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Abstract
The interaction of plasminogen with cell surfaces results in promotion of plasmin formation and
retention on the cell surface. This results in arming cell surfaces with the broad spectrum
proteolytic activity of plasmin. Over the past quarter century, key functional consequences of the
association of plasmin with the cell surface have been elucidated. Physiologic and
pathophysiologic processes with plasmin-dependent cell migration as a central feature include
inflammation, wound healing, oncogenesis, metastasis, myogenesis, and muscle regeneration. Cell
surface plasmin also participates in neurite outgrowth, and prohormone processing. Furthermore,
plasmin-induced cell signaling also affects the functions of inflammatory cells, via production of
cytokines, reactive oxygen species, and other mediators. Finally, plasminogen receptors regulate
fibrinolysis. In this review we highlight emerging data that shed light on long-standing
controversies and raise new issues in the field. We focus on 1) the impact of the recent X-ray
crystal structures of plasminogen and the development of antibodies that recognize cell-induced
conformational changes in plasminogen, on our understanding of the interaction of plasminogen
with cells; 2) the relationship between apoptosis and plasminogen binding to cells; 3) the current
status of our understanding of the molecular identitity of plasminogen receptors and the discovery
of a structurally unique novel plasminogen receptor, Plg-RKT; 4) the determinants of the interplay
between distinct plasminogen receptors and cellular functions; and 5) new insights into the role of
co-localization of plasminogen and plasminogen activator receptors on the cell surface.
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Introduction
Over twenty-five years ago it was first recognized that plasminogen specifically interacts
with the surfaces of cells. This interaction is analogous to the interaction of plasminogen
with fibrin in that plasminogen bound to cells is more efficiently activated by plasminogen
activators compared with plasminogen in solution (1–10). Furthermore, plasmin remains
associated with the cell surface where it is relatively protected from inactivation by α2-
antiplasmin (11;12). This results in association of the broad spectrum proteolytic activity of
plasmin with the cell surface leading to a wide array of physiological and pathological
sequelae. In this review we will highlight emerging data that shed light on long-standing
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controversies and that raise new questions in the field. Plasminogen receptors are very
broadly distributed on both prokaryotic and eukaryotic cells, including monocytes (13),
monocytoid cells (11), macrophages (14), endothelial cells (3;15), fibroblasts (16), platelets
(1), adrenal medullary cells (17;18) and carcinoma cells (19;20) as well as on cell-derived
microvesicles (21;22). The structure and function of plasminogen receptors on prokaryotic
cells have been comprehensively reviewed recently (23;24). Here, we focus on the structure
and function of eukaryotic plasminogen receptors.

Physiological and Pathological Consequences of Localization of
Plasminogen on Cell Surfaces

When cells become armed with the broad-spectrum activity of plasmin, they acquire the
ability to degrade extracellular matrices and activate other matrix-associated growth factors
and proteolytic enzymes that facilitate cell migration. Physiologic and pathophysiologic
processes with plasmin-dependent cell migration as a central feature include inflammation
(25–27), wound healing (28;29), oncogenesis (30;31), metastasis (32;33), myogenesis, and
muscle regeneration (34–36). Cell surface plasmin also participates in neurite outgrowth
(37;38), and prohormone processing (17;18;39;40). Furthermore, plasmin-induced cell
signaling also affects the functions of inflammatory cells, via production of cytokines,
reactive oxygen species, and other mediators (41;42). Finally, plasminogen receptors
regulate fibrinolysis (43–47).

Structural Determinants within Plasminogen that Mediate its Interaction
with Cells

The recent X-ray crystal structures of full-length human Glu-plasminogen (the native
circulating form of plasminogen with N-terminal Glutamic acid) (48;49) have provided new
insights into the structural determinants in the plasminogen molecule that mediate its
interaction with cells. The interactions of plasminogen with all cell types evaluated are
blocked by lysine and lysine analogs, e.g. ε-aminocaproic acid (EACA), as well as peptides
with carboxyl terminal lysines. This implies that the lysine binding sites within the disulfide-
bonded kringle domains of plasminogen are required for the interaction with cells. Indeed,
isolated kringle-containing plasminogen domains can specifically bind to cells with the
following order of potency: The kringle 1–3 domain > the kringle 5-protease domain >
kringle 2 (50). Nonetheless, the crystal structures of plasminogen reveal that only the lysine
binding site of kringle 1 is available in the closed form of Glu-plasminogen, suggesting that
Kringle 1 mediates the initial recruitment of plasminogen to the cell surface (48).

Conformational Changes Induced in Plasminogen upon Binding to Cells
and Their Relationship to Plasminogen Activation

Glu-plasminogen exists in a closed tight (T) conformation in the presence of Cl− ion (51). In
the presence of lysine and lysine analogs, Glu-plasminogen adopts a more open relaxed (R)
conformation that is much more readily activated by plasminogen activators (52). In
addition, plasmin catalyzes hydrolysis of the N-terminal 77 amino acids of Glu-
plasminogen, resulting in formation of a truncated form with an N-terminal lysine, Lys-
plasminogen. Lys-plasminogen exists in an open conformation [relaxed (R) form] and is,
consequently, more readily activated by plasminogen activators than Glu-plasminogen in the
closed conformation (53–55).

When Glu-plasminogen binds to cells, its activation is markedly enhanced, compared with
the reaction in solution due to a reduction in the Km (by 11 to 60-fold) for the plasminogen
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activation reaction in solution (1–10). This suggests that Glu-plasminogen on the cell
surface adopts a conformation distinct from its conformation in solution. Direct evidence for
such a conformational change was obtained recently using monoclonal anti-plasminogen
antibodies that recognize receptor-induced binding sites (RIBS) in Glu-plasminogen upon its
interaction with cells, but react poorly with soluble Glu-plasminogen (56–58). Previously, it
has generally been accepted that Glu-plasminogen adopts a Lys-plasminogen-like open
conformation when bound to the cell surface, to account for enhancement of activation of
cell-associated Glu-plasminogen (59). However, soluble Lys-plasminogen did not compete
for the interaction of anti-plasminogen RIBS mAbs with surface-associated Glu-
plasminogen, suggesting that the conformation induced when Glu-plasminogen binds to
cells is distinct from the conformation of Lys-plasminogen (56). Furthermore,
conformational changes in Glu-plasminogen induced by lysine analogs were detected by an
anti-plasminogen RIBS mAb, suggesting that the R form of Glu-plasminogen induced by its
interaction with lysine analogs, is distinct from the conformation of Lys-plasminogen (56).

The crystal structure of full-length plasminogen has revealed that the plasmin cleavage site
in the N-terminus (that produces Lys-plasminogen) is buried in the closed conformation of
Glu-plasminogen, suggesting that a conformational rearrangement precedes the production
of Lys-plasminogen (48). Plasmin proteolysis of Glu-plasminogen to Lys-plasminogen is
promoted when Glu-plasminogen is bound to the cell surface (60–62). Taken together, these
studies suggest that the conformation adopted by Glu-plasminogen when bound to cells is
one that exposes the cleavage site for plasmin-mediated removal of the N-terminal 77 amino
acids, as a mechanism for promoting the conversion of Glu-plasminogen to Lys-
plasminogen on the cell surface. Analysis of the crystal structure of plasminogen (48) as
well as earlier studies (38;63–65) suggest that this conformational rearrangement may be
due to an interaction of the lysine binding site within plasminogen kringle 5 with
plasminogen receptors on the cell surface.

Relationship Between Plasminogen Binding to Cells and Apoptosis
An evolving area of research strongly supports a role for plasminogen receptors and the
plasminogen activation system in regulation of apoptosis. With adherent cells, plasmin
promotes anoikis, depriving cells of a necessary survival signal due to the loss of cell/matrix
interactions, leading to programmed cell death. For example, plasmin degrades the
hippocampal extracellular matrix protein, laminin, in response to excitotoxin treatment,
leading to neuronal cell detachment and cell death (66;67). Similarly, plasmin-dependent
anoikis is observed with adherent smooth muscle cells (68;69), retinal cells (70) and
fibroblast cell lines (71).

Plasminogen binding capacity is markedly enhanced on both early apoptotic and late
apoptotic/necrotic monocytoid cells following treatment with either cycloheximide (72–74)
or TNFα (74), consistent with a role for cell-associated plasminogen in regulation of
apoptosis. In contrast to adherent cells, monocytoid cells do not depend on adherence for a
survival signal. Interestingly, plasminogen has a cytoprotective effect on TNFα-induced
apoptosis in monocytoid cells that is independent of anoikis and requires both plasmin
activity and PAR1 (74). In addition, plasminogen has prosurvival effects on both
spontaneous and Fas-induced neutrophil apoptosis and triggers Akt phosphorylation and
ERK1/2 activation via an interaction of plasminogen with the integrin, αMβ2 (75). Thus,
plasminogen receptors play a key role in the inflammatory responses of both monocytoid
cells and neutrophils by regulating cellular apoptosis.

Plasminogen binding is also markedly higher on non-viable breast cancer cell lines
compared with viable cancer cells (32). Cell-associated plasmin has recently been
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demonstrated to cleave the CUB domain containing protein 1 (CDCP1), resulting in outside-
in signaling involving activation of Akt-related cell survival and suppression of PARP1-
induced apoptosis in cancer cells (76;77). This signaling cascade ultimately regulates the
survival potential of tumor cells in the late stages of the metastatic cascade, namely during
extravasation and early tissue colonization. The results also suggest that the original link of
the uPA-plasmin system with cancer may not all be via protease-mediated invasive
migration, but also via plasmin cleavage and activation of cell survival signaling molecules.

The observation that plasminogen binding capacity is markedly enhanced on both early
apoptotic and late apoptotic/necrotic cells (32;72–74) was made possible by the use of
fluorescence activated cell sorting (FACS) analysis in which plasminogen binding,
separately, to live, apoptotic and necrotic cell populations could be evaluated. Thus, it
became incumbent upon investigators studying plasminogen receptors to use this method
and it has since replaced earlier methods in which tagged plasminogen binding to whole cell
populations was quantified. In addition, kinetic constants can be derived using quantitative
FACS analysis (78;79). The relationship between plasminogen binding and apoptosis also
serves as an impetus for re-examination of the broad distribution as well as the number of
plasminogen binding sites on numerous viable cell types, since these former analyses may
have included apoptotic/necrotic cell types. For example, previously, the only cell type
examined (in analysis of more than twenty cell types that were not separated into viable/
apoptotic/necrotic populations) that did not appreciably bind plasminogen was the
erythrocyte (13). However, using FACS analysis, we were able to identify the first viable
nucleated cell type, the murine macrophage progenitor line, Hoxa9ER4 (80), which did not
detectably bind plasminogen unless differentiated to macrophages (79).

Molecular Identity of Plasminogen Receptors
A key concept regarding the mechanism by which an interaction with the eukaryotic cell
surface promotes plasminogen activation is that a subset of carboxypeptidase B (CpB)-
sensitive plasminogen binding proteins is responsible for enhancing plasminogen activation.
When cells are treated with CpB, the ability to stimulate plasminogen activation is lost (81).
Furthermore, plasminogen-dependent macrophage recruitment in the inflammatory response
in vivo is mediated by CpB-sensitive plasminogen binding sites (82). Since CpB removes C-
terminal basic residues, these results imply that plasminogen binding proteins exposing C-
terminal basic residues on cell surfaces are responsible for stimulation of plasminogen
activation.

Several distinct plasminogen receptors have been identified over the past decades, consistent
with the high number of receptors determined/cell [ranging from 37,000/platelet (1) to > 107

sites/endothelial cell (15)] and also consistent with the diversity of cell types that bind
plasminogen.

Until recently, known CpB-sensitive cellular plasminogen receptors could be divided into
two classes: 1) proteins synthesized with C-terminal basic residues and having well
established intracellular functions, including α-enolase (83;84), cytokeratin 8 (20;85),
S100A10 (in complex with annexin A2 within the annexin A2 heterotetramer) (46;86;87),
TIP49a (88) and histone H2B (89) and; 2) proteins requiring proteolytic processing in order
to reveal a C-terminal basic residue (lysine), including actin (90;91). It was initially
proposed that the annexin A2 monomer functioned directly as a plasminogen receptor after a
proteolytic cleavage event to liberate a new C-terminal lysine (92). However, recent data
suggest that the profibrinolytic role of annexin A2 is to transport and localize the
plasminogen regulatory protein, S100A10, to the cell surface within the annexin A2
heterotetramer [reviewed in (31;46)]. It should be noted that there is a CpB-insensitive
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component of plasminogen binding to eukaryotic cells, as exemplified by tissue factor (93)
and the non-proteinaceous gangliosides (94). However, this CpB-insensitive class of
plasminogen receptors does not appreciably promote activation of cell-bound plasminogen
(81). Integrins, including αIIbβ3 (95;96), αMβ2 (47;97) and α5β1 (97), as well as amphoterin
(98) and GP330 (99;100) are plasminogen binding proteins not synthesized with C-terminal
basic residues. Whether this group of proteins undergoes proteolysis to reveal C-terminal
basic residues and/or are susceptible to CpB proteolysis has not been investigated.

Recently, we used a proteomics approach involving multidimensional protein identification
technology (MudPIT) [reviewed in (101)] to probe the membrane proteome of
differentiated, macrophage colony stimulating factor (M-CSF)-treated murine monocyte
progenitor cells for the presence of integral membrane plasminogen receptor(s) exposing a
C-terminal basic residue on the cell surface (79). Intact cells were biotinylated using a
biotinylation reagent that reacts with carboxyl groups, rather than basic groups (thus,
avoiding potential interference with the plasminogen-binding function of C-terminal basic
residues). Because early apoptotic and non-viable/necrotic cells exhibit markedly enhanced
plasminogen binding ability (72–74) we wished to focus on plasminogen receptors on viable
cells and, therefore, passed the biotinylated cells over a dead cell removal column to enrich
for live cells. The cells were then lysed and membrane fractions prepared and passed over a
plasminogen-Sepharose affinity column and specifically eluted with EACA. Biotinylated
cell surface proteins bound to the avidin column and were digested with trypsin while still
on the column. The peptide digest was then subjected to MudPIT. In MudPIT, the peptide
mixtures were first resolved by strong cation exchange liquid chromatography upstream of
reversed phase liquid chromatography. The eluting peptides were electrosprayed onto an
LTQ ion trap mass spectrometer and full MS spectra were recorded over a 400–1600 m/z
range, followed by three tandem mass events. The resulting spectra were searched against a
mouse protein database. Only one protein with a predicted transmembrane sequence and a
C-terminal basic residue was identified: the hypothetical protein, C9orf46 homolog
(IPI00136293), homologous to the protein predicted to be encoded by human chromosome
9, open reading frame 46. We have designated the protein, Plg-RKT, to indicate a
plasminogen receptor with a C-terminal lysine and having a transmembrane domain (see
below).

The C9orf46 homolog/Plg-RKT murine DNA sequence encodes a protein of 147 amino acids
with a molecular mass of 17,261 Da and a C-terminal lysine (Figure 1, top line). We blasted
the C9orf46 homolog/Plg-RKT sequence against all species using NCBI Blast and obtained
unique human, rat, dog, cow, dog, giant panda, gibbon, horse, pig, rabbit, and rhesus
monkey predicted orthologs, which exhibited high identity (e.g. human vs. chimpanzee =
99% identity) and no gaps in the sequence. Of key importance, a C-terminal lysine was
predicted for all of the mammalian orthologs obtained in the blast search. In a query of the
Ensembl Gene Report, DNA sequences of all 10 other sequenced mammalian orthologs
encoded a C-terminal lysine (102).

In addition to mammals, the DNA sequences of xenopus, the green lizard and zebrafish also
encode a C-terminal lysine. The Plg-RKT sequence also encodes a putative conserved
DUF2368 domain (encompassing amino acids 1–135), an uncharacterized protein with
unknown function conserved from nematodes to humans. Notably, the DNA sequences of
Plg-RKT orthologs of lower organisms (e.g. the sea urchin, Strongylocentrotus purpuratus,
Drosophila and Paramecium) predicted proteins of different lengths and did not consistently
predict C-terminal lysines. It is interesting to note that the evolutionary origin of
plasminogen is currently believed to originate with protochordates (103), so that lower
organisms without plasminogen would not need the C-terminal lysine of Plg-RKT to bind
plasminogen.
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It is noteworthy that the primary sequence of C9orf46/Plg-RKT is apparently tightly
conserved in humans, with no validated coding polymorphisms (cSNPs) thus far identified
within the 6 exons encoded by the gene (on chromosome 9p24.1) in the NCBI human
genome sequence variation database (dbSNP, http://www.ncbi.nlm.nih.gov/SNP).

We analyzed the C9orf46 homolog/Plg-RKT sequence in the TMpred site
(www.ch.embnet.org/cgi-bin/TMPRED). The strongly preferred model included two
transmembrane helices extending from F53-L73 (secondary helix, oriented from outside the
cell to inside the cell) and P78-Y99 (primary helix, oriented from inside the cell to outside the
cell) (Figure 1). Thus, a 52 amino acid N-terminal region and a 48 amino acid C-terminal
tail with a C-terminal lysine were predicted to be exposed on the cell surface. The
predictions of the topology model were supported using several experimental approaches. 1)
In Triton X-114 phase separation experiments Plg-RKT partitioned to the detergent phase,
thus behaving as an integral membrane protein (79;104). 2) When we treated intact cells
with CpB, prior to performing our proteomic analysis, Plg-RKT was not recovered,
consistent with cell surface exposure of the C-terminus of Plg-RKT (79). 3) A mAb raised
against the C-terminal peptide of Plg-RKT reacted with the cell surface (79;104). 4)
Extracellular exposure of both N-and C-termini of Plg-RKT was supported by protease
accessibility experiments (102;105).

Plg-RKT exhibited key properties of a plasminogen receptor. First, plasminogen bound
directly to the C-terminal peptide of Plg-RKT and a mAb raised against the C-terminal
peptide of Plg-RKT recognized plasminogen binding sites on cells (79). Second, Plg-RKT
promoted plasminogen activation by both t-PA (79) and uPA (106). Third, over-expression
of Plg-RKT increased the ability of cells to promote plasminogen activation (104). In our
first evaluations of potential physiological functions of Plg-RKT, we found that Plg-RKT
regulated cellular invasion through an extracellular matrix, promoted chemotaxis/cell
migration in vitro and regulated plasminogen-dependent macrophage recruitment in the
inflammatory response in vivo (106). In addition, Plg-RKT regulates plasmin-dependent
modulation of catecholamine release from catecholaminergic cells (104).

Because the murine genome has been sequenced we searched for C9orf46 homolog/Plg-RKT
mRNA microarray expression data at http://www.ebi.ac.uk/microarray-as/aew/. Plg-RKT
mRNA is present in monocytes, leukocytes, NK cells, T cells, myeloid, dendritic, and
plasmacytoid cells, breast cancer, acute lymphoblastic leukemia and Molt-4 acute
lymphoblastic leukemia cells. These data are consistent with previous reports documenting
expression of plasminogen binding sites on peripheral blood leukocytes (13), breast cancer
cells (32;107) and other tissues [reviewed in (108)]. The broad distribution in tissues that
express plasminogen binding sites, suggest that Plg-RKT provides plasminogen receptor
function that may serve to modulate plasmin proteolytic functions in these tissues, as well.

Interplay Among Plasminogen Receptors in Cellular Functions
The high number of plasminogen binding sites/cell taken together with the diversity of cell
types that bind plasminogen (15) suggests that the plasminogen binding capacity of a given
cell may be composed of contributions from a set of distinct cell surface proteins and that
different cell types may utilize a different panel of plasminogen receptors [recently reviewed
by Plow and colleagues in (109)]. The results of our proteomic analysis of differentiated
monocyte progenitor cells were consistent with this concept: In addition to peptides
corresponding to Plg-RKT, peptides corresponding to other proteins previously identified as
plasminogen binding proteins on monocytes were also detected in the membrane
preparations: α-enolase, gamma actin, S100A10, annexin 2 (that most likely bound to the
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plasminogen-Sepharose column via S100A10 in the annexin 2 heterotetramer), histone H2B,
and β2 integrin.

The thioglycollate-induced model of macrophage recruitment originally demonstrated the
key role of plasminogen receptors with C-terminal lysines in cell migration in the
inflammatory response in vivo (82). Recent studies utilizing this model illustrate the
interplay among distinct plasminogen receptors in vivo because the sum of the effects of
functional blockade of specific plasminogen receptors, is greater than a 100% reduction in
plasminogen-dependent macrophage recruitment. Intravenous injection of specific
antibodies to histone H2B results in 48% less macrophage recruitment (110), injection of
specific antibodies to α-enolase results in 24% less recruitment (110) and injection of mice
with anti- Plg-RKT mAb results in 49% less macrophage recruitment (106) (compared to
injection of nonimmune control). In S100A10−/− mice, macrophage recruitment in response
to thioglycollate is 53% less in S100A10 −/− mice, compared to wild type mice (111). Thus,
it is likely that each specific plasminogen receptor may be required at different steps in the
inflammatory response, for example chemotactic migration to the peritoneum, or, perhaps,
crossing different layers of peritoneal tissue at which different contributions of direct
plasmic cleavage of the extracellular matrix or activation of MMP-9 for collagen
degradation (112) may predominate. It is noteworthy that a reduction in pro-MMP-9
activation has been demonstrated in S100A10−/− peritoneal macrophages in culture (111)
and by treatment of mice with anti-Plg-RKT mAb in vivo and there may be overlap in this
function, as well. Although each of these receptors regulates Matrigel invasion in vitro
(106;110;111;113), only Plg-RKT has been demonstrated to contribute to directed
chemotaxis/chemokinesis (106). Thus, Plg-RKT may be the predominant modulator of this
component of macrophage recruitment.

It should also be recognized that the annexin A2/S100A10 complex binds to anionic
phospholipids in a Ca+2-dependent manner (31;46;114;115) and it has recently been shown
that histone H2B is tethered to the cell surface via an electrostatic interaction with
phosphatidyl serine (116). Phosphatidyl serine exposure is a well established marker of
apoptosis. When apoptosis is induced, cell surface expression of both histone H2B and
S100A10 is increased (109;116). In addition, differentiation of monocytes to macrophages
(117;118) and cellular activation (119) are associated with phosphatidyl serine exposure and
when cells are induced to differentiate, phosphatidyl serine exposure is increased on non-
apoptotic cells (116). Thus, differential exposure of phosphatidyl serine may play a role in
determining which plasminogen receptors are utilized at a given stage in cell maturation and
activation.

The contribution of distinct plasminogen receptors to macrophage recruitment may also be
tissue- and stimulus- specific. For example in a model of monocyte recruitment to the
alveolar compartment, α-enolase appears to play a predominant role (113). α-enolase also
plays a role in inflammatory cell infiltration required for muscle repair after injury (120).

The Role of Co-localization of Plasminogen and Plasminogen Activators on
the Cell Surface

Both Plg-RKT and S100A1 co-localize with uPAR on the cell surface (46;79) and uPAR is
also detected in immunopreciptates of Plg-RKT, of S100A10 and of αMβ2 (46;47;104;121).
This physical association supports a mechanism for enhancement of plasminogen activation
when plasminogen is bound to Plg-RKT or S100A10 and uPA is bound to the uPAR. In
addition, the group of Angles-Cano has recently suggested a new mechanism for cell surface
plasmin generation, which bypasses the requirement for molecular coassembly of
plasminogen and uPA on the same surface, via proteolytic crosstalk between plasminogen
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and uPA bound to uPAR on adjacent cells, rather than simultaneously to the same cell (59).
Alternatively, a uPAR-independent mechanism requiring simultaneous binding of both
plasminogen and uPA (via its amino terminal domain) for stimulation of plasminogen
activation has been demonstrated using leukemic cell lines (9). This involves a low affinity/
high capacity interaction of uPA with the cell surface (9) and may be similar to the
mechanism by which plasminogen activation by uPA is enhanced on the platelet surface
(1;122) as platelets do not express the uPAR. Nonetheless, all of the foregoing mechanisms
require that plasminogen be directly bound to the cell surface (5;9) and the relative
importance of each mechanism may depend on the specific plasminogen receptor(s) utilized
by a given cell type.

In contrast to the results with uPA, molecular cross-talk between t-PA and plasminogen
bound to adjacent cells was not observed (59), and, thus, may require their simultaneous
colocalization on the same cell surface. It is noteworthy that plasminogen and t-PA share
binding sites on the cell surface, based on cross-competition studies (123). Both Plg-RKT
and S100A10 have been demonstrated to directly bind t-PA (79;124–126). Despite
potentially sharing binding sites on Plg-RKT and S10010, the relative concentrations of t-PA
and plasminogen in the circulation should permit simultaneous binding of both ligands to the
cell surface, and each t-PA molecule should be bound proximally to several plasminogen
molecules (123).

Conclusions
Over the past 25 years, a broad spectrum of experimental approaches and areas of
investigation have demonstrated the wide array of cellular events and functions that are
mediated by the interaction of plasminogen with it cellular receptors. Plasminogen receptors
play a fundamentally important role in physiological and pathological processes. Future
studies in vivo with antibody blockade of specific receptors and with transgenic mice will
further elucidate mechanisms by which these processes are regulated.
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Abbreviations

CpB Carboxypeptidase B

EACA ε-aminocaproic acid

FACS fluorescence activated cell sorting

M-CSF macrophage colony stimulating factor

MudPIT multidimensional protein identification technology

RIBS receptor-induced binding sites

t-PA tissue type plasminogen activator

uPA urokinase-type plasminogen activator

uPAR urokinase plasminogen activator receptor
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Figure 1. Alignment of predicted amino acid sequences of mouse, human, rat, dog and cow
orthologs of Plg-RKT (a) and the structural model of Plg-RKT (b) show high interspecies
sequence homology
Green indicates amino acids within the predicted primary transmembrane helix. Orange
indicates amino acids within the predicted secondary transmembrane helix. Red indicates
basic amino acids. This research was originally published in Blood, Andronicos, N.M.,
Chen, E.I., Baik, N., Bai, H., Parmer, C.M., Kiosses, W.B., Kamps, M.P., Yates, J.R., III,
Parmer, R.J., Miles, L.A., Proteomics-based discovery of a novel, structurally unique, and
developmentally regulated plasminogen receptor, Plg-RKT, a major regulator of cell surface
plasminogen activation, Blood. 2010, 115: 1319–30.© the American Society of Hematology.
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