Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 May;80(9):2491–2494. doi: 10.1073/pnas.80.9.2491

Uridine diphosphate glucose breakdown is mediated by a unique enzyme activated by fructose 2,6-bisphosphate in Solanum tuberosum

Donna M Gibson 1, Ward E Shine 1
PMCID: PMC393851  PMID: 16593304

Abstract

In the presence of inorganic phosphate, uridine 5′-diphosphate glucose (UDPG) is specifically hydrolyzed to glucose 1-phosphate and UDP by a unique enzyme, UDPG phosphorylase. The activity of the enzyme was maximally stimulated by fructose 2,6-bisphosphate, a regulatory metabolite recently discovered in both plants and animals, and by 2-phosphoglyceric acid. At 1 μM, fructose 2,6-bisphosphate stimulated UDPG phosphorolysis 10-fold, whereas 2-phosphoglyceric acid was required at higher concentrations (100 μM) to produce a similar effect. Fructose 2,6-bisphosphate appears to increase the affinity of the enzyme for inorganic phosphate, with a change in Km from 1.6 mM to 0.3 mM. The results suggest that fructose 2,6-bisphosphate participates in the regulation of other pathways of carbohydrate metabolism in addition to playing its recognized role in glycolysis and gluconeogenesis.

Keywords: UDP-glucose phosphorylase, 2-phosphoglyceric acid, carbohydrate metabolism, potato

Full text

PDF
2491

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AVIGAD G. SUCROSE-URIDINE DIPHOSPHATE GLUCOSYLTRANSFERASE FROM JERUSALEM ARTICHOKE TUBERS. J Biol Chem. 1964 Nov;239:3613–3618. [PubMed] [Google Scholar]
  2. BUCHANAN J. G., LYNCH V. H., BENSON A. A., BRADLEY D. F., CALVIN M. The path of carbon in photosynthesis. XVIII. The identification of nucleotide coenzymes. J Biol Chem. 1953 Aug;203(2):935–945. doi: 10.2172/915412. [DOI] [PubMed] [Google Scholar]
  3. Bartrons R., Van Schaftingen E., Vissers S., Hers H. G. The stimulation of yeast phosphofructokinase by fructose 2,6-bisphosphate. FEBS Lett. 1982 Jun 21;143(1):137–140. doi: 10.1016/0014-5793(82)80290-1. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Cséke C., Weeden N. F., Buchanan B. B., Uyeda K. A special fructose bisphosphate functions as a cytoplasmic regulatory metabolite in green leaves. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4322–4326. doi: 10.1073/pnas.79.14.4322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Delmer D. P., Albersheim P. The Biosynthesis of Sucrose and Nucleoside Diphosphate Glucoses in Phaseolus aureus. Plant Physiol. 1970 Jun;45(6):782–786. doi: 10.1104/pp.45.6.782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Harbron S., Foyer C., Walker D. The purification and properties of sucrose-phosphate synthetase from spinach leaves: the involvement of this enzyme and fructose bisphosphatase in the regulation of sucrose biosynthesis. Arch Biochem Biophys. 1981 Nov;212(1):237–246. doi: 10.1016/0003-9861(81)90363-5. [DOI] [PubMed] [Google Scholar]
  8. Heinonen J. K., Honkasalo S. H., Kukko E. I. A method for the concentration and for the colorimetric determination of nanomoles of inorganic pyrophosphate. Anal Biochem. 1981 Nov 1;117(2):293–300. doi: 10.1016/0003-2697(81)90725-9. [DOI] [PubMed] [Google Scholar]
  9. LELOIR L. F. Enzymic isomerization and related processes. Adv Enzymol Relat Subj Biochem. 1953;14:193–218. doi: 10.1002/9780470122594.ch6. [DOI] [PubMed] [Google Scholar]
  10. Milner Y., Avigad G. Thymidine diphosphate nucleotides as substrates in the sucrose synthetase reaction. Nature. 1965 May 22;206(4986):825–825. doi: 10.1038/206825a0. [DOI] [PubMed] [Google Scholar]
  11. Murata T., Sugiyama T., Minamikawa T., Akazawa T. Enzymic mechanism of starch synthesis in ripening rice grains. 3. Mechanism of the sucrose-starch conversion. Arch Biochem Biophys. 1966 Jan;113(1):34–44. doi: 10.1016/0003-9861(66)90153-6. [DOI] [PubMed] [Google Scholar]
  12. Pilkis S. J., El-Maghrabi M. R., Pilkis J., Claus T. Inhibition of fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate. J Biol Chem. 1981 Apr 25;256(8):3619–3622. [PubMed] [Google Scholar]
  13. Sabularse D. C., Anderson R. L. D-Fructose 2,6-bisphosphate: a naturally occurring activator for inorganic pyrophosphate:D-fructose-6-phosphate 1-phosphotransferase in plants. Biochem Biophys Res Commun. 1981 Dec 15;103(3):848–855. doi: 10.1016/0006-291x(81)90888-3. [DOI] [PubMed] [Google Scholar]
  14. Shinshi H., Miwa M., Kato K., Noguchi M., Matsushima T., Sugimura T. A novel phosphodiesterase from cultured tobacco cells. Biochemistry. 1976 May 18;15(10):2185–2190. doi: 10.1021/bi00655a024. [DOI] [PubMed] [Google Scholar]
  15. Uyeda K., Furuya E., Luby L. J. The effect of natural and synthetic D-fructose 2,6-bisphosphate on the regulatory kinetic properties of liver and muscle phosphofructokinases. J Biol Chem. 1981 Aug 25;256(16):8394–8399. [PubMed] [Google Scholar]
  16. Uyeda K., Furuya E., Sherry A. D. The structure of "activation factor" for phosphofructokinase. J Biol Chem. 1981 Aug 25;256(16):8679–8684. [PubMed] [Google Scholar]
  17. Van Schaftingen E., Hers H. G. Inhibition of fructose-1,6-bisphosphatase by fructose 2,6-biphosphate. Proc Natl Acad Sci U S A. 1981 May;78(5):2861–2863. doi: 10.1073/pnas.78.5.2861. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES