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Abstract
Cryobiology is a field with enormous scientific, financial and even cultural impact. Successful
cryopreservation of cells and tissues depends on the equilibration of these materials with high
concentrations of permeating chemicals (CPAs) such as glycerol or 1,2 propylene glycol. Because
cells and tissues are exposed to highly anisosmotic conditions, the resulting gradients cause large
volume fluctuations that have been shown to damage cells and tissues. On the other hand, there is
evidence that toxicity to these high levels of chemicals is time dependent, and therefore it is ideal
to minimize exposure time as well. Because solute and solvent flux is governed by a system of
ordinary differential equations, CPA addition and removal from cells is an ideal context for the
application of optimal control theory. Recently, we presented a mathematical synthesis of the
optimal controls for the ODE system commonly used in cryobiology in the absence of state
constraints and showed that controls defined by this synthesis were optimal. Here we define the
appropriate model, analytically extend the previous theory to one encompassing state constraints,
and as an example apply this to the critical and clinically important cell type of human oocytes,
where current methodologies are either difficult to implement or have very limited success rates.
We show that an enormous increase in equilibration efficiency can be achieved under the new
protocols when compared to classic protocols, potentially allowing a greatly increased survival
rate for human oocytes, and pointing to a direction for the cryopreservation of many other cell
types.
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Introduction
The economic, scientific and even cultural impact of cryobiology is immense1: billions of
dollars are invested in frozen cells and tissues for use in cell culture transport [19],
facilitation of agricultural and human reproduction [31], improvements in human and animal
medicine [25], and bioengineering [18]. Arguably more important than cooling and warming
rates, the addition and removal of cryoprotective agents (CPAs) to and from cells [26] is a
critical and limiting factor in cryopreservation success—current cryopreservation protocols
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are limited by the inability to equilibrate cells with sufficiently high concentrations of CPAs
to cause an intracellular glass to form while cooling. The transport of CPAs across cell
membranes is well described by a system of coupled nonlinear ordinary differential
equations, and is often limited by the existence of cell-specific volume or concentration
constraints [26]. To date only heuristic optimizations of CPA addition and removal protocols
have been published [13,24,23]. Here we show that optimal control theory can be
successfully applied to the introduction and subsequent removal of cryoprotective agents.
Moreover, while applying the general optimization theory outlined recently [6], we are able
to add the natural cell volume and concentration constraints that are encountered in the
process of cryoprotective agent addition and removal [19]. Here we show that for a large set
of parameters, at least a five-fold time reduction can be made over classical techniques. We
then provide a specific application to human oocytes, where the time to safely equilibrate
oocytes with vitrification level ethylene glycol (e.g. more than 40 molal) is reduced by a
factor of five to twenty.

There are two conflicting factors in the development of a CPA addition or removal protocol
—the exposure time to multimolal concentrations of CPAs and damaging cell and water
volume excursions (Fig. 1)—which point to the existence of an optimal protocol and
necessitate an algorithm that provides the optimized CPA addition and removal procedure
when the membrane permeability characteristics and the osmotic or volumetric tolerance
limits of a specific cell type are known. Often CPAs are added and removed in gradual
steps, whose durations and concentrations are empirically based [15]. Heuristic methods for
the optimization of CPA addition and removal, deriving protocols where the CPA
concentration is varied continuously [23,24]. These protocols have produced improved but
not optimal protocols limited in the general applicability of the technique.

We wish to control the extracellular concentrations of permeating and non-permeating
solutes (M2 and M1, respectively) such that cells are equilibrated at a goal state in the
shortest time while remaining within predefined state-constraints. For analytical simplicity
we will use the solute-solvent transmembrane flux model described by Jacobs [17] and
commmonly used in cryobiology [21]. This model recently was noted to encompass a very
large array of membrane transport phenomena [16]. After simplifying the osmotic pressure
to a single term in a virial expansion and non-dimensionalizing (cf. [20]) we have the system

(1)

where x1 and x2 are the intracellular water volume and moles of solute, respectively, xnp is
the (assumed fixed) moles of nonpermeating solute, b is a unitless relative permeability
constant, and s is a dimensionless temporal variable. Following an approach we have

previously described [5], we factor out  to facilitate a time-transform with

(2)

resulting in a system that is linear in the concentration and state variables (see Table 1 for
parameter definitions):

(3)

or ẋ = A(M)x+xnpe1, for x:= (x1,x2), where , e1 = (1,0)T, and
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Optimal control
We set M̄i > 0 for i = 1, 2, the admissible control parameter set

(4)

and the state space S ⊂ (0,∞)×[0,∞) (note x1 > 0). In addition, we define x(t) = x(t; x0,M) to
be the solution of the initial value problem (3) and

to be the set of initial conditions that can be steered to y ∈ S at time t via a measurable,
admissible control function M: ℝ+ → CP.

Define Γ = (γ1,γ2)T ∈ ℝ2, which allows the representation of water volume, total cell
volume, or concentration of permeating solute constraints in terms of x1 and x2. To wit, with
γ1 = 1 and γ2 equal to the partial molar volume of the permeating solute, Γ · x represents the
total “osmotically active” volume of a cell; the pair γ1 = 1, γ2 = 0, represents the total water
volume of the cell, and by choosing sgnγ1 ≠ sgnγ2, we may represent bounds on
concentration such as x2/x1 ≤ 1.0. For the remainder of this manuscript we set γ1 = 1. We
have a time-optimal control problem of steering an initial state xi to a final state xf in
minimal “real” time using controls in the admissible set , the set of measurable functions
M: ℝ → CP, and formally we may now define the optimal control problems:

Problem 1—Given an initial state xi in the state space S and final state xf ∈ S, the set of
admissible controls  and defining s* ∈ ℝ to be the first time that x(s*) = xf for the solution
of the previously defined initial value problem defined in system (1), determine a control
that minimizes s* over M ∈ , subject to constraints Γ · x +k ≤ 0 for constant k ∈ ℝ.

Using the time-transform function q in (2), we have the equivalent problem

Problem 2—Given an initial state xi in the state space S and final state xf ∈ S, the set of
admissible controls  and defining t* ∈ ℝ to be the first time that x(t*) = xf for the solution
of the previously defined initial value problem

(5)

determine a control that minimizes the cost functional

(6)

over , subject to constraints
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(7)

for constant k ∈ ℝ.

The existence of an optimal control along with the equivalence of these problems is proved
in [6].

Though numerical approaches exist for solving Problem 2 with nonlinear and multiple state
constraints using classical numerical optimal control techniques, here we will construct
analytically the optimal control in the most commonly encountered case where there are
total cell volume constraints of the form k* ≤ x1 + γ2x2 ≤ k* corresponding to upper and
lower osmotic tolerance limits, where the initial and final water volumes are equal, i.e.

, and either  and , or  and  for ε small. These two cases
correspond to the addition or the removal of CPA, respectively. In the latter case, one must

set  because the dynamics of the system only allow an asymptotic approach to the
x1-axis. Furthermore, we assume the bounds 0 ≤ M1(t) ≤ M ̄1 and 0 ≤ M2(t) ≤ M̄2, where M̄i
are maximal physical or practical concentration limits (e.g. M̄1 may be limited by the salt or
sucrose saturation point and M̄2 may be limited by a maximum practical viscosity), and
because of natural equilibration constraints of the system (cf. [6]) we restrict xi and xf so that

 and  (δ = i or f).

We define  to be the solution of (3) with control M = λ at a time t and the initial condition

. We define the curves

(8)

where M j for j = I,II, and III are defined in Table 2. We also define the time τ > 0 to be the
first time that ϕτ ∈ σj, and the time t* > 0 to be the total time required to reach xf. In [6] we
synthesized optimal controls based on the Pontryagin Maximum Principle (PMP) [30] and
proved optimality based on a theorem of Boltayanski [7] but did not provide an explicit
example or show how to incorporate constraints.

For the unconstrained case, the optimal CPA addition and removal controls, respectively, are
given by

While these controls are optimal, they come at the cost of possibly excessive volume
excursions (see Fig. 2). To remedy this possibility, we will optimize in the presence of
constraints, which correspond to lines in the state space

(9)

and
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(10)

In practice, if M ̄1 and M̄2 are large enough, it is enough to only use constraints of the form k*
≤ x1 + γ2x2 for both CPA addition and removal protocols. We state this in a lemma which
follows directly from the derivation of equations (11) and (15) below.

Lemma 1—In the CPA addition case, where xi = (x1(0), 0), xf = (x1(0), η), η > 0, and Γ · xi

< k*, if , then . In the CPA removal case, where xi = (x1(0),

η), xf = (x1(0), ε), ε small, and Γ · xi < k*, if , then .

In both addition and removal cases we will define at most three times t1 < t2 and τ
corresponding to the switching times for control schemes. Note that these are times in the
transformed space; we must use the s = q(t) function in display (2) to determine “real”
switching times. There are three possibilities to the dynamics of the optimal control
problem: 1) the state constraint is inactive and the bang-bang optimal control outlined above

is optimal; 2) the state constraint is active but  for all t ≤ τ − t*; 3) the state

constraint is active and  for some t ≤ τ − t*. These cases are shown in figure (2).
Because of the above argument, it follows that in cases (2) and (3) there are times t1 and t2
where the unconstrained optimal path intersects the constraint line. The constrained
Pontryagin Maximum Principal states that if the optimal control M exists, there is a costate
variable p such that for t ∈ (t1, t2), M ∈  maximizes the Hamiltonian H(x, p, M):= f(x, M) ·
p + x1, and that the constraint remains active. Moreover, we must have the jump condition

. Using this fact, we are able to deduce the optimal controls. For t
∉ (t1, t2) the controls are the same as for the unconstrained system. For t ∈ (t1, t2), we must
maximize H(x, p, M) with γ2x2 = −x1+k*, which is equivalent to maximizing

Derivation of CPA addition optimal controls with an active constraint
In the CPA addition case, from our previous analysis [6] p1(t1) > 0 and p2(t1) > p1(t1)/b, so
p1(t1) and p2(t1) are both positive. Thus, since k* − γ2x2 > 0, we must choose M1 as small as
possible and M2 as large as possible with the active constraint. Thus, if M̄2 is large in the
sense of Lemma 1, we may set M1 ≡ 0. Because of this, we can explicitly solve system (3)
with Γ · x = k* for M2(t). To do so, note Γ · ẋ = 0, which means we have ẋ1 = −γ2ẋ2, or

which we solve for

(11)

and substitute this back into the system (3) with M1 = 0 to get
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(12)

This system has the solution x = (x1, x2) given by

Substituting these solutions into (11) and simplifying, we determine the constrained optimal
CPA addition control

(13)

Thus for Case (1) we have one switching time, τ, for Case (2) we have switches t1 < t2 < τ,
and for Case (3) we have switches t1 < t2. With these switching times we can define the
optimal controls in each scheme. For all three cases M1(t) ≡ 0, and in Case (1–3), we have

(14)

Derivation of CPA removal optimal controls with an active constraint
In the CPA removal case, we previously [6] found that at time t1, the inequalities p1(t1) < 0
and p2(t1) < p1(t1)/b hold, and thus we must maximize M1(t) and minimize M2(t). Now, if
M̄1 is large in the sense of Lemma 1, we may set M2 ≡ 0. Because of this we can explicitly
solve system (3) for M1(t) as above to obtain

(15)

and upon back substitution, we get

(16)

which has the solution x = (x1, x2) where x1(t) = −γ2x2(t1)e−bt + x1(t1) + γ2x2(t1) and x2(t) =
x2(t1)e−bt. Substituting this solution into (11) and simplifying, we define the constrained
optimal CPA removal control

(17)
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For Case (1) we have one switching time, τ. For Case (2) we have switches t1 < t2 < τ, and
for Case (3) we have switches t1 < t2. With these switching times we can define the optimal
controls in each scheme. For all three cases m2(t) ≡ 0, and in Case (1–3), we have

(18)

Application of optimal control to human oocyte CPA addition
There are significant advantages to oocyte cryopreservation. It allows women who do not
have a reproductive partner to preserve their unfertilized gametes. This becomes especially
relevant to children or women who may undergo potentially sterilizing iatrogenic procedures
such as chemotherapy [2]. Nearly 17% of couples experience fertility problems, and the use
of cryopreserved embryos significantly reduces the costs associated with treatment [14]. The
ethical and legal status of cryopreserved embryos, however, is a significant complication.
Successful cryopreservation of oocytes would alleviate these problems and would also
provide time for infectious disease screening that is not currently possible.

In the United States, the cost of all in vitro fertilization (IVF) and intracytoplasmic sperm
injection (ICSI) procedures is nearly $500 million per year, but the indirect costs of the
multiple live births associated with multiple embryo transfers is well over $600 million per
year [9]. The social and psychological challenges of multiple gestations is also of major
concern [3]. One reason multiple embryos are transfered per treatment is that ovarian
stimulation and oocyte collection is an invasive and expensive procedure [2]. If oocytes
could be sucessfully cryopreserved, multiple oocytes could be harvested and stored until
needed, facilitating the transfer of single embryos, and avoiding the ethical problems of
cryopreserving embryos and the patient problems of an invasive and expensive procedure.
Transferring single embryos would reduce the overall cost of fertility treatments by half in
the United States.

To date, no practical and clinically acceptable cryopreservation protocol exists for human
oocytes despite these considerable advantages. Much of the failure is attributed to the
sensitivity of the meiotic spindle during CPA addition and removal and while cooling from
room temperature to subzero temperatures. Partly to avoid this chilling sensitivity,
Kuleshova and Lopata [22] have argued that vitrification of embryos and oocytes is often
favorable to equilibrium (slow) cooling techniques. O’Neil et al. [28] have demonstrated
that some human oocytes can be successfully vitrified, but the required concentrations of
CPA exposes cells to extreme osmotic stresses and potential chemical toxicity due to a
lengthy addition and removal procedure. Specifically, to load human oocytes with 6 molar
propylene glycol required for vitrification, 4 steps are needed using a standard protocol
taking at least 122 minutes. On the other hand, the osmotic stress can be managed and the
effects of chemical toxicity minimized by using the continuous addition protocols developed
in this manuscript.

Using published parameter values for human oocytes shown in table 3, we compared
optimal controls to classic controls for the addition of multimolar (6, 4.16, and 2.46 molar)
propylene glycol, with results shown in table 4. Calculations were made with the assumption
that the maximal external CPA concentration was 6.5 molar, corresponding to M2 = 41, and

a final concentration difference at the highest  of only 0.5 molar. This value was chosen
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because at higher concentrations the viscosity of the solution may make the precise control
of the extracellular CPA concentration impossible. The impact of this concentration
constraint can be seen by the relative improvements at each goal concentration level. At the
highest goal concentration the improvement ratio values range from 4.7 to 11.1, whereas at
the lower concentrations the lowest time improvement is 6.5 and the greatest is 19.

Nevertheless, even when  is small, the time improvements are at least five-fold.

Sensitivity to parameters
In a biological system with several measured parameters, there will be considerable
variation in parameters from one population and even one individual to another. Therefore
the implementation of a closed loop optimal control is bound to be subject to errors induced
by these variations. We are interested, then, in the effects of these variations on particular
endpoints in this protocol, namely, the switching and total times. Additionally, one would
expect that there would be cell-to-cell variability in the state constraint as well. This type of
problem is easier to “engineer” around: one may simply choose a stricter constraint from the
outset, but we wish to know the effects of moving the state-constraint location on the total
transit time.

In the interest of brevity, we will only treat the CPA addition case in which the optimal
control follows case (3) of equation (14). Although an analytic expression for the total
transit time can be found up to fourth order error terms, this complicated expression involves
multiple special functions, and thus is impractical to use for sensitivity analysis. Therefore
we will provide a numerical analysis of the sensitivity to the parameters b, k*, and M̄2.

The percent error of total time, fixing 1 of the 3 parameters for the respective initial and
endpoints xi = (1,0) and xf = (1,1) is shown in figure 3. “Correct” parameter values were
assumed to be (b, k*, M̄2) = (0.8, 0.8, 5.8). The plots are divided into three regions
corresponding to the three possible cases, zero, one or two intersections of optimal trajectory
with the state constraint. The region contained inside the dashed line corresponds to the case
(2) from system (14), the region above and to the right corresponds to case (3) and the
region below and to the left corresponds to case (1). For cases (1) and (3) there is a
significant effect of maximum concentration, as expected, but for case (2) there is almost no
influence of the maximum concentration on the total transit time. This is because the total
time to and from the state constraint are small and the total time along the state constratint
does not depend explicitly on M ̄2.

Discussion and conclusions
Theoretical optimization of cryobiological protocols allows for critical engineering and
biological decisions to be made that account for parameter uncertainties in individual cell
populations along with imperfect controls. The predictions of this model, with specific, but
quite typical parameter values indicate that a significant improvement on the order of 10–20
fold over current techniques is achievable. To put this in perspective, current
deglycerolization techniques require 25–30 minutes for the complete process [1]. Using our
proposed methods, this protocol should take less than 5 minutes, if optimal controls can be
achieved. Unfortunately, accurate estimates of both water and glycerol permeabilities at the
wide range of concentrations needed for blood deglycerolization have not been made.

This technique also may be applied to cell types for which standard equilibrium freezing
approaches are not sufficient: if extremely high concentrations of CPAs can be equlibrated
within the cells, then ultrarapid cooling may “vitrify” both the cells and their surrounding
media, achieving a stable amorphous glass. A distinct advantage of this technique is that any
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xf may be specified, allowing the control of the amount of dehydration in the final state,
yielding even better glass forming tendencies.

In general, even for a large range of temperatures and cell types, 10−1 ≤ b ≤ 101 and 0.5 ≤ k*
≤ 0.9 [4,8]. Because the current “state of the art optimal” CPA addition and removal
protocol depends on step-wise (e.g. M1 and M2 piecewise constant) protocols, we may
compare standard approches to the approach outlined in this manuscript over a very large
range of cell types and temperatures. One significant detriment of the traditional approaches
is that these produce multiple osmotic events which may have a cumulative damaging effect,
but moreover, are difficult to implement as standard laboratory procedures. In Table 5 we
show the relative time improvement of the new protocols over “traditional” protocols, along
with the expected step count for the standard approach for each combination of parameters.

This manuscript provides a blueprint for the optimization of cryopreservation protocols, but
makes several critical assumptions that must be investigated before implementation in a
real-world sense. First, we used an ideal-dilute solution model to facilitate the analytic
solution of the optimal control problems. Though mathematically elegant, this assumption
may not provide enough accuracy for solutions ranging above 2–3 molal concentrations.
Because of this one may have to choose a suitable non-ideal model for high concentration
protocol definition, for example, a simple model that captures much of the non-ideality is
one defined by Elliott et al. [11]. Optimal control of systems of this nature is a current area
of our research.

Additionally, this protocol depends on the accurate control of the extracellular envirionment
immediately adjacent to the cell membrane. In order to implement this control, the
extracellular media must be continuously controlled, perhaps by either flowing media over a
cell fixed by pipette or membrane [12,27], or by moving the cell through a counter-current,
dialysis device [10]. Under both of these conditions, achieving accurate control at the cell
membrane boundary involves significant mathematical and engineering effort, with the
complications of nonlinear advection and diffusion along with changing viscosities affecting
unstirred and boundary layers. These questions were at least partially addressed by Benson
[4], with results indicating that at single somatic cell sizes, as long as the membrane surface
area remains free, diffusion is sufficient to overcome advective effects, and an ordinary
differential equation is most likely sufficient.
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Fig. 1.
Plot of the effects of two different CPA addition protocols. A hypothetical cell is
equilibrated with a goal concentration C of a permeating CPA. This cell has a lower limit to
which it can contract without damage. If the cell is exposed abruptly to C, the efflux of
water causes it to shrink below this limit, causing cell death. Alternatively, if the cell is
exposed to C/2 and then C, the cell does not exceed the limit, but is exposed to the
chemicals for a longer period of time. We wish to find an optimal balance between these two
competing effects.
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Fig. 2.
Plot of system geometry and hypothetical volume constraints defined by lines a, b, c and d
(each associated with a different k value (c.f. equation (7)). Regions within each sub-figure
are defined by the lines σi, i = I, II, III, IV from equation (8). The left and right sub-columns
represent CPA addition and removal, respectively, and the top left and right figures
represent the potential cases from equations (14) and (18), respectively. These cases come
from changing constraint lines a through d. Constraint line a is inactive, there is only one
switching time τ, and the path is represented by the black line. When constraint line b is
active, the unconstrained curve intersects b at times t1 and t2; for t1 ≤ t ≤ t2, the optimal path
is along the constraint boundary that is represented by the blue line. When constraint line c
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is active, the unconstrained curve intersects c at time t1 and t2, and for t1 ≤ t ≤ t2 the optimal
path is along the constraint boundary, represented by the orange line. In both latter cases, for
t > t2, the optimal trajectory again is the unconstrained curve, represented by the black line.
The bottom left and right figures show comparison of constrained optimal (black) and
traditional controls (purple) under typical parameters, where numbers are unitless relative
times and the solid gray line shows the unconstrained trajectory for reference.
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Fig. 3.
numerical sensitivity analysis plots. the dashed lines surround the values corresponding to
case (2) from display (14). in the case (3) scheme, the error is relatively insensitive to m̄2,
but is sensitive to both b and k*.
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Table 1

Definition of parameters

Variable Non-dimensional parameter description

x1 Cell water volume

x2 Cell permeating solute mass

xnp Cell non-permeating solute mass

xi or xf Initial or final state values, respectively

M1 Extracellular non-permeating solute concentration

M2 Extracellular permeating solute concentration

M̄i Maximal solute concentration

b Unitless relative cell permeability parameter

γ Partial molar volume of the permeating solute

k Upper or lower cell volume limit

τ,t1,t2 Switching times
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Table 2

Definition of controls

Control M1(t) M2(t)

MI 0 M̄2

MII 0 0

MIII M̄1 0
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Table 3

Definition of parameters for oocyte propylene glycol addition

Published and defined parametersa

Parameter Name Value (at 22 °C)

Lp Hydraulic Conductivity b 0.53 μm min−1 atm−1

Ps Solute permeability 16.68 μm min−1

Vi Initial volume in isosmotic media 2,650,000 μm3

Vb Osmotically Inactive Volume 503,500 μm3

Isosmotic water volume ( )
2,146,500 μm3

Desired final water volume 2,146,500 μm3

A Cell surface area based on sphere of volume Vi 92,539 μm2

V* Lower volume constraint 0.7 × Vi

T Temperature 295.15 K

R Gas Constant 0.08205 L atm K−1 mol−1

Miso Isosmotic molarity 0.29 mol/L

initial intracellular permeating solute concentration 0 mol/L

final intracellular permeating solute concentration 3 mol/L

Calculated (unitless) parameters

Parameter Equation Calculated value

b Ps/LpRTMiso 4.48

1

0

1

10.34

k* 0.51

a
All values from [29] unless noted.

b
Water and solute permeability values published in the literature were determined using a different flux model. To account for this, the conversion

was made in a similar manner to that described in [8].
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