:

 10 December 2013Referee Report

doi:10.5256/f1000research.2894.r2467

 Mick Watson

Page 16 of 17

F1000Research 2014, 2:248 Last updated: 05 MAR 2015

http://dx.doi.org/10.5256/f1000research.2894.r2467

F1000Research

1.

2.

3.

 Mick Watson
ARK-Genomics, University of Edinburgh, Edinburgh, UK

The article is well written and describes a tool which will be very useful to the community.

I only have a few minor issues:
Throughout I felt that the terms used were confusing: "analysis" and "run" for example. These can
take on multiple meanings in sequencing (for example, what the SRA calls a run is not what I call a
run). I feel these terms need a better definition when they are first introduced, with examples where
appropriate.

Is it valid to still use the term "short-read" sequencers?

There is a lot of technical information about the design, database and APIs, but only a single
example (using Illumina data) at the end; examples using PacBio and Ion Torrent data would show
the true flexibility of the tool.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Author Response 24 Jan 2014
, The Genome Analysis Centre, UKRobert Davey

We would like to thank Mick for taking the time to read and comment on our manuscript.

Admittedly, there is much interplay when considering terminology such as "run" and "analysis", but
throughout the paper we use the term "run" to represent a sequencing run, and similarly, the term
"analysis" to represent a QC process. We feel this is adequate given the focus of the paper, but we
have clarified one potential misuse (changed "run" to "carried out", where appropriate).

Yes, the field refers to these terms regularly, given that "long read" sequencers are available and
distinct from their "short-read" counterparts, i.e. we consider the new 2x300bp and upcoming
2x400bp Illumina techniques to still be "short-read".

As long as the data produced from non-Illumina machines is in the FASTQ format (as we state in
the existing Use Case text), then there are no differences from the method outlined in the paper,
e.g. FASTQC output parsed and stored in StatsDB. Where differences may exist, e.g. STS files
from PacBio, different parsers can be written to accommodate this, and we are working on
producing such a parser. By no means is StatsDB inherently tied to the FASTQ format, but we feel
this reflects the most common QC methods available currently.

 No competing interests were disclosed.Competing Interests:

Page 17 of 17

F1000Research 2014, 2:248 Last updated: 05 MAR 2015

