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Introduction

Chronic lymphocytic leukemia (CLL) is considered as the 
accumulation of mature monoclonal B cells rather than prolifera-
tion indolent B cell characterized by defective apoptosis.1 Single 
gene mutations are rapidly being uncovered by sequencing the 
coding genome of CLL cases, including NOTCH1, splicing fac-
tor 3b subunit 1 (SF3B1), and myeloid differentiation primary 
response gene 88 (MYD88).2 There is significant heterogeneity 
in the disease progression between CLL patients. Coding unmu-
tated immunoglobulin variable heavy-chain (IGHV) genes and 
expressing the protein tyrosine kinase ZAP-70 and the type II 
transmembrane glycoprotein CD38 predict poor prognosis 
among leukemia patients who develop aggressive disease and 
need immediate therapy.1,3

Compared with normal lymphocytes, CLL cells are accumu-
lated in the bone marrow (BM), lymphoid tissues, and are flowed 
into peripheral blood and prolong survival time in vivo. CLL cells 
are spontaneous apoptosis in vitro but can be rescued by micro-
environment of BM and lymphoid tissues.4,5 CLL cells home to 
the BM by chemotaxis, increasing cell survival and probably 
the extent of marrow infiltration.6 In vitro, adding stromal cells 
promotes survival of CLL cells through the secretion of several 
soluble growth factors and proteins.7,8 CLL-accessory cell direct 
cross-talk in microenvironment appears to be meaningful in CLL 
cells survival and disease progression.9 The microenvironment in 
the BM and lymph nodes (LNs) provides drug-resistance signals 
for CLL cells and drug resistance mechanism can interpret mini-
mal residual disease (MRD) after conventional treatments.10,11 
Stromal cells protect CLL cells from conventional drug-induced 
apoptosis through cell adhesion-mediated drug resistance.

We will review the relationship of chemokines/chemokines 
receptors and CLL in microenvironment and then discuss thera-
peutic approaches of targeting the microenvironment or micro-
environment associated signaling, as showed in Figure 1.

Role of Chemokines in CLL Microenvironment

Chemokines as a family of approximately 50 peptides are 
first proposed as “chemotactic cytokines” in 1992 which play a 
role in regulating homing of immune cells, leukocyte traffick-
ing and maturation.12,13 Physical interactions between CLL cells 
and bone marrow mesenchymal stem cells (BMSC), nurse-like 
cells (NLCs) are mediated through the molecular interaction of 
vascular cell adhesion molecule (VCAM-1), CD11a (leukocyte 
function associated antigen-1), and CD49d (very late antigen-4) 
and so on. Contact between the neoplastic cells and stroma-
derived cells supports CLL cells growth and survival in vitro 
and in vivo.14 Topical study show long-term survival demands 
direct interaction between CLL cells and the stroma cell co-cul-
tures, whereas short-term survival of CLL cells in vitro can be 
sustained by soluble factors produced by stromal cells.15 Stromal 
cell-derived factor-1 (SDF-1) as a homeostatic chemokine, bind-
ing to chemoreceptor CXCR4 not only plays a role in homing of 
CLL cells into the BM but also prolonging CLL cells survival by 
cell-to-cell interaction with BMSCs and NLCs.16 In CLL cells, 
homeostatic chemokine receptors CXCR5 and CCR7 lead in 
resistance-mediated apoptosis.17 The CX3CR1/CX3CL1 system 
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Chemokines produced in distinct tissue microenvironments 
sustain migration of mature lymphocytes in lymphoglandula. 
Chemokine receptors expressed on chronic lymphocytic 
leukemia (CLL) cells regulate the migration of the leukemia 
cells within the bone marrow (BM), lymphoid organs in 
collaboration with chemokines. Chemokines form a pro-
survival circuitry by regulating leukocyte trafficking, 
maintaining extended lymphocyte survival. Therefore, 
chemokines in tumor cell–microenvironment interactions 
represent a target for treatment of CLL. AMD3100 disrupts the 
CLL/microenvironment interactions and influences CXCL12/
CXCR4 survival signaling. Fostamatinib, ibrutinib, and GS-1101 
as B-cell receptor (BCR)-related kinase inhibitors inhibit BCR- 
and chemokine-receptor-signal-regulated kinase and have a 
good clinical response in CLL. Lenalidomide, sorafenib, and 
dasatinib are other additional drugs associated with chemokine 
in microenvironment. inhibiting signaling through chemokine 
and microenvironment associated signaling are emerging 
as innovative therapeutic targets in CLL. in this article, we 
reviewed the role of chemokines in CLL microenvironment and 
novel therapeutics targeting CLL microenvironment.
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may play a role in interactions between CLL cells and microenvi-
ronment by studying CXCL12- mediated adherence of leukemic 
cells to NLCs.18 Other chemokines like CLL-generated CCL3 
and CCL4 significantly lead to the recruitment of cells from 
the monocyte/macrophage lineage to BM microenvironmental 
sites.19 Chemokines appear to form a pro-survival circuitry by 
regulating leukocyte trafficking, maintaining extended lympho-
cyte survival.20

Novel Therapeutics Targeting CLL 
Microenvironment

CXCR4 antagonists
CXCR4 (CD184), as a receptor for SDF-1(CXCL12) is highly 

expressed on the membrane of peripheral blood CLL cells which 
take advantage of CXCR4/CXCL12 axis to remain in a favor-
able environment.21 CXCL12 binding to CXCR4 can regulate 
leukemia cells adhesion to actin polymerization and vascular 

endothelium, and accommodate migration beneath and under-
neath BMSCs.22 In CLL cells, higher levels of CD49d in fact 
conduct migration beneath BMSCs in assistance with CXCR4.23 
CD38+ CLL cells show higher levels of chemotaxis compared 
with CD38− CLL cells and activation of CD38+ CLL cells with 
a monoclonal antibody (mAb) enhanced CXCR4 chemotaxis 
toward CXCL12, and a blocking anti-CD38 mAb can inhibit 
this chemotaxis.24 Migration and survival in response to CXCL12 
are associated with ZAP-70 expression, which is stimulated by 
B-cell receptor (BCR) signaling.25 When engaging in adhesion 
to stromal cells, CLL cells are resistant to the cytotoxic effects of 
common drugs in CLL patients, like corticosteroids and fludara-
bine.26 This adhesion-mediated drug resistance mechanism may 
explain MRD in the marrow and relapse found in CLL patients.27

CXCR4 antagonists were initially identified for HIV treat-
ment and then found to induce leukocytosis, and recently are 
applied clinically for hematopoietic progenitors mobilization in 
lymphoma patients.28 CXCR4 antagonists, such as AMD3100, 

Figure 1. A schematic drawing of the microenvironmental interactions among CLL cells, T cells, and stromal cells described in the current review with 
targeting drugs.



©
20

14
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

www.landesbioscience.com Cancer Biology & Therapy 5

T140, and ALX40-4C, can block CLL–stroma interactions and 
then mobilize CLL cells from their protective microenvironments 
to the blood, becoming accessible to conventional drugs.29,30 
Namely, AMD3100 not only inhibits CXCL12-mediated gua-
nosine diphosphate (GDP) binding, free of calcium, chemotaxis 
but also disrupts the cell/MSCs or NLCs-based microenviron-
ment interactions, blocks survival stimuli, and influences the 
survival signal provided by CXCL12.30,31 In CLL, mobilization 
and sensitization of leukemia cells could be achieved via com-
bining a CXCR4 antagonist with conventional cytotoxic agents 
like fludarabine, cyclophosphamide, or established CLL drugs, 
like antibodies (rituximab or alemtuzumab), or combined 
immunochemotherapy.31-33

Andritsos et al.34 went on a study of the maximum tolerated 
dose of AMD3100 in combination with rituximab in relapsed 
CLL patients and the results showed that of 14 estimable 
patients, 5 (36%) had partial response (PR), 3 (21%) had stable 
disease for ≥ 2 mo and 6 (43%) had progressive disease (PD). 
On day 8, there was a median 3.8-fold increase in peripheral 
blood CLL cells, demonstrating CLL cells mobilization. On day 
26 fewer peripheral blood CLL cells were found with a median 
fold increase of 1.5-fold. Under certain circumstance, maximum 
responses were detected in several months after completion treat-
ment of rituximab. From above data, we can find AMD3100 
in combination with rituximab is a new therapeutic avenue for 
relapsed CLL patients.

The underway CLL trial combines plerixafor with rituximab, 
and original data demonstate a plerixafor dose-dependent CLL-
cell mobilization to the peripheral blood from tissue sanctuaries 
and indicate the safety of combination of plerixafor with ritux-
imab. Future studies in CLL may combine a CXCR4 antagonist 
with established convention agents or antibodies so as to help to 
mobilize and eliminate residual CLL cells.

BCR-related kinase inhibitors
BCR stimulation signal plays a significant role in the occur-

rence and prognosis of CLL.35 First of all, disease progress of CLL 
patients are closely related with BCR variable area mutations; 
second, CLL cells restrictively express IgVH sequence BCR; 
third, no mutation of Ig and/or ZAP-70+ has priority response to 
stimulation of BCR.36,37 BCR launches a signaling cascade lead-
ing in expansion of CLL clone in company with other signals, 
like CD40 ligand, B-cell activating factors (BAFF), a prolifer-
ation-inducing ligand (APRIL), and so on.38 In CLL, target-
ing different components of the BCR pathway can accomplish 
through kinds of constitutively active pathways including spleen 
tyrosine kinase (Syk), bruton tyrosine kinase (Btk), and phospha-
tidylinositol 3-kinases (PI3K).39 Inhibition of both Syk and the 
PI3K pathway block the cross-talk between CLL cells with the 
microenvironment and what is more, inhibition of Btk, Syk, and 
PI3K would promote pro-apoptotic signals.40

Syk inhibitors (fostamatinib disodium), Btk inhibitors (ibru-
tinib), and PI3K inhibitors (GS-1101), which are BCR-related 
kinase inhibitors, have common characteristics in CLL treatment 
that these drugs can make LNs shrinkage and lymphocytes transi-
tional increase in the first weeks of treatment because of CLL cells 
mobilization to peripheral blood from tissues.41-43 Interference of 

BCR signal not only affects related survival pathways, but also 
influences tissue homing and CLL cells residual. BCR-related 
kinase inhibitors inhibit CLL cells chemokine-mediated adhe-
sion in response to CXCL12 or CXCL13 and migration beneath 
stromal cells. These drugs also can downregulate secretion of 
BCR-dependent chemokines (CCL3, CCL4) produced by CLL 
cells. They inhibit BCR- and chemokine-receptor-induced Akt 
and extracellular signal-regulated kinase (ERK 1/2) activation 
and then markedly inhibit CLL cells survival and migration.44-46

PI3Ks inhibitor
PI3Ks as mediating signals of cell surface receptors enzymes 

has four class I PI3K isozymes (PI3Kα, PI3Kβ, PI3Kγ, and 
PI3Kδ) accommodating different cellular functions by the pro-
duction of phosphatidylinositol-3,4,5-triphosphate.47 Generation 
of phosphatidylinositol-3,4,5-triphosphate activates the down-
stream Akt, and the mammalian target of rapamycin (mTOR), 
which both have positive effects on cell survival, proliferation, 
and growth.48 Of the all PI3K isoforms, PI3Kδ has been shown 
to play a significant role in homeostasis and function in response 
to chemokines. GS-110 1 is an up-to-date PI3Kδ-specific inhibi-
tor that promotes CLL apoptosis, migration, homing.43 Akt acti-
vation is suppressed by GS-1101 by means of CD40-, TNFα-, 
fibronectin-, and BCR-derived PI3K signaling.49

Overall response rate (ORR) of single agent GS-1101 treat-
ment in relapsed or refractory indolent CLL patients is 33%. 
Ninety-one percent of CLL patients treated with GS-1101 lead 
to a greater than 50% decrease in their lymph node disease.50 
Recently, GS-1101-based combination therapies are in clinical 
trial and Coutre et al.51 launched a phase I study that showed 
overall ORR for the GS-1101/rituximab (R), GS-1101/benda-
mustine (B), and GS-1101/BR respectively were 78%, 82%, and 
87%, and 1-y progression-free survival (PFS) rates were 74%, 
88%, and 87% respectively. Base on GS-1101 data on the Ameri-
can Society of Hematology Congress, we find that GS-1101 and 
GS-1101-based combination therapies are becoming a valid ther-
apeutic target in relapsed or refractory CLL patients.

BTK inhibitor
BTK as a member of the Tec family kinases is activated 

upstream by Src-family kinases and leads to downstream activa-
tion of essential cell survival pathways such as nuclear factor-κB 
(NFκB) and mitogen activated protein-kinase (MAPK).52 Mouse 
genetic ablation studies show that other BCR-pathway kinases 
rather than Btk have pleiotropic effects on kinds of cells; more-
over BTK mutations in humans result in X-linked agammaglob-
ulinemia (XLA), which is designated as a severe B cell-specific 
defects inherited disorder.53 Based on these evidences, we suppose 
Btk is a distinctively attractive kinase target for selective B-cell 
inhibition.

Research finds that the mouse B cells deficient in function 
of cytoplasmic tyrosine kinase Btk are also lack of CXCL12-
CXCR4, CXCL13-CXCR5, VCAM-1, or α4 integrin.54 Com-
bining this notion with the recent finding, we presume that Btk 
may be involved in the signaling mechanism underlying che-
mokine-controlled integrin-mediated migration. It is becoming 
clear that Btk signaling downstream other receptors including 
CXCR4 and CXCR5 greatly influence the CLL hazard rank and 
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disease progression.55 Ibrutinib is the first human Btk inhibitor 
binding particularly and irreversibly to Btk protein through a 
cysteine residue and then inhibiting Btk phosphorylation. Hoel-
lenreiger et al.56 evaluate the effect of ibrutinib on CLL cell via-
bility after anti-IgM stimulation and find ibrutinib blocks BCR-
triggered CLL cells survival but CLL cells from ibrutinib-treated 
patients still are anti-IgM. Btk-independent pro-survival effects 
could not be inhibited by ibrutinib in vitro. Shortly after ibru-
tinib treatment, most circulating CLL cells display low CXCR4 
expression which is characteristic of LN- and BM-derived CLL 
cells.

Brown et al.57 conduct the major clinical trials of BTK inhibi-
tor. The result shows the ORR of ibrutinib in relapsed refractory 
CLL is 67% and PFS 88% at 15 mo. In a cohort of untreated 
patients 65 y and over, the estimated 15 mo PFS is 96%. ORR 
of combination of ibrutinib with BR is 93%, PFS 90% at 11 
mo, compared with ibrutinib with ofatumumab, ORR 100%, 
PFS 89% at 10 mo. Burger and his colleagues conduct a phase 
II single-center clinical trials of ibrutinib and rituximab. Early 
evaluable response is 50% at the inital 3 mo; ORR is 85%, CR 
40%, and PR 45%. On this combination trial, in contrast with 
single-agent ibrutinib, re-distribution lymphocytosis peaks ear-
lier and the duration is shorter, presumably because of the addi-
tion of rituximab.58 On the basis of above data, ibrutinib and 
ibrutinib-based combination therapies is a safe, well-tolerated 
treatment for high-risk CLL patients and induce very high initial 
response rates.

Syk inhibitor
Syk as a member of the Syk/ZAP-70 family of non-receptor 

kinases activates BCR downstream signaling pathways, like Btk 
and activated B-cell linker protein (BLNK), which then activate 
the downstream signaling molecules NFκB, Raf, MEK, and 
ERK.59 Syk signaling is required for B-cell development, prolif-
eration, and survival. Syk-deficient mice show an interdict at the 
pro-B to pre-B transition.60 R406 as an ATP competitive kinase 
inhibitor has limited specificity toward Syk, because of its activ-
ity against other kinases including FMS-related tyrosine kinases 
3 (Flt3), Janus kinase 1, and Janus kinase 3. R406 is effective 
in CLL and other B-cell malignancies through disrupting BCR 
signals and micro-environmental interactions.61

Herman et al.62 research shows that NFκB signature genes 
and MYC signature genes are downregulated due to fostama-
tinib. Expression of CD69, CD86, and the percentage of CLL 
cells expressing Ki67 are also remarkably reduced by fostama-
tinib. Cytotoxic effects of Syk inhibitor is associated with Syk 
protein expression and is stronger in unmutated IGVH and 
ZAP70+ CLL cases. Compared with fludarabine therapy alone, 
combination of fludarabine with R406 increase cytotoxicity that 
provides potential mechanistic for a novel treatment option for 
the poor prognosis of CLL patients. Friedberg et al.63 launch a 
clinical trial, 68 patients are enrolled in three cohorts: diffuse 
large B cell lymphoma (DLBCL), follicular lymphoma (FL), and 
other non-Hodgkin lymphoma (NHL). CLL/small lymphoma 
leukemia (SLL) has the highest RR that is 55% (6/11) to fos-
tamatinib. Collectively the data provide a blueprint to further 
study fostamatinib-targeted therapeutics.

In these trials, we find BCR-related kinase inhibitors both 
can make LNs shrinkage and lymphocytes transitional increase 
in the initial weeks of treatment owing to CLL cells mobilization 
to blood. Data regard to the frequency of relapses and progres-
sion of BCR-related kinase inhibitors are at the present stage very 
juvenile, but preliminary results are satisfactory and myelosup-
pression is scarce. Now novel insights regarding BCR inhibitor 
drugs not only provide support for their further application as 
monotherapy but also for their use as equitable combination ther-
apy like coalescence with rituximab, ofatumumab, and benda-
mustine, utilizing the microenvironment dependence in CLL. 
Potential mechanism of resistance to BCR inhibitor drugs as yet 
are unknown and probably will become an innovative avenue in 
future, especially when these drugs are widely application.

Lenalidomide
Lenalidomide as an immune modulatory agent are recently 

approved for application in multiple myeloma, lymphoma, acute 
myeloid leukemia and CLL.64 Application of lenalidomide in 
CLL has been combined with development of antitumor anti-
bodies and induce a disease-specific side effect of tumor flare 
and cytokine release, such as serum basic fibroblast growth fac-
tor (bFGF) and vascular endothelial growth factor (VEGF).65,66 
bFGF and VEGF both have been associated with promoting 
CLL survival and circulating levels of bFGF is associated with 
response to therapy for CLL.65 Recent study shows that activa-
tion of CLL cells induced by lenalidomide depends on the PI3Kδ 
pathway. Inhibition of PI3Kδ signaling by the PI3Kδ inhibitor 
can block up CLL cell activation, VEGF and bFGF gene expres-
sion induced by lenalidomide.67

Now, the encouraging results with single-agent lenalido-
mide as first-line treatment option for CLL shows ORR is 56% 
(no CR) and tumor flare is common.68 Combination lenalido-
mide with rituximab of phase II clinical trials are ongoing in 
untreated CLL patients. The data present ORR is 66% and low 
toxicity have been observed.69 In vitro, combination of PI3Kδ 
inhibitor is effective for preventing the tumor flare produced by 
lenalidomide treatment. The evidence provides support for the 
combination of lenalidomide with PI3K inhibitors, and poten-
tially other BCR signaling inhibitors as a novel chemoimmuno-
therapy in future.

Sorafenib
The multikinase inhibitor sorafenib as a promising agent for 

treating tumors is a small molecule inhibitor of RAF.70 Sorafenib 
could be particularly relevant in CLL cells by blocking CXCL12-
induced phosphorylation of ERK and MEK in ZAP-70+ CLL 
cells. What is more, ZAP-70+ CLL cells represent more sensi-
tive to the cytotoxic effects of sorafenib in vitro compared with 
ZAP-70− CLL cells.71 This agent could overcome the protective 
effect of the CLL microenvironment at different ranks, like pro-
survival signaling, chemokine signaling. Thus, further discussion 
of these factors and their effects on CLL provide vast ground for 
the development of additional strategies to improve the effective-
ness of treatment with high risk CLL patients.

Dasatinib
Dasatinib as a tyrosine kinase inhibitor is a “second-gener-

ation” ATP-competitive inhibitor of the oncogenic BCR-ABL 
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