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Abstract

Human Immunodeficiency Virus type 1 (HIV-1) because of high mutation rates, large population sizes, and rapid replication,
exhibits complex evolutionary strategies. For the analysis of evolutionary processes, the graphical representation of fitness
landscapes provides a significant advantage. The experimental determination of viral fitness remains, in general, difficult
and consequently most published fitness landscapes have been artificial, theoretical or estimated. Self-Organizing Maps
(SOM) are a class of Artificial Neural Network (ANN) for the generation of topological ordered maps. Here, three-dimensional
(3D) data driven fitness landscapes, derived from a collection of sequences from HIV-1 viruses after ‘‘in vitro’’ passages and
labelled with the corresponding experimental fitness values, were created by SOM. These maps were used for the
visualization and study of the evolutionary process of HIV-1 ‘‘in vitro’’ fitness recovery, by directly relating fitness values with
viral sequences. In addition to the representation of the sequence space search carried out by the viruses, these landscapes
could also be applied for the analysis of related variants like members of viral quasiespecies. SOM maps permit the
visualization of the complex evolutionary pathways in HIV-1 fitness recovery. SOM fitness landscapes have an enormous
potential for the study of evolution in related viruses of ‘‘in vitro’’ works or from ‘‘in vivo’’ clinical studies with human, animal
or plant viral infections.
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Introduction

Human Immunodeficiency Virus type 1 (HIV-1) is characterized

by high mutation rates, large population sizes, and rapid replication

rates. As a result, HIV-1 exhibits complex evolutionary strategies

[1,2]. HIV-1 ‘‘in vitro’’ studies after serial culture passages with

alterations in the population size have been used for the simulation

and study of viral evolution (Figure 1 and 2) [3–7]. These studies

permitted the investigation of the fitness recovery, the dynamics of

viral quasispecies and the overall viral evolution [3–8].

Fitness landscapes, a graphic representation of evolutionary

processes, togheter with mutations rates and population sizes gives

an approach for the study of evolution [9]. For the investigation on

the evolution of organisms, Sewall Wright [9] depicted the change

in allele frequency for the production of adaptative landscapes.

These landscapes were primarily used for the illustration of

evolutionary pathways. Afterwards, they were extended with the

concept of sequence space [10] and for the generation of fitness

landscapes [11,12]. These maps are widely used for the analysis of

evolution in different organism from vertebrates [13] to bacterio-

phages [14,15], RNA viruses [16–18], including HIV-1 [19–21],

to small RNAs [22–25] or proteins [26]. In addition, fitness

landscapes make possible the investigation of evolutionary

pathways. In general, the direct experimental determination of

real fitness values in organisms is difficult [27], and its detection is

restricted to limited alleles [28]. In consequence, most fitness

landscapes have been artificial, theoretical or estimated [13] and

realistic fitness landscapes are lacking [28].

The study of evolution in small RNA artifitial populations was

performed, several years ago, by the projection of sequence data

from high-dimensional sequence space into two dimensions, using

the two largest eigenvectors to obtain the bi-dimensional

sequences coordinates [29,30]. The connection of sequences was

performed by the computation of the minimum spanning tree by

means of a tree with the minimum total cost [29,30]. Self-

Organizing Map (SOM) is a class of Artificial Neural Network

(ANN) that provides the projection of a high-dimensional input

space on a two-dimensional topologically ordered map. The map
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produced by the SOM training algorithm [31] is formed by a set of

reference vectors also known as neurons, organized in a bi-

dimensional grid. The training algorithm adjusts the values of the

reference vectors (nucleotide sequences in this work) through an

iterative process that uses a set of sample vectors of the input

space. As the relatedness of viruses in the network is a consequence

of the sequence composition, the experimental fitness determina-

tion of some viruses could allow, in a non-probabilistic manner,

the association in the SOM map of a fitness value with a viral

sequence.

The objective of this work is the study of the biological fitness

recovery of HIV-1 viral populations after ‘‘in vitro’’ culture. To this

end, data driven three-dimensional (3D) fitness landscapes have

been created with HIV-1 experimental data, using Self Organizing

Maps (SOM) [31]. These fitness landscapes were also employed

for the visualization and study of fitness in related members of viral

quasispecies from the recovered viral populations and the

depiction of recovery pathways.

Materials and Methods

Origin of the HIV-1 biological clones studied
The biological clones of the study (D, E, G, H, I, and K),

derived from a natural isolate [3], were subjected to different serial

passages (Figure 1). They were first plaque to plaque passaged for

15 rounds in MT-4 cells with important fitness losses [4]. From

these final populations, in general, two biological clones were

obtained. These clones were subjected to 30 serial large population

recovery passages in MT-4 cells resulting in a progressive increase

in viral fitness [5–7]. These serial passages were performed by

infecting 2.5 or 56106 MT-4 cells (Figure 1). Clones D1 and G1

were passaged in parallel in 2.5 and 56106 MT-4 cells and

designated A and B in Figure 1. Viruses were recovered from the

culture supernatant at 5 to 7 days post-infection, and used for the

inoculation of the following passage [3]. All these experiments

produced a set of 55 viruses (Figure 1). In every virus from this set,

a virological characterization was performed, in previous studies of

the laboratory, including the p24 production and viral titer (Table

S1 in File S1) [4,6,7] and Lorenzo-Redondo et al (manuscript in

preparation). p24 viral production was measured with the Elecsys

(HIV Ag, Roche) and viral titer was performed in MT-2 cells and

expressed as tissue culture infecting dose 50 (TCID50/ml) (Table

S1 in File S1). Viral fitness was calculated in competition cultures

against a common virus [4,6,7] and Lorenzo-Redondo et al.

(manuscript in preparation). DNA extraction, complete genome

sequencing, fitness assay, and GeneScan quantification have been

previously described [6,7]. Viral divergence was calculated as the

Figure 1. Genealogy of the HIV-1 viral clones studied. Schematic representation of the serial passages performed with the viruses. Six
biological clones, derived from a natural isolate [3], represented by circles in the left part of the Figure, were plaque to plaque passaged for 15 rounds
resulting in drastic fitness losses [4]. Some of the clones (G, E and H) did not overcame the 15 passages [4]. In general, two clones from the final
debilitated biological clones designated D1, D2, E1, G1, G2, H1, I1, I5, K1 and K2 were later subjected to large population recovery passages [6]. Large
population passages (10, 20 and 30) with these clones, represented by bottles, arrows and dots in the right part of the figure, were performed in
2.56106 and 56106 MT-4 cells [6]. Viral populations are indicated by letters identifying the clone, followed by p1 for the initial population, p11 for
passage 11, p21 for passage 21 and p31 for passage 31 [6,7]. Clones D1 and G1 that are represented after keys were passaged in parallel in 2.56106

(designated A) and in 56106 MT-4 cells (designated B) [7]. Clones E1, and H1 were passaged only in 56106 MT-4 cells. The set of 55 viruses used in the
present work are marked in bigger and bold font.
doi:10.1371/journal.pone.0088579.g001

HIV-1 Realistic Fitness Landscape
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mean evolutionary divergence expressed as the number of bases

substitutions per site (in percentage) 6 standard error, using the

Maximum Composite Likelihood model as in [32]. For simplicity,

in Table 1 of the manuscript are shown the mean divergence

between lineages, while in Table S2 in File S1 is presented the

complete set of genetic distances. A phylogenetic analysis by the

Maximum-Likelihood method was carried out to study the genetic

relationship and variability of the viruses (Figure 2).

Quasispecies analysis
For the analysis of the mutant spectra of the recovered viruses ,

we used four different genomic regions [6,7]. In the present work,

we selected only one of the regions, the V1–V2 region, due to its

importance in viral infectivity and tropism. For this analysis, we

amplified a fragment of 690 nucleotides, from positions 6045 to

6735, emcompassing from vpu to the V1–V2 region in env. This

fragment was divided in two regions one corresponding to the vpu

gene and the other to the V1–V2 env gene [7]. The V1–V2

quasispecies sequences were processed by SOM to check the

usefulness of the method to approach fitness values, based on

sequence similarity, and for the prediction of the complex

evolutionary pathways followed by the viruses in the fitness

recovery.

SOM
SOM algorithm topologically orders data of high dimension, by

an unsupervised process, for the creation of a two-dimensional grid

of reference vectors. For the specific case of the viral sequences of

this study, the SOM algorithm generated an ordered grid in which

each node (neuron) was associated with a reference DNA sequence

(see SOM parameters used in Table S3 in File S1). Each neuron of

the network maps all input sequences with a distance to its

reference vector smaller than the rest of reference vectors. This

distance is calculated by an innovative nucleotide codification

method (see nucleotide codification method in File S2). The entire

set of training sequences can be projected by the trained SOM,

producing a two-dimensional map ordered by similarity between

the training set of DNA sequences (see Figure S1 in File S2). The

trained SOM can also be used for the projection of DNA

sequences not employed during the training, and the sequences

will map to the neuron with the closest reference vector. In this

way, a two-dimensional graph was produced, showing similarity

relationships based, exclusively, on the sequence information of

the DNA chains. It is important to highlight that the training and

new sequences must have the same length. Furthermore, new

sequences projected on the SOM should have similarity with those

used for training. This is because the knowledge acquired by the

SOM is based on the information in the training sequences, and

thus, SOM representation is bounded to the domain defined by

the training sequences.

In the SOM trained with DNA sequences, a three-dimensional

map can be constructed labelling each neuron with the value of a

property not used in the training. In this study, the labelling of the

SOM map was carried out with the experimental fitness values

[4,6,7] and Lorenzo-Redondo et al. (manuscript in preparation).

Figure 2. Maximum Likelihood phylogenetic tree of the
studied viruses. Maximum Likelihood tree constructed with the
complete genomic sequences of the studied viruses and the parental
S61 virus. The tree parameters of the weighted evolutionary model
were obtained previously by JModelTest and the tree was obtained by
the PHYML program. Viruses grouped by lineages with some long
branches. Bar represents the genetic distance.
doi:10.1371/journal.pone.0088579.g002
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This tagging required a set of DNA sequences from viruses with its

fitness calculated from competition experiments in the laboratory

[6,7]. Each neuron of the SOM was labelled with the weighted

average value of the fitness corresponding to the L DNA sequences

of this set, closest to the reference vector of the neuron [33]. For

the calculation of the fitness value of a neuron, the fitness

associated to the L DNA sequences is weighted by the distance

with the sequence of the reference vector of the neuron. Thus, the

L parameter determines the number of different DNA sequences

used for the labelling. The higher the L value, the higher the

number of sequences is used in fitness information, and the

landscape is smoother. Using L = 1, the fitness label of a neuron

corresponds to the fitness value of the closest DNA sequence.

The three dimensional (3D) map created by the SOM is a

graphical visualization of the fitness landscape associated with the

sequences employed in SOM training and labelling. When DNA

sequences present sequential mutations within viral populations,

potential evolutionary pathways can be displayed on the 3D map,

as well as topographical characteristics of the region can be

defined, like abrupt areas, deep valleys or flat regions. The

software used in this work can be requested in sole@eui.upm.es,

and was developed for the Ph.D http://oa.upm.es/1930/.

Results

Virological characterization of the related HIV-1 clones
Six biological clones (D, E, G, H, I, and K) derived from isolate

s61 were subjected to ‘‘in vitro’’ serial passages (see Materials and

Methods and Figure 1) generating a collection of 55 viruses

(Figure 1). In every virus from this set viral production, measured

by 24 levels and viral titers were determined (Table S1). Using

competition cultures against the same reference virus, we

calculated the fitness of every virus (Table 2) [4–7]. In the initial

viruses, fitness values were between 0.2 in viruses from lineage D

and 0.7 in virus I1. After the passages, the maximum fitness values

raised to 3.4 in G1p31 or to 2.8 in H1.p31 (Table 2). Others viruses

Table 1. Mean genetic divergence between lineages.

Lineages D E G H I

distancea errorb distancea errorb distancea errorb distancea errorb distancea errorb

D

E 1.0 0.1

G 1.4 0.1 1.4 0.1

H 1.3 0.1 1.2 0.1 1.3 0.1

I 1.0 0.1 1.2 0.1 1.6 0.1 1.5 0.1

K 1.0 0.1 1.4 0.1 1.4 0.1 1.2 0.1 1.4 0.1

aEstimates of evolutionary divergence between lineages expressed as mean number of base substitutions per site in sequence pairs.
bStandard error estimate(s). Analyses were conducted using the Maximum Composite Likelihood model [32]. The analysis involved 46 nucleotide sequences and a total
of 8663 positions in the final dataset. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated.
Evolutionary analyses were conducted in MEGA5program [32].
doi:10.1371/journal.pone.0088579.t001

Table 2. Fitness values of the viruses and their increases during the recovery passages.

Passage

1 11 21 31

Virus Meana Mean Increase(X) Mean Increase(X) Mean Increase(X)
Total
Increaseb

D1 0.260.13 0.960.06 4.86 1.0560.05 1.156 1.560.3 1.426 4.86

D1.5 0.260.13 0.960.07 4.86 1.460.24 1.516 0.860.27 0.66 0.76

D2 0.360.03 1.0060.02 3.56 1.0060.01 16 1.560.24 1.66 5.46

E1.5 0.6560.04 0.8560.03 1.36 0.960.05 1.036 0.960.08 1.046 1.66

G1 0.660.05 0.860.03 1.26 1.360.18 1.76 3.461.77 2.66 5.56

G1.5 0.660.05 0.760.02 1.16 1.260.2 1.76 0.560.04 0.386 0.756

G2 0.760.03 0.760.01 1.026 0.860.08 1.076 1.760.38 2.26 2.56

H1.5 0.560.04 0.9560.01 1.96 1.660.15 1.66 2.861.58 1.86 5.56

I1 0.560.09 0.760.02 1.36 0.860.01 1.26 1.960.25 2.36 3.56

I5 0.660.03 0.660.03 0.96 0.960.15 1.66 1.260.47 1.36 26

K1 0.760 0.860 1.26 0.860.02 0.946 2.0061.07 2.66 2.96

K2 0.760.04 0.760.04 0.986 0.760.05 1 0.660.27 0.94 0.92

aMean fitness values 6 standard error. Fitness values were calculated in competition cultures against a common reference virus as described in [4,6,7].
bTotal increase refers to the fold increase between the initial and the final passage 31 populations.
doi:10.1371/journal.pone.0088579.t002
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had more moderate but constant increases like E1.5 virus, and two

viruses (D1.5 and G1.5) had fitness decreases at passage 31

(Table 2); finally, one of the virus (K2) was not able, after the

passages, to increase fitness. In summary, during the recovery

passages, although uneven in magnitude and among lineages

(Table 2), there was a global increase in viral fitness.

The complete global nucleotide sequence from all recovered

viruses [6,7] was obtained for the study of the accumulation of

mutations in the fitness recovery as well as for the evolution of the

different lineages. Viral divergence between viruses, calculated as

described in Materials and Methods, was up to a maximum mean

distance between lineages of 1.6% (Table 1) and a maximum of

2.1% between individual viruses G1p31 and I1p21 (Table S2) [32].

Estimation of the phylogenetic relationships between the viruses

was carried out by Maximum Likelihood (ML) method and the

corresponding tree is shown in Figure 2. In general, there were no

branches in the tree showing high evolutionary distances, except in

K and D lineages in passage 21 and 31, and the two branches with

the highest estimated distances that corresponded with viruses with

the largest fitness increases (G1p31 and H1p31, Figure 2 and

Table 2). The phylogenetic tree permitted the analysis of viral

evolution and the display of the clustering of lineages.

Quasispecies analysis in the viral populations was carried out to

study the viral diversification along passages. This quasispecies

analysis was performed by examination of 20 clones per sample

during the recovery passage (Table 3) in the V1–V2 region in env

gene which is an important region for viral fitness (Materials and

Methods). Viruses with important fitness increases (see for example

viruses G1p31 and H1p31) showed the highest gain in quasispecies

heterogeneity in passage 21 and 31, whereas viruses with limited

Table 3. Quasispecies diversity in the V1–V2 region in env
gene of the recovered viruses.

Passages

1 11 21 31

Virus Meana Meana Meana Meana

D1 0,3660.23a 0,3060.17 0,2260.20 0,3460.34

D1.5 0,3660.23 0,3860.13 0,1560.11 0,2060.16

D2 0,1760.16 0,3160.25 0,446023 0,3460.11

E1.5 0,3860.24 0,4460.22 0,3260.13 0,3860.16

G1 0,2560.17 0,3660.18 0,8460.40 0,6360.23

G1.5 0,2560.17 0,5060.02 0,2660.18 0,2860.16

G2 0,2860.20 0,4760.27 0,6960.50 0,1160.10

H1.5 0,3060.21 0,4660.20 0,7760.27 0,5860.19

I1 0,2260.02 0,3160.16 0,5560.21 0,6760.47

I5 0,1660.16 0,2460.15 0,3660.17 0,4960.32

K1 0,2660.22 0,4060.15 0,3960.14 0,4960.24

K2 0,3360.03 0,3460.18 0,4860.30 0,5060.21

aMean genetic distance measured as substitutions per site in all pairwise
comparison. As heterogeneity differences between the four regions studied
were minor, we used the mean genetic distance of all viruses. The quasispecies
heterogeneity was estimated using the mean genetic distance of the nucleotide
sequences by Maximum Likelihood after the use of the jModeltest to establish
the parameters which selected the GTR+G model. The estimation was carried
with the PAUP program [40].
doi:10.1371/journal.pone.0088579.t003

Figure 3. Representation of the fitness landscape of the HIV-1 studied viruses from the complete genome sequences and depiction
of the viral recovery pathways. The landscape was constructed by SOM with the complete genomic sequences from the set of 55 viruses (see
Figure 1) and labelled with the fitness value of the closest sequence (factor L = 1 was used to label the network). The SOM was formed by a grid of
15615 neurons (Fig. S1). Each vertex of the bi-dimensional mesh symbolized a neuron of the SOM network. Grey scale of the landscape represents
the fitness values, from the lowest values in black to the highest in white. A) Fitness landscape showing the neuron that maps each viral sequence. B)
Fitness landscape map displaying the pathways followed by the different viruses during the recovery passages, where the viruses from the same
lineage are linked with the same colour arrow.
doi:10.1371/journal.pone.0088579.g003

HIV-1 Realistic Fitness Landscape

PLOS ONE | www.plosone.org 5 February 2014 | Volume 9 | Issue 2 | e88579



increase in heterogeneity showed limited increase in fitness (viruses

E1.5). Thus, increases in viral heterogeneity correlated signifi-

cantly with the observed increases in viral fitness (Table 2) [7].

SOM landscapes
To further investigate the evolution of these ‘‘in vitro’’ viruses

and to study the relationship between nucleotide sequence and

fitness, we exploited the potential of the SOM algorithm, for the

fitness landscape representation during fitness recovery. The first

analysis was performed training a SOM network with the

complete viral nucleotide sequences of the 55 viruses highlighted

in Figure 1 and as detailed in Materials and Methods. As a result

of the SOM algorithm, each viral sequence mapped in a two-

dimensional lattice by means of sequence similarity (Figure S1 in

File S2). Later each neuron in the SOM grid was labelled as a

third dimension with the average value of the experimental fitness

corresponding to the closest L sequences , in Euclidean distance, to

its reference vector (Materials and Methods) [4–7,33]. The

resulting fitness landscape classified the studied viruses, and

presented a rugged topology with diverse peaks and valleys

(Figure 3A). As in the phylogenetic tree, viruses of the same lineage

clustered together in the topological ordering performed by the

SOM (Figure 2). Comparing the experimental fitness value of each

viral sequence with the fitness value associated with the neuron

that maps the sequence on the SOM, a 0.96 Pearson correlation

coeficient was obtained (Figure S2 in File S2). The topological

assembling of the sequences, along with the high correlation value

confirms that the 3D fitness landscape obtained by the SOM is a

realistic graphical representation of the sequences and the

experimental fitness associated with the viruses.

This fitness landscape identified abrupt zones, like peaks (I

lineage) or deep fitness valleys where, for example, lineage D

viruses, the viruses with the lowest initial fitness (Table 2), were

located. Using the SOM fitness landscape, the pathways followed

by viruses during the passages of fitness recovery could be tracked

and represented as shown by the colour arrows in Figure 3B.

Viruses from lineages G and K mapped in peaks, where the

accumulation of mutations during the recovery passages led to

long and irregular trajectories of fitness increase. On the contrary,

constant regions of the landscape like those where H and E viruses

mapped were also identified, and these viruses recovered fitness

with a more regular pattern and lower risk of deleterious

mutations. The virus with the highest initial fitness value, clone I

mapped in the highest fitness peak of the landscape.

Analysis of the recovery pathways in the fitness landscape

showed that viruses with a more limited space search had, in

general, more limited fitness gains (see viruses E1 and I5 in

Tables 1 and 2 and Figure 3B), whereas viruses that underwent a

wider space search are those with larger fitness recovery (viruses

G1 and H1 in Figure 3B). The construction by SOM of a fitness

landscape with real sequence data permitted the analysis of the

process of HIV-1 evolution during recovery passages and the 3D

graphical representation of evolutionary pathways.

Figure 4. Representation of the fitness landscape from viral consensus sequences in the V1–V2 region in env gene and of the
evolutionary trajectories of quasispecies variants. The landscape was created by SOM (15615 neurons) with the 55 consensus sequences in
the V1–V2 region in env gene from the global sequences, labelled as in Figure 3 (with an L = 1 factor) and drawn using the same grey scale as in
Figure 3. A) Fitness landscape map showing the neuron that maps each viral consensus sequence. B) Representation of some of the 911 sequences
from the viral quasispecies dataset, with unknown fitness values, projected on this fitness landscape map. The quasispecies variants from each virus
are displayed as a circle over the neuron that maps them, and the diameter of the circle symbolizes the proportion of variants identified in passage 1
(in blue), passage 11 (in green), passage 21 (yellow) and passage 31 (red). The quantification of the quasispecies variants in each neuron is
summarized in Table S4 in File S1. Colour arrows joining the circles show the estimated evolutionary trajectories of the viral clones during the
recovery passages.
doi:10.1371/journal.pone.0088579.g004
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Three dimensional SOM landscapes for analysis of related
variants

Tha capacity of SOM networks to analyze DNA sequences not

used during the training was explored by the projection of related

variants into the map and the calculation of the best matching unit

(bmu) for each sequence (the reference vector closest to the

sequence in the map). When the SOM neurons are labeled with

experimentally determined fitness, this mapping would place the

sequence on a specific location of the 3D SOM fitness landscape.

SOM projection of related variants was tested with members of the

viral quasispecies in the V1–V2 region in env gene of the recovered

viruses. This mapping permitted the analysis of the evolutionary

recovery pathways of the different variants at the viral quasispecies

level (Figure 4B).

As the quasispecies variants from the V1–V2 region had 527

nucleotides long sequences, then a new SOM network was trained

and labelled with the corresponding fitness using the 527

nucleotides of the V1–V2 sequences in the 55 consensus sequences

in env gene. The resulting fitness landscape produced by this SOM

and the classification of the 55 training consensus sequences are

shown in Figure 4A. Like in the phylogenetic tree and the SOM

map with the complete sequences, viruses from the same lineage

grouped together in the V1–V2 map, and viruses with the highest

fitness (viruses H) mapped in peaks and those with low fitness in

valleys (D viruses). A 0.93 Pearson correlation coeficient has been

obtained by comparing the experimental fitness value of the 55

consensus sequences with the fitness value associated with the

neuron that represent each sequence on the SOM map (Figure S3

in File S2). This result confirmed, again, the goodness of the

graphical representation of the sequences and the experimental

fitness associated to the viruses that produced the 3D SOM fitness

landscape.

Next, the 911 sequences of viral quasispecies of the recovered

viruses at the different passages (approximately 20 clones per virus

and sample), with unknown fitness, were projected on this map.

Although the map was trained with the consensus sequences,

quasispecies sequences are directly related to the consensus

sequences and, consequently, the projection in the map was

appropriate. In fact, the quasispecies sequences mapped in the

same regions than the consensus sequences (see Figures 4A and

4B). The pathways and space search of some of the variants are

depicted in Figure 4B. The proportion of the different variants in

each neuron of the map are summarised in Table S4 in File S1.

Figure S1 in File S2 displays the Unified Distance Matrix (U-

matrix) caculated for this SOM. This graph represents the

Euclidean distances between the reference vectors of the SOM.

In some variants, optimal evolutionary solutions are found in

regions near their corresponding initial viruses, like virus I5, as

detected in the initial landscape with the global sequences

(Figure 3A). A similar behaviour was observed in virus E1 that

did not move significantly in this region along the recovery

passages. In contrast, other viruses (clones G1, D2 or K1) showed

large displacements of the viral populations. U-matrix in Figure S1

in File S2 exhibited that these large displacements crossed areas of

the SOM that revealed medium-high Euclidean distances. In these

viruses, the generation of a large variability permitted a broader

exploration of the fitness landscape to find the best evolutionary

pathways. Although during the passages, some intermediate points

were lost (see for example H1.5 and G1 at passage 11), in all cases,

we noted an increase in the frequency in the population of the

variants with the highest estimated fitness. These variants, in most

of the viruses analysed, later became dominant (Table S4 and S5

in File S1). This can be clearly observed in virus H with a fitness of

0.51 in the initial passage, while in passage 11, two minor new

variants were detected within a fitness peak, with an estimated

fitness values of 1.57 and 2.82 (Figure 4B and Tables S4 and S5 in

File S1). In posterior passages, still with a minor representation of

variants from the original quasispecies, the population moved to

the point with 2.82 fitness (the point with higher fitness) that later

became dominant in the viral population. In summary, using

SOM landscapes, we examined in detail the evolutionary

processes followed by viral quasispecies along HIV-1 fitness

recovery and we can analyse and approach the evolution of viral

populations. Using this methodology, we were able to track the

evolution of the variants of the quasispecies and to detect the

fitness landscape exploration performed by each of these members

of the mutant cloud.

Discussion

Fitness landscapes provides a graphic representation which, in

addition to population sizes and mutation rates, help in the

understanding of evolutionary processes [9]. This report on the ‘‘in

vitro’’ viral evolution in HIV-1 depicts the first fitness landscapes

constructed with realistic viral data. The map was drawn with an

ANN approach, in particular with a SOM algorithm, and based in

the relatedness of the nucleotide sequences. This SOM map

permitted the aproximation to the fitness value, based on the

similarity of the sequence, of members of viral quasispecies and the

visualization of the evolutionary pathways of the different HIV-1

variants during the serial passages.

The three-dimensional SOM maps are constructed first by

creating a two dimensions matrix based on sequence similarity,

where the experimental fitness values are included later as a third

dimension. The goodness of the grouping of the sequences carried

out by the SOM maps either with the complete (Figure 3A) or the

consensus V1–V2 sequences (Figure 4A) is similar to the one

obtained with the phylogenetic tree (Figure 2). Furthermore,

minimum spannig tree analysis [29] was performed for both the

complete and consensus sequences and their projection into a

plane, defined by the two largest eigenvectors, illustrated the

evolution of the population. These trees provided information on

the quasiespecies structure as shown in Figure S4 in File S2.

Clustering of viral sequences obtained by this method confirmed

the grouping of sequences obtained by the SOMs (Figure 3A

compared with Figure S4A in File S2 and Figure 4A with Figure

S4B in File S2). In addition, the projection of the experimental

fitness values as a third dimension in the SOM maps is supported

by a good correlation (Figures S2 and S3). When the SOM is used

to project DNA sequences related with those used in the training

of the network, fitness 3D map permits an initial approach to the

fitness value of a sequence, which is the fitness value associated

with the neuron that identifies the sequence. Futhermore, SOM

3D maps provides important information related to the topo-

graphical characteristics of the area where sequences mapped like

valleys, peaks or flat regions.

The depiction of a real fitness landscape during a fitness

recovery process in HIV-1 has important advantages. First, 3D

fitness landscapes allow the identification of different regions, like

valleys (see D lineage viruses) where a few changes could lead to

viral extinction (see Figure 3 and 4) or peaks (see K and G viruses).

The analysis and mapping of mutations in these viruses could

provide important information for genomic alterations and regions

critical for viral fitness. In addition, these landscapes permitted the

display during the passages of the mobilization through the

landscape of viral populations and the depiction of viral

evolutionary pathways. For example, clone I recovery trajectory

showed that, although other fitness peaks are found in distant
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regions of the landscape, the final virus seems to return to the

initial virus peak indicating that this peak could be acting like a

fitness attractor (Figures 3 and 4). In viruses with low fitness before

the recovery passages [4], there was a large space search and a

remarkable fitness increase (viruses G and D). This search

confirmed the great importance of variability generation in the

exploration of the fitness landscape and in fitness increases. In

contrast, other lineages displayed a more limited fitness trajectory

(viruses E). The search in the sequence space, analyzed in

computer simulations, has been classified into minor and major

transitions [34]. However, in the SOM fitness maps the long or

short displacements observed in the viral populations could not be

directly transformed into major or minor transitions because of the

non uniformity of the 2D representation as it is shown in the U-

Matrix (see Figure S1 in File S2). In summary, the 3D SOM fitness

landscape provided important information with the identification

of abrupt zones like peaks or valleys, or the wide space search

undertaken by some clones [7]. These landscapes illustrated the

dynamics of the HIV-1 ‘‘in vitro’’ fitness recovery.

Once a SOM fitness landscape has been created, it could be

used for the analysis of related viruses, where only nucleotide

sequences are known. This relatedness means that the genetic

information of the samples of study is within the boundaries of the

training sequences. In general, for a more accurate analysis, the

better, wider and related to the new sequences is the training set

the better will be 3D SOM fitness landscape and the fitness

exploration for the related sequences. The SOM maps are very

useful for the visualization of the fitness landscapes, with a very

short computational time, and for the identification of evolution-

ary viral pathways during recovery passages.

The SOM methodology can be applied for sequences from

pathogenic infections by microorganisms like parasites, fungus or

bacteria but especially for viruses, and, because of their enormous

variation, particularly RNA viruses. SOM landscapes can be used,

whenever a set of sequences is associated with a phenotypic

characteristic that is sequence-dependent, for the study of the

evolution of different variants. SOM maps can be employed for

the analysis of complete viral genomes, individual genes or

genomic fragments. SOM maps permit the fitness analysis of

individual members of viral quasispecies. The use of SOM

landscapes is particularly appropriate for the analysis of the

enormous amount of sequences obtained from next generation

sequencing (NGS) technologies. In these sequences, the experi-

mental fitness determination of individual sequences is technically

unfeasible, but it can be approximated in SOM fitness landscapes

by experimentally calculating the fitness of a good representation

of the different variants of the viral population.

Fitness landscapes have been used to study the evolution in

theoretical works with mathemathical numerical simulation and

master equations [22], also the survival of the flattest has been

theoretically predicted [35]. More recently, fitness landscapes have

been used to study the ‘‘in silico’’ evolution of viral quasispecies

according to their mutation rate [36]. Two dimensions (2D) fitness

landscapes have been represented for HIV-1 protease resistant

mutant variants [20] and fitness estimated for antiviral resistant

variants [20,37]. Recently a three dimension (3D) representation

of individual HIV drug resistance mutations found in field variants

has been published [21], where the epistatic value of the different

mutations is associated as a third dimension [21,28,38]. In a

further study, the authors analysed the conditions for the fitness

space representation [28]. In contrast, the SOM maps permit a 2D

representation of viruses based on the viral sequences similarity. In

this map neurons are labelled, as a third dimension, with

the experimental fitness values of viruses, producing a 3D

representation of a global real fitness landscape. This low-

dimension representation can capture important features of the

complex fitness landscapes, showing aspects related to the

underlying structure of the data.

This report is the first 3D representation of an HIV-1 realistic

fitness landscape using SOM. These maps allowed the under-

standing of the mechanisms operating during HIV-1 ‘‘in vitro’’

evolution, and also represented, because of the capacity of SOM to

project sequences not used in the training, an innovative approach

for fitness analysis of related variants. SOM fitness landscapes

permitted the disclosure of viral evolutionary pathways and the

inference of the potential evolution of a viral population. The

capacity of the methodology, although limited to related variants,

allows the characterization of individual variants with evolutionary

potential within viral quasispecies that could be very helpful in in

vitro works or in vivo studies. In this line, SOM fitness landscapes

could have the capability for the approximation to fitness analysis

and evolution.

Supporting Information

File S1 Tables S1–S4.

(DOCX)

File S2 Supporting materials and figures. Figure S1,

Unified distance Matrix for the trained SOM using viral consensus

sequences in the V1–V2 region in env gene. Unified Distance

Matrix (U-matrix) [39] is a graphical representation of the

Euclidean distances between the reference vectors of the SOM.

Outlined circles represent the neurons, color-scale tone inside the

circle indicates the mean Euclidean distance between the reference

vector of the neuron and its immediate neighbors, and the color

tone of the circles without outline placed between two neighboring

neurons identifies the Euclidean distance between both reference

vectors. The upper left corner of the U-matrix corresponds to the

upper corner of Figure 4 (the region where K15 sequence

mapped), the upper right corner of the U-matrix corresponds to

the right corner of Figure 4 (the area where I15 sequence is

mapped). Dark blue areas represent small distances, while red

areas identify the highest distances between the reference vectors

of the neurons. Figure S2, Fitness correlation with the complete

viral nucleotide sequences. Correlation between the fitness value

predicted by the SOM (Figure 3A) and the experimental fitness

value. The scatter plot shows the predicted fitness values on the y-

axis and the experimental fitness values on the x-axis. Figure S3,

Fitness correlation with the consensus viral nucleotide sequences.

Correlation between the fitness value predicted by the SOM

(Figure 4A) and the experimental fitness value. The scatter plot

shows the predicted fitness values on the y-axis and the

experimental fitness values on the x-axis. Figure S4, Projection

of the 55 complete and consensus viral sequences using Minimum

Spanning Tree (MST) analysis. The sequences have been

projected onto the plane (dots) using the two eigenvectors

associated with the two largest eigenvalues of the normalized

covariance matrix [29]. Dots are connected by the edges obtained

by calculating the minimum spanning tree, i.e., the tree which

connects all the sequences with minimum total length, calculated

in Hamming distance. Numbers associated with some of the MST

edges represent the Hamming distance between the sequences

linked by the tree branch. (A) MST obtained for the 55 complete

viral nucleotide sequences. (B) MST obtained for the 55 consensus

sequences in the V1–V2 region in env gene.

(DOCX)
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