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Abstract

A major challenge in current systems biology is the combination and integrative analysis of large data sets obtained from
different high-throughput omics platforms, such as mass spectrometry based Metabolomics and Proteomics or DNA
microarray or RNA-seq-based Transcriptomics. Especially in the case of non-targeted Metabolomics experiments, where it is
often impossible to unambiguously map ion features from mass spectrometry analysis to metabolites, the integration of
more reliable omics technologies is highly desirable. A popular method for the knowledge-based interpretation of single
data sets is the (Gene) Set Enrichment Analysis. In order to combine the results from different analyses, we introduce a
methodical framework for the meta-analysis of p-values obtained from Pathway Enrichment Analysis (Set Enrichment
Analysis based on pathways) of multiple dependent or independent data sets from different omics platforms. For
dependent data sets, e.g. obtained from the same biological samples, the framework utilizes a covariance estimation
procedure based on the nonsignificant pathways in single data set enrichment analysis. The framework is evaluated and
applied in the joint analysis of Metabolomics mass spectrometry and Transcriptomics DNA microarray data in the context of
plant wounding. In extensive studies of simulated data set dependence, the introduced correlation could be fully
reconstructed by means of the covariance estimation based on pathway enrichment. By restricting the range of p-values of
pathways considered in the estimation, the overestimation of correlation, which is introduced by the significant pathways,
could be reduced. When applying the proposed methods to the real data sets, the meta-analysis was shown not only to be
a powerful tool to investigate the correlation between different data sets and summarize the results of multiple analyses but
also to distinguish experiment-specific key pathways.
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Introduction

High-throughput omics platforms, such as mass spectrometry

(MS) based Metabolomics and Proteomics or DNA microarray or

RNA-seq-based Transcriptomics, allow the comprehensive anal-

ysis of an organism’s reaction under different experimental

conditions [1–5]. A current major challenge in systems biology is

the combination and integrative analysis of the large data sets

obtained from these platforms [6–8]. A single data set usually

contains the intensity/expression profiles (intensities for all

measured samples) of thousands of features, such as different ion

species in MS or spots in DNA microarray analysis. After

individual preprocessing of each data set, which includes the

statistical analysis, ranking, or filtering of features according to the

relevance of their profiles [9–11], the features have to be assigned

to known biological entities [12], such as metabolites, genes, or

proteins. Especially in MS-based Metabolomics, a major bottle-

neck is the identification of metabolites in non-targeted experi-

ments [13]. In many applications, the putative monoisotopic

masses of measured ion species cannot unambiguously mapped to

metabolite entries in public databases. The integration of data

from other omics platforms which provide a more reliable

mapping, such as DNA microarrays, can significantly support

the metabolite identification in this case. After annotation, the

results are usually interpreted in the context of current knowledge,

e.g. known biochemical pathways or processes [14–16]. A popular

method for this knowledge-based interpretation of single data sets

is the Gene Set Enrichment Analysis [17] or Overrepresentation

Analysis [18,19]. Many similar approaches have been developend

and the methodology was transferred to other omics platforms

[20–23]. In general, the enrichment analysis is based on sets of

entities, e.g. pathways with associated metabolites, and results in a

list of relevant sets which are enriched in high-ranking features (in

comparison to all features in the data set). In most methods, the

enrichment level of a single set is expressed as p-value. Modelling

metabolic pathways as well-defined sets of biological entities, e.g.

metabolites, enzymes, and corresponding genes, has shown to be a

powerful approach to interpreting complex omics data sets.

Furthermore, the concept of pathways associated with different

types of biological entities facilitates the joint analysis of different

data sets [24].
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The combination of results from different studies sharing the

same experimental design in terms of null and alternative

hypothesis (meta-analysis) is a central task in various statistical

applications [25–27]. In case of the combination of independent

p-values, Fisher’s method [28] or Stouffer’s method [29], also

known as normal, Z-method, or Z-transform test, are often

applied. For dependent p-values and known covariances, in [30]

an extended version of Fisher’s method was proposed (Brown’s

method). In order to increase statistical power, meta-analysis has

been applied to Pathway Enrichment Analysis (Set Enrichment

Analysis utilizing pathways as sets) in the context of cancer studies

[31]. The proposed methods were focused on the combination of

independent p-values based on DNA microarray data. In contrast,

we introduce a general methodical framework for the meta-

analysis of multiple dependent or independent data sets resulting

from different omics platforms applied to Pathway Enrichment

Analysis. In order to cope with dependent data sets, such as

obtained from the same biological samples analyzed by MS in

negative and positive ionization mode, the framework utilizes a

covariance estimation procedure based on the nonsignificant

pathways in single data set enrichment analysis. The framework is

applied and evaluated on two Metabolomics MS data sets [32]

Table 1. Overview on data sets.

Label Number of features Times Platform Ionization mode Reference

M1 24796 0.5 h, 2 h, 5 h Mass spectrometry negative [11]

M2 23325 0.5 h, 2 h, 5 h Mass spectrometry positive [11]

T1 25392 1 h DNA microarray - [32], E-ATMX-9

T2 25392 3 h DNA microarray - E-MEXP-1475

The table gives an overview on the four data sets used for evaluation and application. The third column (Times) summarizes the different points in time when the
wounded plants were harvested in the respective experiment. The T1 and T2 data sets can be obtained from the ArrayExpress [44] website.
doi:10.1371/journal.pone.0089297.t001

Figure 1. Histograms of standard normal deviates for the Metabolomics and Transcriptomics data sets. For the p-value calculation, the
Kolmogorov-Smirnov (KS) and rank-sum tests were utilized. The p-values were restricted to the range (10{5,1{10{5). The red graph represents the
expected density assuming the standard normal distribution. The green graph shows the expected density assuming a normal distribution with the
sample mean and standard deviation as parameters. The histograms for both tests are similar and confirm the normal-like distribution of deviates. In
both cases however, the sample standard deviation is higher than the unit standard deviation used for the transformation. Additionally, the sample
mean for the combined Transcriptomics data sets is smaller than zero.
doi:10.1371/journal.pone.0089297.g001
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and two Transcriptomics DNA microarray studies [11] in the

context of wounding of Arabidopsis thaliana. The main focus of this

exemplary meta-analysis lies on the enhancement of MS based

Metabolomics results by means of the microarray studies.

Materials and Methods

Data sets and preprocessing
For application and evaluation of the meta-analysis, two

Metabolomics MS data sets (M1 and M2) [11] and two

Transcriptomics DNA microarray data sets (T1 and T2) [32]

were used (see Table 1 and Dataset S1 for details). All studies

investigate the wounding of Arabidopsis thaliana wild type and the

jasmonate-deficient dde 2-2 mutant plants [33], the experimental

designs comprise conditions for control plants as well as plants

harvested at different times after wounding (see Table 1). The two

Metabolomics data sets derive from an Ultra Performance Liquid

Chromatography (UPLC) analysis coupled to a Time-Of-Flight

(TOF) MS detection. With this method, the non-polar extraction

phase of one set of samples was analyzed in positive and negative

ionization mode. Since some metabolites may have been measured

in both ionization modes following different (partially unknown)

ionization rules [34], the level of dependence between both data

sets is not clear. In case of the MS data sets, a single feature

corresponds to a particular ion species, which is characterized by

an exact mass-to-charge ratio and a retention time. A single

metabolite may be represented by multiple features, e.g. corre-

sponding to different adduct formations and isotopologues. The

features in the microarray data sets correspond to different spots

on the array containing DNA probes that match a particular

sequence. Also in this case, a single transcript may be represented

by multiple features corresponding to particular sequences of the

respective gene. The feature profiles of all data sets were ranked

separately utilizing a signal-to-noise ratio (similar to the method

described in [9], see TechnicalDescription S1).

Pathway enrichment analysis
The ranked features were mapped to the pathway entries in

AraCyc [35] and the Arabidopsis-specific pathways in the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database [14] (see

TechnicalDescription S1). In case of the Metabolomics MS data

sets, all potential monoisotopic masses were calculated per feature

based on the ionization rules and number of isotopes used in [11]

and mapped to the metabolite masses in the databases. In case of

the Transcriptomics DNA microarray data, the features were

mapped to the A. thaliana genes utilizing their CATMA IDs [36].

Based on the mappings, a set of feature ranks was extracted for

each pathway and data set. In order to test for an over-

representation of high-ranked features, a p-value was calculated

for each set of ranks (pathway) utilizing a one-sided Kolmogorov-

Smirnov (KS) or Wilcoxon rank-sum test (also known as Mann-

Whitney U test) [21]. In case of the KS test, the empirical

Figure 2. Differences between the reconstructed correlation coefficients from pathway enrichment and the introduced positive
feature correlation. The differences were calculated for different pmin values and the Kolmogorov-Smirnov (KS) and rank-sum test. The best
reconstruction, corresponding to differences near zero, can be observed for pmin~0:01.
doi:10.1371/journal.pone.0089297.g002
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distribution of ranks in a given set is compared to the distribution

of ranks in the respective data set. In case of the rank-sum test, the

sum of feature ranks within a given set is evaluated. Especially for

Gene Set Enrichment Analysis of DNA microarrays, many

methods have been published [20]. Most of these methods are

based on KS-like or average gene-specific statistics. For a general

meta-analysis and in order to combine the Metabolomics and

Transcriptomics data sets in a robust way, we decided to utilize the

rank-based KS and rank-sum test. However, more specialized

methods for the pathway-specific p-value calculation may be

employed as well. The resulting p-values for the dependent

Metabolomics data sets were used for the covariance estimation

(see corresponding section). The covariances between both

Transcriptomics data sets and between the Metabolomics and

Transcriptomics data sets, which were obtained from independent

biological samples, were set to zero.

Meta-analysis of p-values
In statistical meta-analysis, the most common methods for

combining independent p-values from related tests are Fisher’s

[28] and Stouffer’s method [29]. In Fisher’s method, the meta-

p-value is calculated based on a chi-squared distribution (see

TechnicalDescription S1). In Stouffer’s method, the test statistic is

the sum of p-values transformed into normally distributed random

variables (standard normal deviates). For dependent p-values, a

powerful approach is Brown’s method [30], which is an extension

of Fisher’s method based on a scaled chi-squared distribution and

modified degrees of freedom utilizing a known covariance matrix

for standard normal deviates. The given p-values can be

transformed into standard normal deviates by means of the

inverse cumulative distribution function of the standard normal

distribution. The covariance matrix of the standard normal

deviates can also be utilized in order to extend Stouffer’s method

to dependent p-values.

Estimation of covariances
In most applications with dependent data sets, the covariance

matrix is not known and has to be estimated. In our proposed

procedure, the pairwise covariance between two data sets is

estimated based on the standard normal deviates of the pathway-

specific p-values, which were obtained for each single data set in

Pathway Enrichment Analysis. This estimation is expected to be

biased by the alternative hypothesis since the similar or same

experimental setup of the data sets imposes a certain dependence

and significant pathways associated with very low p-values will

strongly influence the results. In order to minimize this bias in the

Figure 3. Differences between the reconstructed correlation coefficients from pathway enrichment and the introduced negative
feature correlation. The differences were calculated for different pmin values and the Kolmogorov-Smirnov (KS) and rank-sum test. The best
reconstruction, corresponding to differences near zero, can be observed for pmin~0:01. The KS test is not able to fully reconstruct strong negative
feature correlations.
doi:10.1371/journal.pone.0089297.g003
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estimation of the pairwise covariance between two data sets, a

parameter pmin is introduced and only pathways with p-values in

the range (pmin,1{pmin) are considered. This procedure leaves out

significant pathways for which the null hypothesis is likely to be

rejected for at least one of the data sets. Instead of directly

estimating the sample covariance of the transformed p-values in

this range (which would again be biased because of the range

restriction), Pearson’s correlation coefficient is used.

Results

The Pathway Enrichment Analysis, the transformation of

pathway-specific p-values into standard normal deviates, the

Figure 4. Pathway map of the alpha-linolenic acid metabolism (KEGG) with marked entries. Entries mapped to features from all data sets
are marked in gray, selected entries from Tables 5, 7, 9, and 11 are marked in red.
doi:10.1371/journal.pone.0089297.g004
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estimation of covariances for dependent data sets, and the meta-

analysis based on the previous results were applied and evaluated

on the four Metabolomics/Transcriptomics data sets (see previous

section). First, in order to check the distribution of transformed

p-values, the histograms of the standard normal deviates were

inspected. Because of significant pathways which are highly

relevant in this context, the p-values are expected to be not fully

uniformly distributed, which may result in a distribution of

transformed p-values that deviates from the standard normal

distribution. In this case, the p-values/normal deviates should be

corrected for significance analysis. Second, the performance of the

introduced method in reconstructing simulated data set correla-

tions was evaluated for different pmin values. This performance was

not clear, since the proposed correlation estimation includes

several complex steps, such as the mapping of a proportion of

feature ranks to pathways of different size, the calculation and

restriction of p-values, and the transformation into normal

deviates. Additionally, the pmin parameter might have a strong

influence on the results. Therefore, another objective of the

simulation studies was the identification of an appropriate

parameter value for the real data sets. Third, the correlation

estimation and meta-analysis were applied to all four real data sets.

All data sets, containing the annotation information from the

pathway mapping, and the results from Pathway Enrichment

Analysis are available as comma-separated-values files (see Dataset

S1 and Table S1). The source code of functions for the meta-

analysis of p-values can be found in File S1.

Distribution of standard normal deviates
Figure 1 shows the histograms of the transformed p-values

(standard normal deviates) from Pathway Enrichment Analysis for

the two Metabolomics and two Transcriptomics data sets within

the p-value range (10{5,1{10{5). The histograms for the KS

and the rank-sum test are similar and confirm the normal-like

distribution of deviates. In both cases however, the sample

standard deviation is higher than the unit standard deviation used

for the transformation. Additionally, the sample mean for the

combined Transcriptomics data sets is smaller than zero. This

difference may be caused by pathways which are directly or

indirectly influenced by the experimental setup. Although the

Table 2. Results from meta-analysis of pathway enrichment (Brown’s method).

Rank DB Pathway Hits KS Rank-sum

1 KEGG alpha-Linolenic acid metabolism 214 0.0001321 2.383e-05

2 AraCyc jasmonic acid biosynthesis 176 0.003676 0.0003101

3 AraCyc glycolipid desaturation 325 0.0007046 0.0102

4 KEGG Linoleic acid metabolism 147 0.5252 0.3968

5 AraCyc superpathway of phenylalanine, tyrosine and tryptophan
biosynthesis

86 0.5364 0.5253

6 AraCyc traumatin and (Z)-3-hexen-1-yl acetate biosynthesis 131 0.4538 0.5557

7 KEGG 2-Oxocarboxylic acid metabolism 578 0.5252 0.767

8 AraCyc glucosinolate biosynthesis from dihomomethionine 153 0.5364 0.7857

9 KEGG Starch and sucrose metabolism 335 0.5252 0.7857

10 KEGG Proteasome 114 0.5252 0.7857

The table contains the high-ranking pathways from meta-analysis of pathway enrichment (Brown’s method) based on the Kolmogorov-Smirnov (KS) and rank-sum test
utilizing all data sets. The p-values per data set were restandardized. The pathways are sorted according to the meta-p-values derived from the rank-sum test. The
second column (DB) contains the name of the source database, the fourth column (Hits) the number of feature assignments. The last two columns comprise the false
discovery rates calculated from the meta-p-values.
doi:10.1371/journal.pone.0089297.t002

Table 3. Results from meta-analysis of pathway enrichment (Stouffer’s extended method).

Rank DB Pathway Hits KS Rank-sum

1 KEGG alpha-Linolenic acid metabolism 214 6.708e-05 1.127e-05

2 AraCyc jasmonic acid biosynthesis 176 0.001774 7.328e-05

3 AraCyc glycolipid desaturation 325 0.02043 0.2122

4 AraCyc traumatin and (Z)-3-hexen-1-yl acetate biosynthesis 131 0.4545 0.4326

5 AraCyc superpathway of phenylalanine, tyrosine and tryptophan biosynthesis 86 0.4545 0.4326

6 KEGG Linoleic acid metabolism 147 0.7866 0.499

7 AraCyc glucosinolate biosynthesis from dihomomethionine 153 0.4545 0.6282

8 AraCyc glucosinolate biosynthesis from tryptophan 132 0.4545 0.6583

9 AraCyc glucosinolate biosynthesis from phenylalanine 115 0.6522 0.6583

10 AraCyc glucosinolate biosynthesis from tetrahomomethionine 114 0.4545 0.6583

The table contains the high-ranking pathways from meta-analysis of pathway enrichment (Stouffer’s extended method) based on the Kolmogorov-Smirnov (KS) and
rank-sum test utilizing all data sets. The last two columns comprise the false discovery rates calculated from the meta-p-values.
doi:10.1371/journal.pone.0089297.t003
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highly significant pathways with p-values below the threshold

10{5 were left out, many other pathways are expected to be

indirectly affected by the wounding process. Another explanation

would be the dependence of feature ranks used for p-value

calculation, e.g. introduced by the dependence of different

microarray spots representing the same gene or by gene-gene

correlations [17]. In order to eliminate the observed bias, the p-

values were restandardized [37] for significance analysis by means

of the sample mean and sample standard deviation of observed

normal deviates per data set and retransforming of the standard-

ized deviates into corrected p-values. This is a conservative

correction because the observed bias also includes the pathways

which are directly influenced by the wounding process.

Estimation of data set correlation
In simulated studies (see TechnicalDescription S1 for details),

the correlation estimation was evaluated by calculating the

pairwise Pearson correlation coefficients between all four data

sets and a copy of the respective data set with different percentages

of feature ranks randomly permuted. For each original and

permuted data set, the p-values were calculated for all pathways

using the KS or rank-sum test. The correlation coefficient between

each original and permuted data set was computed based on the

respective standard normal deviates (not restandardized) and the

restriction of p-values utilizing different parameter values pmin. As

measurement of the introduced artificial correlation, the correla-

tion coefficient between the feature ranks of each data set and the

permuted ranks (feature rank correlation) was calculated and

averaged, respectively. The whole procedure was repeated for

negative correlation by randomly permuting a percentage of the

inverted original feature ranks per data set.

Table S2 shows the average results over all data sets in detail.

Figure 2 and 3 summarize the differences between the recon-

structed correlation coefficients from pathway enrichment and the

introduced positive or negative feature rank correlation. In

comparison to the average feature rank correlation coefficients

(x-axis), the absolute correlation is overestimated for low pmin

values and underestimated for high values. A pmin value of 0.01

results in the best reconstruction of data set correlation, the

absolute difference between the correlation coefficients from

pathway enrichment and the feature rank correlation is close to

zero for both tests. In case of the observed overestimation for low

pmin values, the relevant pathways, which are associated with many

top-ranking features, are assigned a low p-value, even when

randomly permuting some of the features, and have a high

influence on the correlation estimation. In case of the underesti-

mation for high pmin values, the introduced correlation over all

Table 4. Results from pathway enrichment analysis of data set M1.

Rank DB Pathway Hits KS Rank-sum

1 KEGG alpha-Linolenic acid metabolism 65 0.02084 0.03717

2 AraCyc jasmonic acid biosynthesis 68 0.1531 0.1503

3 KEGG Linoleic acid metabolism 43 0.4598 0.8524

4 AraCyc indole-3-acetyl-amino acid biosynthesis 29 0.4598 0.8524

5 AraCyc traumatin and (Z)-3-hexen-1-yl acetate biosynthesis 38 0.4598 0.8524

6 AraCyc galactosylcyclitol biosynthesis 14 0.4598 0.8524

7 AraCyc glycolipid desaturation 144 0.4598 0.8524

8 KEGG Porphyrin and chlorophyll metabolism 222 0.8841 0.8524

9 AraCyc poly-hydroxy fatty acids biosynthesis 59 0.9248 0.8524

10 KEGG Lysine degradation 46 0.4598 0.8524

The table contains the high-ranking pathways from enrichment analysis of data set M1 based on the Kolmogorov-Smirnov (KS) and rank-sum test. The pathways are
sorted according to the restandardized p-values derived from the rank-sum test. The last two columns comprise the false discovery rates calculated from the
restandardized p-values.
doi:10.1371/journal.pone.0089297.t004

Table 5. Selected feature mappings from data set M1.

Rank rt m/z Mappings

1 0.73 255.1218 Jasmonic acid

3 0.73 209.1168 Jasmonic acid

7 0.73 256.1264 Jasmonic acid

8 2.08 337.1999 OPDA, EOTrE

11 2.08 338.2044 OPDA, EOTrE

321 5.66 986.6145 18:3/18:1-DGD, 18:2/18:2-DGD

324 5.78 822.5428 18:2/16:0-MGD, 18:1/16:1-MGD

410 5.53 820.5295 18:3/16:0-MGD, 18:2/16:1-MGD,
18:1/16:2-MGD

447 2.33 339.2155 OPC-8:0

540 5.64 960.5985 18:3/16:0-DGD

542 6.02 823.5541 18:1/16:0-MGD, 18:0/16:1-MGD

554 5.67 858.5064 18:3/18:3-MGD

563 5.74 795.5232 18:3/18:1-MGD, 18:2/18:2-MGD

650 6.18 939.5986 18:2/18:3-DGD

846 5.89 962.613 18:2/16:0-DGD

879 6.23 859.5155 18:2/18:3-MGD

899 1.86 309.2055 HpOTrE

1445 6.17 964.6258 18:1/16:0-DGD

1727 7.53 278.2245 Linolenic acid

2142 0.52 239.0895 9-Oxononanoic acid

The table shows selected mappings of features from data set M1 (24796
features) to entries in the first three pathways in tables 2 and 3. The first column
contains the feature rank. The second and third column show the
corresponding retention times and mass-to-charge ratios. Multiple mappings
correspond to different ionization rules or isotopologues.
doi:10.1371/journal.pone.0089297.t005
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features and pathways cannot be fully recovered when restricting

the range of p-values and number of utilized pathways too much.

For the KS test and small negative feature rank correlations, the

estimated coefficients from enrichment are considerably larger,

e.g. showing a difference between 0.2 and 0.4 in case of a feature

rank correlation of 21 (see Figure 3). This can be explained by the

non-symmetric properties of the one-sided KS test. A set enriched

in both high-ranking and low-ranking features would receive a low

p-value when performing the one-sided KS test on the original as

well as the inverted ranks. The rank-sum test, on the contrary,

would result in an average p-value in both cases because the sum

of ranks in the set is near the expected value. For a pmin value of

0.01 and negative correlation, the KS test is still able to reconstruct

feature rank correlation coefficients between 0 and 20.3 with a

difference near zero.

For the correlation estimation between the two dependent

Metabolomics data sets, a pmin value of 0.01, which showed the

best reconstruction in the simulations, was utilized. The estimation

resulted in relatively small coefficients, 0.12 (KS test) and 0.08

(rank-sum test).

Meta-analysis of pathway enrichment
Tables 2 and 3 show the results from meta-analysis of pathway

enrichment utilizing Brown’s and Stouffer’s extended method

integrating the correlation estimation for the Metabolomics data

sets. The pathways are sorted according to the False Discovery

Rate (FDR) [38] calculated based on the meta-p-values. Pathways

with more than 500 associated entries were left out in this analysis

for better interpretability. For both methods, the top-ranked

pathways are the ‘‘alpha-Linolenic acid metabolism’’ (KEGG, 214

feature hits), the ‘‘jasmonic acid biosynthesis’’ (AraCyc, 176

feature hits), and the ‘‘lycolipid desaturation’’(AraCyc, 325 feature

hits). These pathways specifically describe parts of the biosynthesis

of the well-known wound hormone jasmonate [39]. The first two

pathways cover all biosynthetic steps from the fatty acid alpha-

linolenic acid to jasmonic acid. The first committed step is

catalyzed by the allene oxide synthase (AOS), whose gene is

mutated in the dde 2-2 mutant plants [33]. The glycolipid

desaturation pathway describes the formation of the alpha-

linolenic acid via sequential steps of glycolipid-linked desaturation.

The FDRs for these key pathways are much lower compared to

the following pathways. Tables 4, 5, 6, 7, 8, 9, 10, and 11 show the

results from enrichment analysis of the four single data sets and

selected mappings of top-ranked features which were assigned to

entries in the three key pathways, respectively. The enrichment

analysis of the M1 data set (negative ionization mode, see Table 4)

provides a major contribution to the results from meta-analysis.

The first two pathways are also top-ranked but associated with

much higher FDRs. The high-ranked features associated with

jasmonic acid and its precursor metabolites, such as OPDA and

OPC-8:0, are mainly responsible for this ranking (see Table 5).

However, the mapping of putative monoisotopic feature masses to

Table 6. Results from pathway enrichment analysis of data set M2.

Rank DB Pathway Hits KS Rank-sum

1 AraCyc glycolipid desaturation 167 0.0009173 0.002862

2 AraCyc antheraxanthin and violaxanthin biosynthesis 63 0.1033 0.2477

3 KEGG Carotenoid biosynthesis 389 0.3608 0.8365

4 AraCyc zeaxanthin biosynthesis 29 0.5251 0.8365

5 AraCyc lutein biosynthesis 34 0.5251 0.8365

6 AraCyc capsanthin and capsorubin biosynthesis 38 0.5251 0.8365

7 AraCyc brassinosteroids inactivation 20 0.5251 0.8365

8 KEGG Porphyrin and chlorophyll metabolism 236 0.8693 0.8365

… … … … … …

12 KEGG alpha-Linolenic acid metabolism 89 0.8693 0.8365

13 AraCyc jasmonic acid biosynthesis 54 0.8693 0.8365

The table contains the high-ranking pathways from enrichment analysis of data set M2 based on the Kolmogorov-Smirnov (KS) and rank-sum test. The last two columns
comprise the false discovery rates calculated from the restandardized p-values.
doi:10.1371/journal.pone.0089297.t006

Table 7. Selected feature mappings from data set M2.

Rank rt m/z Mappings

2 2.08 310.2377 OPDA, EOTrE

8 2.08 293.2117 OPDA, EOTrE

11 2.08 311.2422 OPDA, EOTrE

48 2.08 315.1932 OPDA, EOTrE

180 6.17 942.6175 18:1/16:0-DGD

211 6.17 941.6124 18:2/18:3-DGD

231 6.22 772.5912 18:2/16:0-MGD, 18:1/16:1-MGD

248 5.51 776.5365 18:3/16:0-MGD, 18:2/16:1-MGD,
18:1/16:2-MGD

295 6.00 960.6576 18:3/18:1-DGD, 18:2/18:2-DGD

297 4.69 772.5034 18:3/16:2-MGD

310 5.07 937.5843 18:3/18:3-DGD

330 5.87 935.6452 18:2/16:0-DGD

413 6.15 915.5996 16:0/18:1-DGD

459 6.45 774.6054 18:1/16:0-MGD, 18:0/16:1-MGD

507 5.72 768.56 18:3/16:1-MGD, 18:2/16:2-MGD,
18:1/16:3-MGD

615 5.18 748.5052 18:3/16:3-MGD

699 1.41 441.3184 Volicitin

The table contains selected feature mappings from data set M2 (23325 features)
to the first three pathways in tables 2 and 3. Multiple mappings correspond to
different ionization rules or isotopologues.
doi:10.1371/journal.pone.0089297.t007
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metabolites is error-prone and ambiguous. For example, OPDA,

EOTrE, and a couple of other metabolites provided by KEGG

and AraCyc share the same sum formula and single ion features

cannot be unambiguously assigned without further information. In

contrast to the alpha-linolenic acid metabolism pathway (KEGG),

the very similar jasmonic acid biosynthesis pathway (AraCyc) is

associated with a much higher FDR. This can be explained by a

number of additional entries found only in the AraCyc version of

the pathway and representing general substrates, such as acetyl-

CoA, intermediate products which could not be measured with a

high signal-to-noise ratio, such as OPC6-3-hydroxyacyl-CoA, or

other side products. The glycolipid desaturation pathway, which

can be found at position seven, is associated with a very high FDR.

Most of the glycolipid species show higher intensities and signal-to-

noise ratios in positive compared to negative ionization mode,

which results in a very low FDR in pathway enrichment analysis of

the M2 data set (see Tables 6 and 7). In contrast, jasmonate and

many direct precursor metabolites cannot be measured in positive

ionization mode with sufficient intensity, which explains the less

prominent ranking of the alpha-linolenic acid metabolism (rank

12) and jasmonic acid biosynthesis (rank 13). Nonetheless,

metabolites such as OPDA can be measured in both ionization

modes with high signal-to-noise ratio and these findings confirm

the corresponding pathways in meta-analysis. Integrating the

Transcriptomics data sets T1 and T2 results in a much more

comprehensive data interpretation (see Tables 9 and 11). Figure 4

exemplarily shows the pathway map of the alpha-linolenic acid

metabolism with marked entries matched by high-ranking features

from all data sets. In this combination, the ambiguous mapping of

the MS data is supported by unambiguously matching transcripts.

Almost all of the transcripts corresponding to enzymes in the

alpha-linolenic acid metabolism can be found in the T1 and T2

data sets with relatively high signal-to-noise ratios. This results in

much lower FDRs for the jasmonate-specific pathways in meta-

analysis compared to the results from single Metabolomics data set

analysis. Also in the analysis of the single Transcriptomics data sets

(see Tables 8 and 10), these two pathways are associated with

relatively high FDRs. In case of the T1 data set, both pathways

can be found at less prominent positions (rank 14 and 23, see

Table 8). For both Transcriptomics data sets, the glycolipid

desaturation is ranked in the middle of all pathways (rank 420 and

161). Only a small number of transcripts associated with fatty acid

desaturase show a high signal-to-noise ratio (see Tables 9 and 11).

In case of both methods for meta-analysis, the pathways

‘‘Linoleic acid metabolism’’ and ‘‘traumatin and (Z)-3-hexen-1-yl

acetate biosynthesis’’ can be found in the list of top-ten. These

Table 8. Results from pathway enrichment analysis of data set T1.

Rank DB Pathway Hits KS Rank-sum

1 KEGG Glycolysis/Gluconeogenesis 108 0.3527 0.2952

2 KEGG Proteasome 57 0.2885 0.2952

3 KEGG Protein processing in endoplasmic reticulum 176 0.2885 0.2952

4 KEGG Ribosome 220 0.02489 0.2952

5 KEGG Oxidative phosphorylation 118 0.2885 0.2952

6 KEGG Phenylalanine, tyrosine and tryptophan biosynthesis 54 0.492 0.2952

7 AraCyc superpathway of phenylalanine, tyrosine and tryptophan biosynthesis 43 0.4966 0.3302

… … … … … …

14 AraCyc jasmonic acid biosynthesis 27 0.8201 0.35

… … … … … …

23 KEGG alpha-Linolenic acid metabolism 30 0.6202 0.4782

… … … … … …

420 AraCyc glycolipid desaturation 7 0.976 0.9758

The table contains the high-ranking pathways from enrichment analysis of data set T1 based on the Kolmogorov-Smirnov (KS) and rank-sum test. The last two columns
comprise the false discovery rates calculated from the restandardized p-values.
doi:10.1371/journal.pone.0089297.t008

Table 9. Selected feature mappings from data set T1.

Rank ID Mappings

6 AT2G06050 12-oxophytodienoate reductase 3

12 AT3G11170 fatty acid desaturase 7

16 AT5G42650 allene oxide synthase

18 AT1G17420 lipoxygenase 3

82 AT2G06050 12-oxophytodienoate reductase 3

120 AT4G15440 hydroperoxide lyase 1

226 AT5G48880 peroxisomal 3-keto-acyl-CoA thiolase 5

241 AT2G44810 phospholipase A1

316 AT1G20510 OPC-8:0 CoA ligase 1

436 AT1G76680 12-oxophytodienoate reductase 1

638 AT1G72520 lipoxygenase 4

737 AT4G16760 peroxisomal acyl-coenzyme A oxidase 1

744 AT1G17420 lipoxygenase 3

1037 AT3G45140 lipoxygenase 2

1487 AT1G13280 allene oxide cyclase 4

2116 AT2G06925 phospholipase A2-ALPHA

2788 AT2G31360 delta 9 acyl-lipid desaturase 2

3146 AT3G15290 3-hydroxyacyl-CoA dehydrogenase

4263 AT5G04040 triacylglycerol lipase SDP1

4276 AT1G76150 enoyl-CoA hydratase 2

The table contains selected feature mappings from data set T1 (25392 features)
to the first three pathways in tables 2 and 3. Multiple mappings correspond to
different spots on the microarray.
doi:10.1371/journal.pone.0089297.t009
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pathways are directly connected with the alpha-linolenic acid

metabolism and affected by the AOS mutation as well [40].

However, it should be noted that the second pathway is only of

limited relevance in this context because the used genotype

Columbia is a natural mutant in its second enzymatic step, the

fatty acid hydroperoxide lyase reaction [41]. The 2-Oxocarboxylic

acid metabolism (Brown’s method) and several pathways in

the ranking based on Stouffer’s extended method describe

glucosinolate biosynthesis, the major chemical defense reaction

of Arabidopsis plants upon wounding that is regulated by

jasmonates [42]. Though, these pathways are associated with

comparably high FDRs.

Comparing the results based on the KS and the rank-sum test,

no clear trend towards lower FDRs can be observed. In case of

Brown’s method, the glycolipid desaturation pathway is associated

with a much lower FDR for both tests. In case of Stouffer’s

extended method, both jasmonate-specific pathways are scored

with lower FDRs.

Discussion

The meta-analysis of pathway enrichment was evaluated and

applied on two Metabolomics and two Transcriptomics data sets

in the context of plant wounding. The meta-analysis based on

Brown’s and Stouffer’s extended method is able to incorporate

information from different independent and dependent omics data

sets and distinguish key pathways in the experimental context. The

FDRs calculated based on the meta-p-values are much lower

compared to the single data set analysis. Especially for the pathway

analysis of non-targeted Metabolomics studies, where the identi-

fication of metabolites is a bottleneck, the integration of data from

other omics platforms, such as DNA microarrays, increases the

value and reliability of results. In this application, Brown’s and

Stouffer’s extended method showed overall similar results.

However, Brown’s method seems to be more powerful in case of

pathways which are associated with extreme p-values for only a

proportion of the data sets. The glycolipid desaturation pathway

for example is associated with very small p-values (KS and rank-

sum test) for the M2, relatively small p-values for the M1, and

much larger p-values for the T1 and T2 data sets (see Table S1). In

case of Brown’s method, this pathway is associated with smaller

FDRs (0.0007 and 0.01) in comparison to Stouffer’s method (0.02

and 0.21). In contrast, Stouffer’s method seems to be more

powerful in case a pathway is associated with comparably small p-

values for all data sets (see alpha-linolenic acid metabolism and

jasmonic acid biosynthesis pathways). The choice of method

depends on the objective of the meta-analysis, e.g. focus on

pathways which show a consensus for all data sets or also including

pathways with significant p-values for only a single or small

number of data sets [26,43]. In the context of heterogeneous omics

Table 10. Results from pathway enrichment analysis of data set T2.

Rank DB Pathway Hits KS Rank-sum

1 KEGG alpha-Linolenic acid metabolism 30 0.5885 0.0794

2 KEGG Starch and sucrose metabolism 142 0.6748 0.3277

3 AraCyc jasmonic acid biosynthesis 27 0.7192 0.3277

4 KEGG Linoleic acid metabolism 11 0.7192 0.7457

5 AraCyc glucosinolate biosynthesis from phenylalanine 16 0.7192 0.7457

6 AraCyc glucosinolate biosynthesis from dihomomethionine 19 0.7192 0.7457

7 KEGG Valine, leucine and isoleucine biosynthesis 19 0.7192 0.7457

8 AraCyc glucosinolate biosynthesis from tryptophan 21 0.7192 0.7457

9 AraCyc starch degradation I 37 0.7192 0.7457

… … … … … …

161 AraCyc glycolipid desaturation 7 0.8851 0.9666

The table contains the high-ranking pathways from enrichment analysis of data set T2 based on the Kolmogorov-Smirnov (KS) and rank-sum test. The last two columns
comprise the false discovery rates calculated from the restandardized p-values.
doi:10.1371/journal.pone.0089297.t010

Table 11. Selected feature mappings from data set T2.

Rank ID Mappings

25 AT5G42650 allene oxide synthase

104 AT2G06050 12-oxophytodienoate reductase 3

355 AT1G76680 12-oxophytodienoate reductase 1

376 AT5G48880 peroxisomal 3-keto-acyl-CoA thiolase 5

426 AT1G17420 lipoxygenase 3

484 AT3G15870 oxidoreductase

631 AT1G19640 jasmonic acid carboxyl methyltransferase

1019 AT3G11170 fatty acid desaturase 7

1263 AT5G04040 triacylglycerol lipase SDP1

1354 AT4G16760 peroxisomal acyl-coenzyme A oxidase 1

1371 AT1G17420 lipoxygenase 3

1544 AT3G45140 lipoxygenase 2

1812 AT3G15850 fatty acid desaturase 5

1940 AT2G06925 phospholipase A2-ALPHA

2139 AT4G30950 fatty acid desaturase 6

2413 AT2G06050 12-oxophytodienoate reductase 3

2653 AT3G15290 3-hydroxyacyl-CoA dehydrogenase

3022 AT1G67560 lipoxygenase 3

3297 AT3G06860 3-hydroxyacyl-CoA dehydrogenase

3383 AT2G33150 peroxisomal 3-keto-acyl-CoA thiolase 2

The table contains selected feature mappings from data set T2 (25392 features)
to the first three pathways in tables 2 and 3. Multiple mappings correspond to
different spots on the microarray.
doi:10.1371/journal.pone.0089297.t011

Meta-Analysis of Cross-Omics Pathway Enrichment

PLOS ONE | www.plosone.org 10 February 2014 | Volume 9 | Issue 2 | e89297



data sets, which contain entities that cannot be measured in all

experiments, e.g. metabolites that can be ionized either in positive

or negative ionization mode, and pathways that may be associated

with only a small number of entries for a particular omics

platform, Brown’s (or Fisher’s method in case of independent p-

values) seems to be the better choice. In both meta-analyses, a

couple of pathways related to the wounding process were detected

with relatively large FDRs. In order to combine the Metabolomics

and Transcriptomics data sets in a robust way, we utilized general

rank-based tests and a conservative restandardization of p-values

per data set. The introduced framework may also be combined

with more powerful tests specialized on microarray data analysis

[37]. The enrichment analysis of the single T1 and T2 data sets

resulted in considerably different rankings. This is likely to be

related to the different time points when the wounded plants have

been harvested (one and three hours).

In the performed simulation studies, the introduced feature rank

correlation could be fully reconstructed utilizing the correlation

estimation from pathway enrichment. By restricting the range of

p-values via the parameter pmin~0:01, leaving out significant

pathways, the estimation bias could be reduced. The comparison

of the two dependent Metabolomics data sets, which were

obtained from the same biological samples analyzed in positive

and negative ionization mode, resulted in relatively small positive

correlation coefficients. This indicates that only a small proportion

of metabolites could be detected in both ionization modes with

comparable quality of intensity profiles and that data from both

modes should be considered in a comprehensive analysis. In

general, the statistical power of the meta-analysis increases with

decreasing dependence of data sets. Therefore, nearly independent

data sets are desirable.

Comparing the one-sided KS and rank-sum test, both tests

resulted in a similar distribution of normal deviates. In the

simulation studies, the one-sided KS test was not able to fully

reconstruct strong negative feature correlations. In most applica-

tions however, this type of data set correlation is not expected.

Supporting Information

File S1 Matlab source code for functions used in meta-
analysis.
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respectively. The rt and Former m/z columns (M1 and M2 data

set) contain the retention times and mass-to-charge ratios from MS

analysis. The raw intensities for each sample can be found in the
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signal-to-noise ratios and the last columns contain the KEGG and

AraCyc entries and pathways mapped to the corresponding
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