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Abstract

We propose Bayesian variable selection methods in semi-parametric models in the framework of 

partially linear Gaussian and problit regressions. Reproducing kernels are utilized to evaluate 

possibly non-linear joint effect of a set of variables. Indicator variables are introduced into the 

reproducing kernels for the inclusion or exclusion of a variable. Different scenarios based on 

posterior probabilities of including a variable are proposed to select important variables. 

Simulations are used to demonstrate and evaluate the methods. It was found that the proposed 

methods can efficiently select the correct variables regardless of the feature of the effects, linear or 

non-linear in an unknown form. The proposed methods are applied to two real data sets to identify 

cytosine phosphate guanine methylation sites associated with maternal smoking and cytosine 

phosphate guanine sites associated with cotinine levels with creatinine levels adjusted. The 

selected methylation sites have the potential to advance our understanding of the underlying 

mechanism for the impact of smoking exposure on health outcomes, and consequently benefit 

medical research in disease intervention.
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1 Introduction

The work proposed in this article was motivated by an epidemiological project aimed to 

choose important epigenetic variants (predictor variables) potentially associated with 

smoking exposures (outcome) including exposure to maternal smoking and posnatal 
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smoking exposure. The epigenetic variants are represented by deoxyribonucleic acid (DNA) 

methylation sets of cytosine phosphate guanine (CpG) sites. DNA cytosine methylation 

plays a critical role in modulating the transcriptional potential of the genome and may 

influence the development of complex human diseases.1 Maternal smoking during 

pregnancy and postnatal smoking exposure are important risk factors for adverse health 

outcomes in children including cancer and respiratory illnesses such as asthma.2–5 The 

underlying mechanisms for the diverse impacts of smoking exposure may involve epigenetic 

modifications such as DNA methylation.6 Identifying important methylation sites from a 

pool of candidates possibly associated with smoking exposure will advance our 

understanding of the underlying mechanisms and consequently benefit medical research in 

disease intervention.

Existing variable selection methods in general are not applicable to select variables such as 

genetic or epigenetic variants (GEVs). Most methods in the Frequentist framework were 

proposed for parametric linear models by use of penalty functions.7–9 Recently, some 

methods for feature selections in non-linear models were developed.10,11 These methods 

generally built on splines or Taylor series expansions and may have difficulty in 

accommodating a large number of predictors and describing complex interaction effects. 

However, in genetic or epigenetic studies, very often, the number of possible predictors in 

the candidate pool is not small due to biological uncertainty. It is also considered that the 

effects of variants on the outcome are not linear and can be in any unknown form. Genes or 

epigenes (genes associated with epigenetic variants) do not necessarily function 

individually; rather, they work in concert with others to manifest a disease condition. 

Furthermore, these approaches are not appropriate for discrete variables such as single 

nucleotide polymorphism (SNP) genotypes. In the area of machine learning, methods of 

variable selection in semi-parametric models constructed by reproducing kernels have been 

discussed,12 although it is also limited to continuous variables and requires intensive 

computing. Similarly, in the Bayesian framework, most variable selection methods are built 

upon model selections in parametric linear models. These methods utilize indicator variables 

for variable inclusion,13–16 Zellner’s g-prior controlling the importance of variables,17–19 or 

Bayes factors comparing posterior probabilities between models.20 Bayesian variable 

selection methods in semi-parametric models are rather limited. In the area of genetic or 

epigenetic studies, this type of methods is particularly appealing simply because researchers 

can embed prior knowledge of genetic or epigenetic factors into the selection process in 

order to obtain more meaningful selection results.

In this article, under a Bayesian framework, we propose a variable selection method built 

into reproducing kernels to evaluate the effect of a set of variables (e.g. GEVs). These 

variables can be continuous such as measurements of DNA methylation or gene expression. 

They can also be discrete such as SNP genotypes. The evaluation of a set effect is built upon 

the method of set analysis21 to capture the significance of a group of variants allowing (for 

possible) unknown non-linear effects. The set analysis has the ability to capture the overall 

contribution from a whole group of variants, which may involve convoluted unknown 

interactions between the variants. The result from this type of analysis, however, is 

influenced by the choice of candidate variants, and it can be misleading if variants included 

in the kernel lack proper justification.22
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In our method, two types of statistical models with reproducing kernels included are 

considered, partially linear regressions and probit regressions. To select important variables, 

we introduce an indicator variable into the reproducing kernel for the inclusion of a variable 

in the kernel. Compared to the existing methods, the proposed method has the ability to 

choose important variables regardless of the effect forms, e.g. linear or non-linear with 

unknown complex interactions. It thus has strong potential for application in gene and 

epigenetic studies to detect potentially important genetic and/or epigenetic variants 

associated with health outcomes, but the general association trend is unknown. There are 

many other possible applications of this method including, for example, studies examining 

the effects of nutrition or physical activity on health outcomes.

The structure of the article is as follows. The modeling and the Bayesian framework are 

presented in Section 2 including the selection of prior distributions and a discussion on 

posterior distributions and sampling. Simulations are presented in Section 3, where different 

structures of variable effects are considered. We apply the methods to select important CpG 

sites of which DNA methylation is potentially associated with maternal smoking and 

cotinine levels. This is discussed in Section 4. Finally, we summarize our findings and 

propose future work in Section 5.

2 The statistical models

Suppose we observe a vector of responses Yn×1, a matrix of variables gn×p whose joint effect 

is of interest (e.g. DNA methylation in a pathway), and a covariate matrix Xn×p0. Here n is 

the sample size, p is the number of variables of interest such as genetic or epigenetic 

variants, and p0 is the number of covariates. Note that it is possible p + p0 > n. We assume 

that the mean of the response is modeled as E(Yi|Xi, gi) = f−1{Xiβ + h(gi)}, where h(·) is an 

unknown function, and βp0×1 describes the additive linear effects of p0 covariates X. Define 

h(g)n×1 to be a vector of unknown functions evaluating the joint effect of p variables g that is 

possibly non-linear and may involve complex interactions between g; h(g) can be modeled 

parametrically or non-parametrically. Function f (·) is a known link function. For instance, f 
(·) being the identity function results in a partially linear model and the inverse of a probit 

function gives a probit regression model. Our goal is to select a set of important variables 

from g that have legitimate contributions to the joint effect and exclude variables with no 

contributions.

As noted above, we allow the p variables g to have a complex (interaction) effect on the 

response variable. In practice, this is particularly true among genes or epigenes functioning 

in the same pathway. To this end, we incorporate reproducing kernels into the modeling 

process in appreciation of their ability to describe any underlying unknown patterns and the 

ability of handling high-dimensional data with p + p0 > n.21,23 Specifically, we represent h(·) 

using a kernel function K(·, ·). By the Mercer’s theorem,24,25 under some regularity 

conditions, the kernel function K(·, ·) specifies a unique function space  spanned by a 

particular set of orthogonal basis functions. The orthogonality is defined with respect to L2 

norm. Following the Mercer’s theorem, any function h(·) in the function space  can be 

represented as a linear combination of reproducing kernels,25,26 
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, where α = (αk, k = 1, …, n)′ is a vector of unknown 

parameters and  is the ith row of kernel matrix K. Defining h(·) non-parametrically as 

above has two major advantages in that it can handle large number of covariates and can 

capture potentially complex interaction between variables g via the specified kernel function.

The kernel function K(·, ·) determines the space of functions used to approximate the 

function h(·). For instance,  generates a space of functions  spanned 

by all possible dth order monomials of g. It corresponds to models with dth-order 

polynomials including the cross product terms. Another example is the Gaussian kernel, 

which is a function of smoothness parameter ρ and we denote by K(ρ). The (i, j) th entry of 

the kernel matrix K(ρ) is defined as kij(ρ) = exp{−Σm || gim − gjm||2/ρ}, with i, j = 1, …, n, m 
= 1, …, p, where gim is the measure of variable m of subject i. This kernel acts as a 

correlation matrix. The functionality of Gaussian kernels is similar to that of exponential and 

Laplacian kernels.27,28 All these kernels are constructed for continuous variables. For 

discrete variables, a commonly used kernel is the IBS (identity by state) kernel, which is 

constructed based on the agreement between variables and usually used for genetic variants 

such as SNPs.23 In this article, to ensure a clear presentation of the proposed methods, we 

take g to be continuous and adopt a Gaussian kernel because of its flexibility and its ability 

in modeling complex functions.21 However, other kernels can be used as well. In addition, 

we emphasize that the methods can be easily extended to fit discrete variables.

Turning back to the Gaussian kernel, we note that different values of ρ with different sets of 

selected variables can result in the same K(ρ) and consequently the same likelihood. In the 

context of variable selection, we fix ρ at ρ = ρ0 with ρ0 being the value at the full model with 

all variable included, considering that unimportant variables do not significantly contribute 

to the joint effect of g. We also examine the sensitivity of variable selection results with 

respect to the choice of ρ0. In the following sections, we particularly discuss variable 

selections in the setting of two models, partially linear regressions and probit regressions, in 

that these are used most often in practice.

2.1 Partially linear regression model

Consider the following setting to evaluate the effect of a set of variables:

(1)

where Y, X, β, and h(·) are defined as before. Random error ε is with dimension n × 1 and 

we assume ε ~ N(0, σ2I), where I is an identity matrix. Hereinafter, to simplify the notation, 

we use h instead of h(g) without ambiguity that h evaluates the joint effect of g. To select 

variables from g, we introduce an indicator variable δ = {δm|m = 1 ···, p} into the kernel 

matrix with δm = 1 denoting the inclusion of variable m and 0 otherwise. For instance, with 

p = 3, δ = {1, 1, 0} means that the first two variables are selected. Accordingly, we update 

the notation of kernel matrix as K(ρ0, δ) with its th entry defined as (i, j)-th entry defined as
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If variable m is excluded, then it will not appear in any entry of the kernel matrix. The idea 

of using indicator variables for the inclusion or exclusion of a variable has been applied in 

previous studies.13 Selecting covariates X in linear models is not the focus of our work and 

interested readers are referred to the Bayesian or Frequentist methods discussed in the 

literature.13,16,19,20,29,30 Assuming K(ρ0, δ) is positive definite, as shown in an earlier 

study,21 parameter estimation in the semi-parametric model (1) based on penalized least 

squares is equivalent to the estimates from a linear mixed model with random effects h ~ 

N(0, τK(ρ0, δ)), where τ is an unknown variance component.

Denote by Θ = {β, σ2, τ, δ} a collection of parameters to be inferred. In the following 

sections, we discuss a fully Bayesian method to infer these parameters.

2.1.1 The prior distributions—The prior distribution of β will be selected as normal 

distributions with vague hyper-parameters , with  selected to be large to 

ensure a vague prior for β.

The prior distributions for σ2 and τ are chosen as inverse gamma distributions with vague 

hyper-parameters, σ2 ~ Inv − Gam(aσ2, bσ2), and τ ~ Inv − Gam(aτ, bτ), where the shape 

and scale parameters aσ2, bσ2, aτ, bτ are chosen to be small. As noted in an earlier study,31 

cautions should be taken on the choice of these hyper-parameters. Note that our goal is to 

remove non-important variables, which are expected not to be associated with the response 

variable. Thus, τ measures the effect of a collection of important variables, if there are any.

The prior distribution of δm is assumed to be Bernoulli with parameter qm. We can take qm = 

0.5 or assign a hyper-prior distribution to qm such as Beta (η, 1) with η known. Our 

simulations indicate that adopting a hyper-prior distribution for qm does not necessarily 

improve our results. So far, all the prior distributions are chosen to be vague, which is aimed 

to draw inferences fully based on data. In some situations, prior knowledge may guide us to 

select more rigorous and informative prior distributions. For instance, if it is known that 

some variables are potentially important, then we can set qm > 0.5 for those variables to 

indicate their importance a priori.

2.1.2 Posterior distributions and their calculations—The joint posterior density is

(2)

where Θ = {β, σ2, τ, δ, q} denotes an expanded set of parameters and q = {q1, …, qp}. To 

differentiate between continuous and discrete random variables, “Pr(·)” is used to denote 

probability mass functions for discrete random variables. We use the Gibbs sampler to 

sample from this joint posterior distribution.
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In the following presentation, (·) denotes the parameters and data to be conditioned on. The 

full conditional posterior of β is β|(·) ~ N(Σβ/σ2(Y − h), Σβ), where 

, and that of h is h|(·) ~ N(Σh(Y − Xβ)/σ2, Σh) with Σ;h = 

{τ−1K−1 + σ2I}−1. The full conditional posterior distributions of σ2 and τ are inverse 

gamma,

The full conditional posterior distribution of qm is Beta (δm + η, 2 − δm), where η is the 

prior distribution of qm such that the prior mean of qm is η/(1 + η). The full conditional 

posterior distribution of δm is

(3)

The possible values of δm are 1 and 0. Denote the right side of equation (3) by cPr(δm), with 

c being the proportion. Let a be cPr(δm = 0|(·)), proportional to the conditional posterior 

probability of δm = 0 and b denote cPr(δm = 1|(·)), proportional to the conditional posterior 

probability of δm = 1. Then the full conditional posterior distribution of δm is Bernoulli with 

parameter b/(b + a) measuring the conditional posterior probability of including variable m 
in the kernel. Clearly, all the conditional posterior distributions are standard. It is worthy of 

note that this feature holds regardless of the choice of kernels or the continuity of g. 

Extension to discrete g is thus expected to be straightforward, so is in the probit regression 

model to be discussed in the next section. To obtain posterior samples of Θ, we sequentially 

draw from the standard full conditional posterior distributions, which are expected to 

converge quickly. For the situation that K is singular, the conditional posterior of h and τ do 

not exist. This can be solved by bypassing direct posterior sampling of h; instead, we infer 

the parameters in the prior distribution of h. By doing so, valid but non-standard posterior 

distributions of τ and σ2 will be obtained and the Metropolis-Hastings algorithm has to be 

used to draw the posterior samples.

Determination of important variables: To conclude the importance of each variable, we 

summarize the posterior probabilities (posterior mean of q) of including each variable in the 

model. To determine which variable should be kept, we apply the concept in scree plot to the 

posterior probabilities, calculated as the percentage of times that a variable is selected 

among a certain number of uncorrelated MCMC samples. Scree plots are often used in 

principal component analysis to determine the number of components, where a sharp 

decrease in eigenvalues indicates less importance for the rest of the components. 
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Analogously, in our application of scree plots, a sharp decrease in probabilities indicates less 

importance of the remaining variables. Variables identified by this rule are treated as the 

most important variables. In addition, a reference probability 0.50 will be used to identify a 

group of possibly important variables. This reference probability represents the expected 

frequency if a variable is chosen randomly.

2.2 Probit regression model

In this section, we consider probit regression models for binary outcomes. Like logistic 

regressions, probit regressions are commonly used in case–control studies to infer factor 

effects on the risk of disease. Denote by Zi a binary 0/1 response on the ith observation and 

let Z = {Z1, …, Zn} be the collection of response on n subjects. A generalized linear model 

with probit link function that links Z to the g variables and X covariates can be conveniently 

formulated through data augmentation via Gaussian latent variables. Define a latent variable 

Yi with Y = (Y1, …, Yn)T such that

(4)

where 1A denotes the indicator function of the event A, and h and ε are defined as in 

partially linear regression models. Note that the second part of equation (4) is a partially 

linear model. To be consistent with the partially linear model discussed earlier, we keep 

using Y to denote response although Y is latent in this framework. The probability of Z = z 
satisfies

(5)

where A(Z) = {A(Z1), …, A(Zn)} with

and Σ0(ρ0, δ) is an n × n matrix with (i, j)-th entry being τ/(τ + σ2)kij(ρ0, δ) when i ≠ j, and 

1 when i = j. Note that under the model given in equation (5), the parameters (β, σ2, τ) are 

not identifiable. It can be shown that for any positive constant a0, the parameter vectors (a0β, 

) will give the same likelihood. To avoid this problem, we fix σ2 and τ at known 

values  and τ0.32 In this article, we take σ0 = 1 and τ0 = 0.8. The selection of  and τ0 in 

principle is arbitrary, but their ratios will influence the estimates of β. Furthermore, since τ 
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measures the contribution of a set of variables, e.g. expression of genes or DNA methylation 

of different CpG sites, setting τ0 = 0.8 a priori assumes that the variable set has some effect. 

Our simulations indicate that choosing τ0 small compared to σ0 can possibly lead to under 

selection, which is likely due to the pre-assumed large random error (large σ0) in Y.

As in partially linear regressions, we define δ as a vector of 1 or 0 indicating the inclusion/

exclusion of a variable. The likelihood of β, δ is given as

(6)

We assign the same prior distribution as in partially linear regressions to β and δ, and to the 

hyper parameter q in the probability mass function of δ. The collection of parameters is 

denoted as Θ = {β, δ, q}.

2.2.1 The joint posterior distribution—To derive the joint posterior distribution of Θ, 

we start from equation (6). However, the set of integrations in equation (6) can slow down 

the whole estimating process and may bring in computing difficulty. To avoid this, instead of 

integrating out Y, we formulate the posterior distribution as the joint distribution of Θ and 

the latent variable Y,33,34

(7)

The second line in equation (7) is a result of equation (4).

2.2.2 Full conditional posterior distributions and their calculations—We apply 

the Gibbs sampler to the full conditional posterior distributions to draw posterior samples. 

From equation (7), the full conditional posterior distribution of β is

which is . The full conditional 

posterior distribution of Yi is a truncated normal, given as
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where Y(i) is with ith observation removed, Σ0(i)−1 is [Σ0(ρ0, δ)]−1 with elements in the ith 

row and ith column removed, X(i) is the matrix of X with the ith row removed, and  is the 

ith row of Σ0(ρ0, δ) with its ith element removed.

The full conditional posterior distribution of q is only related to δ and is the same as that in 

partially linear regressions. The derivation of the full conditional posterior of δ also follows 

the same path as in Section 2.1.2. From equation (7), we have

Then following the same procedure as in Section 2.1.2, we draw posterior samples of δm 

from a Bernoulli distribution. All the full conditional posterior distributions are in the family 

of standard distributions, which ensures an efficient sampling process. To obtain posterior 

samples of Θ, we apply the Gibbs sampler to sequentially draw from the full conditional 

posterior distributions.

3 Simulation studies

3.1 Simulation scenarios

We consider 500 Monte Carlo (MC) replicates each with sample size n. Each MC replicate 

includes 12 predictors (e.g. DNA methylation of different CpG sites), generated from 

uniform distributions with lower bound 0.0001 and upper bound 12/(2m), m = 1, …, 12, plus 

one covariate X, generated from N(0, 22). The random errors are assumed to be 

independently and identically distributed with N(0, σ2). We consider the following three 

types of models:

1. Model 1 (linear): E(Yi|Xi, gi) = f−1{Xi + 3gi1 − 2.5gi2 + 3.5gi4}.

2. Model 2 (quadratic): E(Yi|Xi, gi) = f−1{Xi + 3(gi1 − gi2)2 + 2gi3}.

3. Model 3 (non-linear): E(Yi|Xi, gi) = f−1{Xi + 3 cos(gi1 × gi2) + 2gi3}.

In the above, gi = {gi1, …, gip} are the measures of the predictors and p = 12. For partially 

linear regressions, we consider n = 100 and take σ2 = 0.52. Recall that by using reproducing 

kernels, we are able to evaluate the joint effect of a set of predictors, which may result from 

main effects plus any unknown interactions between the predictors. Even if it was known 

that only additive main effects and two-way interactions were possibly present, with 12 

predictors plus one covariate X, in a standard linear regression model, we will have 80 effect 

terms (one for X, 12 main effects, 66 interactions, and one intercept) plus one variance 

parameter in the model. For probit regressions, because of the use of binary data, we 

consider a relatively large sample size n = 300 and assume σ2 = 1.92.

The literature of variable selection in semi-parametric models is rather limited. To 

demonstrate the performance of the method, we compare our method with a recently 

developed variable selection approach, the adaptive least absolute shrinkage and selection 
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operator (ALASSO).9 ALASSO is applied to linear additive models and with the feature of 

enjoying the oracle property,9 that is, the method will correctly select the model as if the 

correct submodel were known. ALASSO thus serves as a benchmark for models 1 and 2. 

The early developed variable selection method LASSO,7 on which ALASSO is built, is also 

included in our comparison. To compare between different methods, the variables selected 

using the proposed methods are the most important variables identified using the rule given 

in Section 2.1.2. Our focus is on variable selection, and thus percentages of correct selection 

(all important variables and no inclusion of unimportant ones), under selection (a subset of 

important variables and no unimportant ones), and over selection (all important variables 

plus at least one unimportant variables), along with model size (the number of variables 

selected) are recorded. The method is coded in statistical computing package R and the 

programs along with instructions and sample data are available on the first author’s website 

(http://www.sph.sc.edu/epid_bios/facultystaffdetails.php?ID=574).

3.2 Results

We run two chains with overdispersed starting values for each data set and the convergence 

is evaluated by comparing the between and within sequence variations as proposed by 

Gelman et al.35 This diagnostic step is included in our R programs. Converged MCMC 

simulations are usually represented by well-mixed MCMC sequences from different chains. 

As an illustration, Figure 1 shows the time series for the two key parameters (β, τ) in the 

partially linear regression setting for model 3 for the first 2000 iterations. The sequences 

converge quickly within about 1200 iterations. The inference discussed below is based on 

MCMC samples from one chain after burn in. To ensure true convergence, we in total run 

10,000 iterations and use the last 5000 to draw the inferences. Table 1 lists the selection 

results in partially linear regression models. For each data set, the parameter ρ0 is estimated 

based on the full model and the posterior mean is used in the subsequent variable selection 

steps. Also listed in the table are the results from LASSO and ALASSO.

For linear additive effect models (Model 1), the three methods all perform reasonably well 

(Table 1). Since LASSO and adaptive LASSO are both for linear additive effect models, this 

result is expected. This observation also indicates that the selection method built into 

reproducing kernels has the ability to capture additive linear effects and select the truly 

important variables. Although the LASSO and adaptive LASSO also do well for Model 2 

(Table 1), essentially still a linear model with additive effect, these two methods lose their 

power in Model 3. The proposed method performs much better. In Model 3, the adaptive 

LASSO severely under-selects variables, while the LASSO tends to over-select, which is 

consistent with previous findings.36 These findings are not surprising. LASSO and adaptive 

LASSO were designed specifically for linear regression models, which fits nicely the 

linearity property in the first two models. In Model 3, the main effects of g1 and g2 are 

absent and the effect of their interaction is non-linear. Both LASSO and adaptive LASSO do 

poorly in Model 3, while the proposed method does roughly equally well in all the three 

models.

Table 2 lists the results of variable selection under probit regression models. Following the 

same direction for variable selection in partially linear regressions, we compare the results 
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with those from LASSO and adaptive LASSO in the framework of logistic regressions. It is 

clear that the proposed method has a better model selection results compared to those two 

methods. LASSO tends to select more variables, while adaptive LASSO severely under 

select important variables, consistent with the findings in the setting of partially linear 

models.

We also compared our approach with the traditional AIC- and BIC-based forward, 

backward, and step-wise selection methods, and our approach always performed better than 

these standard approaches (results not shown). In summary, the new method overall out-

performs both LASSO-related methods and other standard approaches, and chooses 

variables effectively regardless of linear or non-linear complex variable effects. In terms of 

computing time, however, the proposed method is relatively slower compared to the 

competing methods, which is due to the nature of almost all simulation-based Bayesian 

methods.

The results in Tables 1 and 2 are drawn using the rule utilized in scree plots, which aims to 

identify the most important variables. It is possible that some variables are still of interest 

but not selected by using this approach. An alternative way is to utilize the reference 

probability of 0.5 to identify a pool of potentially important variables such that their 

posterior probabilities of being included in the reproducing kernel are greater than the 

reference probability. Figure 2 illustrates this approach using model 3 in the probit 

regression setting, which clearly shows that the first three variables are the most important 

ones by use of scree plot. However, the posterior probability of including variable 11 in the 

model is higher than 0.5, which indicates that we might want to treat variable 11 as a 

potentially important variable. We did not identify any strong correlation between variable 

11 and the other three most important variables. Its selection could be due to complex 

interactions with the most important ones. Thus, this potentiality in practice is likely to be 

data specific, but in our simulations, it is random because this variable is not chosen often 

among all the 500 data replicates. If we want to use the reference probability of 0.5 to 

identify whether variable 11 is a truly important variable, permutations on the variables can 

be considered to empirically test its significance of being an important variable, although 

this approach may impose strong computing burden.

3.3 The influence of ρ0

The value of ρ0 in the above section is taken as the posterior mean of ρ based on the full 

model, that is, all variables are included in the reproducing kernel. In the following, we 

numerically evaluate the sensitivity of selection results to different choices of ρ0. We 

consider additional three values of ρ0. One choice is to set ρ0 = 1, and the other two are 

either 10% smaller (ρs) or larger (ρl) than the estimated ρ0 from the full model. We choose 

the first 100 data sets used in the above section from each scenario under each model setting 

(partially linear regressions and probit regressions) to examine the sensitivity to ρ0. 

Empirical intervals at the level of 95% are derived based on estimates of ρ0 from the 100 

data sets.

Overall, the variable selection results are not substantially influenced by the choice of ρ0 

(Table 3). Except for model 1 in the setting of probit regressions, all the correctness 
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percentages based on ρ0 = 1 are higher than 63% and close to the percentages from the other 

two choices of ρ0 (ρl and ρs), indicating the robustness of the approach with respect to the 

value of ρ0. Furthermore, for the three choices of ρ0, the model sizes are all comparable and 

close to the truth.

We shall point out that for a given model, the value of ρ0 affects the fit of the reproducing 

kernel. For instance, model 1 in the setting of linear regressions is a regular linear regression 

model. In this case, a reproducing kernel built upon first order polynomial kernels shall 

provide the best fit. Since a Gaussian kernel approaches to a first order polynomial kernel 

when ρ0 goes to infinity, taking large values of ρ0 in Gaussian kernels will provide a 

reasonable approximation. Our overall large estimates of ρ0, shown by the 95% empirical 

intervals (third column of Table 3), reflect the effort of approximation. Furthermore, the 

choice of ρ0 will influence the estimate of a variable set effect. Given that unimportant 

variables provide negligible effects on the outcome, we expect ρ0 under the true model to be 

comparable to that under the full model. It is thus recommended that, if estimating the effect 

of the whole group of variables is also desired besides selecting the variables, we should use 

the estimate of ρ0 under the full model to provide simultaneous results on variable selection 

and group effect estimate.

3.4 Handling high-dimensional data

Earlier simulations indicated the feasibility of the method in dealing with complicated 

interaction effects. By design, the method has the ability to handle high-dimensional data, in 

particular, data with large p and small n. To illustrate this, we use model 3 in the setting of 

partially linear regression. Model 3 is chosen because it represents a more realistic 

association common in many high-dimensional data, e.g. microarray gene expression data or 

DNA methylation data. Instead of 12 predictors as noted in Section 3.1, we simulate 100 

data sets with each including 120 predictors and of sample size n=100. These 120 predictors 

are generated from uniform distributions with lower bound 0.0001 and upper bound 120/

(2m), a range the same as that in Section 3.1.

We use the same sampling methods noted in earlier sections to infer the parameters and 

select the variables. Based on the 100 data sets, the percentages of correct selections and 

over selections are 96% and 4%, respectively, and there is no under selection. The average 

model size is 3.04, which is consistent with the high percentage of correctness. These 

findings are similar to those listed in Table 1. We also considered the probit regression 

model and observed a similar pattern as in Table 2 (results not shown). On the other hand, 

the competing methods, LASSO and adaptive LASSO, missed almost all the correct models. 

These findings demonstrate that the new methods not only have the potential to deal with 

complicated interaction effects but also have the ability to handle high-dimensional data with 

the number of variables larger than sample size.

4 Real data application

We apply the proposed methods to identify epigenetic factors potentially associated with 

environmental tobacco smoke exposure. The epigenetic factors considered in this application 

are DNA methylation of 12 CpG sites (columns 1 to 3 in Table 4). These 12 CpG sites are 
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chosen based on their potential association with asthma and maternal smoking drawn from 

our preliminary study and other studies.37,38 There is evidence that DNA methylation is 

associated with maternal smoking,38 a strong risk factor of asthma.39 Furthermore, maternal 

smoking might be linked to early onset of offspring smoking.40 Assuming a CpG site is 

stable once it is methylated as indicated in some recent studies,38,41 it will be of interest to 

identify CpG sites whose methylation level is associated with maternal smoking during 

pregnancy and those whose methylation level is associated with tobacco smoke exposure in 

postnatal life. For the first case, we use the method designed for continuous outcomes, i.e. 

the setting of partially linear regressions, and use cotinine level as the outcome variable. 

Cotinine is an alkaloid detected in tobacco and has been used as a biomarker of smoke 

exposure.42 In this model, we further include creatinine as an adjusting factor to adjust the 

effect of fluid intake on the urinary concentration of cotinine.43 The sample size for the first 

application is 114. For the second application, we select the CpG sites in the setting of probit 

regressions and use maternal smoking status as the response. In total, 245 observations are 

available for this application.

For the selection of CpG sites based on cotinine levels, the estimate of ρ0 is 745.245, 

implying a possible linear association of methylation with cotinine level. We run two chains 

with 10,000 iterations each to estimate the number of iterations needed for convergence. The 

sequences converged within about 800 iterations for β and τ, similar as those observed in the 

simulations. The inference given below is based on one chain of 10,000 iterations with 5000 

iterations used as burn in to ensure true convergence. By using the rule in scree plots, we 

identified the most important CpG site, cg11924019, which is in the CYP1A1 gene. 

Additional seven CpG sites are identified with posterior probabilities larger than 0.5 and 

should be treated as important sites as well (Figure 3(a), column 4 in Table 4). We further 

apply the LASSO and ALASSO methods to select the CpG sites. Both methods give the 

same selection results with two CpG sites (cg05549655 and cg05575921) selected (columns 

5 and 6 in Table 4). These two sites are selected by the proposed method as well. A further 

calculation on the correlations in methylation indicates that methylation of these two sites 

are highly correlated with the methylation of CpG sites selected using the reproducing 

kernel based method. Except for site cg11679455 showing a weak correlation with 

cg05549655 and cg05575921 (|r|<0.2), most other correlations are higher than 0.91 

indicating strong collinearity. This possibly explains the under-selection from the LASSO 

and the ALASSO methods.

When selecting CpG sites based on maternal smoking status, ρ0 in the probit model is 

estimated as 0.675. As expected, the convergence of the two Markov chains is observed 

around 1700 iterations, slower than that under the partial linear regression models. The 

results are from 5000 iterations after 5000 iterations for burn in. One most important CpG 

site is identified by the scree plot rule (cg05575921) and seven additional CpG sites are 

identified after comparing with the reference probability of 0.5 (Figure 3(b), column 7 in 

Table 4). The methods of LASSO and ALASSO are also applied and identified 10 and three 

CpG sites (last two columns in Table 4), respectively. Based on previous studies36 and from 

the findings in our simulation studies in terms of overselection and underselection patterns 

of these two methods, we conclude that the selection results from the proposed method are 

closer to the truth.
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Overall, the proposed methods seem to conclude a more accurate selection of CpG sites in 

both situations, continine level-based and maternal smoking-based. In addition, among the 

selected CpG sites using the proposed methods, three sites are unique to the selection 

process based on maternal smoking, three are unique based on cotinine levels, and five are in 

common. This indicates that exposure to maternal smoking and postnatal smoking (reflected 

by cotinine levels) may affect DNA methylation differently to some extent.

5 Summary

We present Bayesian methods for variable selection in semi-parametric models assuming 

possibly non-linear in an unknown form of associations between candidate variables and a 

response variable. The association is described using reproducing kernels, which allow 

linear or non-linear effects in any form. An indicator variable is introduced to the 

reproducing kernels to indicate the inclusion or exclusion of a variable. Two model settings 

are considered: partially linear regressions and probit regressions.

The method is demonstrated and evaluated through simulations. The simulation results show 

that the proposed method can efficiently identify the correct variables regardless of 

association patterns. We compare the methods with the LASSO and adaptive LASSO 

methods. In the simulations, we assumed the variables are not correlated. Thus, for regular 

linear regression models (models 1 and 2), the LASSO and adaptive LASSO give similar 

results to those from the proposed methods, but they become inferior when the variable 

effects are non-linear (model 3). When applying the methods to real data sets, the selection 

results from the proposed methods seem to be more reliable.

The proposed methods are easy to implement and expected to have quick convergence 

because all the full conditionals are standard distributions. On the other hand, as for all 

Bayesian methods, the inferences generally are drawn from MCMC simulations. Thus, in 

terms of computing speed, when the number of predictors is large, the Bayesian methods are 

relatively slower than the Frequentist approaches considered in this article (LASSO and 

ALASSO), especially under the probit regression models due to the computing time used to 

infer the latent variables Z. However, the results from the proposed Bayesian methods are 

much improved compared to those from the Frequentist approaches. In addition, extending 

the two methods to discrete g variables is straightforward. We believe these advantages will 

benefit medical researchers to efficiently identify important risk factors that may have 

convoluted effects on a certain type of health outcome. Finally, our methods can be easily 

modified to fit other types of statistical models including log-linear models and models 

applied to survival data analysis. On the other hand, the methods have some limitations that 

warrant a discussion. Recall that the variable selection approaches are built upon the 

evaluation of an overall set effect measured through reproducing kernels. The selection of 

each important predictor is based on the evaluation of its contribution to the overall set effect 

on an outcome variable instead of each individual variable’s direct effect on the outcome. In 

some situations, it may be desired to evaluate the direct effect of each selected variable, 

besides their overall contribution as a group. Furthermore, it is possible that the candidate 

variables are a mixture of categorical and continuous variables. The kernels normally 

applied are either suitable for categorical variables or continuous variables. Developing an 

Zhang et al. Page 14

Stat Methods Med Res. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



approach that has the ability to handle the mixture of two types of variables is our on-going 

work.
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Figure 1. 
Plot of posterior samples for the coefficient β (left) and set effect τ (right).
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Figure 2. 
Plot of posterior probability of each variable to be included in the model in the probit 

regression setting. The horizontal axis is for variable indices. The solid horizontal line 

indicates where the sharp decrease occurs in posterior probabilities. The dotted line is the 

0.5 line representing the probability of selecting a variable randomly.
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Figure 3. 
Plot of posterior probability of each variable to be included in the model. (a) Cotinine level-

based (partially linear regression setting). (b) Maternal smoking-based (probit regression 

setting). The horizontal axis is for variable indices. The solid horizontal line indicates where 

the sharp decrease occurs in posterior probabilities. The dotted line is the 0.5 line 

representing the probability of selecting a variable randomly.
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Table 1

Summary of variable selection for partially linear regressions.

Method % Correctness % Under selection % Over selection Model size

Model 1

RKB 94.0 0.0 6.0 3.06

LASSO 100.0 0.0 0.0 3.00

ALASSO 82.2 0.0 17.8 3.25

Model 2

RKB 88.0 0.0 12.0 3.12

LASSO 81.0 0.0 19.0 3.20

ALASSO 100.0 0.0 0.0 3.00

Model 3

RKB 98.0 0.0 2.0 3.02

LASSO 0.0 33.0 67.0 4.90

ALASSO 0.0 100.0 0.0 1.00
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Table 2

Summary of variable selection for probit regressions.

Method % Correctness % Under selection % Over selection Model size

Model 1

RKB 74.0 6.0 20.0 2.86

LASSO 15.0 0.0 85.0 5.65

ALASSO 10.0 90.0 0.0 0.45

Model 2

RKB 56.0 44.0 0.0 2.59

LASSO 1.6 60.8 37.6 4.50

ALASSO 0.4 99.6 0.0 1.63

Model 3

RKB 77.0 14.0 9.0 3.02

LASSO 2.4 37.0 60.6 4.3

ALASSO 0.0 100.0 0.0 1.01
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