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Abstract

Variability is observed at all levels of cardiac electrophysiology. Yet, the underlying causes and importance of this variability
are generally unknown, and difficult to investigate with current experimental techniques. The aim of the present study was
to generate populations of computational ventricular action potential models that reproduce experimentally observed
intercellular variability of repolarisation (represented by action potential duration) and to identify its potential causes. A
systematic exploration of the effects of simultaneously varying the magnitude of six transmembrane current conductances
(transient outward, rapid and slow delayed rectifier K+, inward rectifying K+, L-type Ca2+, and Na+/K+ pump currents) in two
rabbit-specific ventricular action potential models (Shannon et al. and Mahajan et al.) at multiple cycle lengths (400, 600,
1,000 ms) was performed. This was accomplished with distributed computing software specialised for multi-dimensional
parameter sweeps and grid execution. An initial population of 15,625 parameter sets was generated for both models at
each cycle length. Action potential durations of these populations were compared to experimentally derived ranges for
rabbit ventricular myocytes. 1,352 parameter sets for the Shannon model and 779 parameter sets for the Mahajan model
yielded action potential duration within the experimental range, demonstrating that a wide array of ionic conductance
values can be used to simulate a physiological rabbit ventricular action potential. Furthermore, by using clutter-based
dimension reordering, a technique that allows visualisation of multi-dimensional spaces in two dimensions, the interaction
of current conductances and their relative importance to the ventricular action potential at different cycle lengths were
revealed. Overall, this work represents an important step towards a better understanding of the role that variability in
current conductances may play in experimentally observed intercellular variability of rabbit ventricular action potential
repolarisation.
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Introduction

Variability is perhaps an essential component of physiological

systems. It is observed at all levels of spatial and temporal

organisation, from sub-cellular processes to the whole-organism,

and over time scales spanning from nanoseconds to years. In most

cases, however, the underlying causes of physiological variability

remain unclear. Moreover, its importance in health and disease,

where it may explain the spectrum of responses often seen between

individuals, is largely unknown. Thus, it has long been ignored in

experimental and computational research.

The method usually taken by experimentalists in dealing with

variability involves averaging across many subjects, thus deter-

mining the mean response. Subsequently, computational models

are generated based on reported mean values, creating represen-

tations of the ‘typical’ case that fail to account for underlying

variability [1]. This approach results not only in a loss of

information, but in an inability of models to explain physiological

observations that may depend on the presence of variability. This

is certainly the case in the field of computational cardiac

electrophysiology modelling. At all levels of integration, variability

in cardiac activity exists, whether it is across the heart, between

individual cells, or within ion-channels.

Even so, by extending investigations beyond that which is

experimentally feasible, computational research is becoming an

increasingly valuable tool for improving our understanding of

cardiac electrophysiology [2]. While it may be that current cell

models are limited in that they generally produce only an ‘average’

action potential (AP), efforts are underway to improve their scope

by representing variability in cellular processes. This is being

approached in multiple ways: i) by the inclusion of stochasticity in

model formulations [3–9]; ii) by the use of parameter sensitivity

analyses [10–14]; and iii) by the generation of model populations

representing observed variability [4,15–19]. The most extensive

example to date of the use of a model population to investigate

cardiac electrophysiological variability comes from a study by
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Britton et al. [15], in which a large population of rabbit-specific

Purkinje AP models was generated by randomly assigning specific

parameter values to various ionic current conductances and

channel kinetics. This was followed by constraint of the model

population using experimental data (a validation step essential for

model development [1,2]). Results demonstrated that particular

combinations of parameters (‘parameter sets’) appeared to

determine AP shape and rate-dependence, and that under

conditions of K+ channel block the model population was able

to predict experimentally measured AP prolongation.

The current study is focused on understanding variability of

ventricular AP repolarisation, as increased variability in the

ventricles has been related to increased arrhythmic risk [20–31].

Our specific aim was to generate physiologically relevant

populations of computational rabbit-specific ventricular AP

models with variable transmembrane current conductances that

reproduce experimentally observed intercellular variability of

repolarisation (represented by AP duration, APD) to explore its

potential sources. We present a framework for systematic

parameter space exploration using distributed computing software

[32–34] and specialised visualisation techniques [35–38], specif-

ically designed for large-scale parameter sweeps and grid

execution, along with model calibration using experimental data.

This allowed investigation of the interactions between the varied

conductances, their relative importance to AP repolarisation, and

rate- and model-dependent effects.

Materials and Methods

Exploring Ventricular AP Response to Simultaneous
Variations in the Magnitude of Transmembrane Current
Conductances Important for Repolarisation

Two biophysically-detailed computational cell models were used

in this study to simulate the AP of a rabbit ventricular epicardial

myocyte (allowing assessment of model-dependent effects). The

first was created by Shannon et al. [39] and the second was an

updated version of that model by Mahajan et al. [40], which

includes updates to the L-type Ca2+ current, intracellular Ca2+

cycling, Na+- Ca2+ exchanger, and channel distributions updated

to better replicate AP and Ca2+-handling dynamics at rapid

stimulation rates. Importantly, of the small animals, rabbit has

cardiac electrophysiology most similar to human, and thus is a

preferred model for experimental research and pharmacological

testing [41], providing established reference values for constraining

models to a physiological range.

Simulations were designed to examine the response of these

models to simultaneous variation of the magnitude of multiple

transmembrane current conductances important for ventricular

repolarisation. The currents considered (with their conductance

given in parentheses) were: the transient outward current (gto); the

rapid delayed rectifier K+ current (gKr); the slow delayed rectifier

K+ current (gKs); the inward rectifying K+ current (gK1); the L-type

Ca2+ current (gCa,L); and the Na+/K+ pump current (gNaK).

Synthesising the information available in the literature to create

well-defined ranges is difficult because available experimental

values for these current conductances come from various

laboratories and are often produced using vastly different (and

sometimes ill-reported) methods and conditions ([42]). Thus,

conductances were varied by 0%, 615%, and 630%, which is

within the bounds of experimentally reported variability in rabbit

ventricular myocytes [43], aligns with previous computational

investigations [11], and provided a good compromise between the

size of the parameter space and computational tractability.

Current formulations, on the other hand, were left unchanged,

based on the assumption that AP variability is primarily a result of

differences in the relative magnitude of currents, rather than

underlying current dynamics. This generated a population of

15,625 models for both the Shannon and Mahajan formulations.

Model APD was compared to experimentally reported values to

define physiological parameter sets, and in cases where no

parameter sets generated matches, the range of conductance

variation was expanded until matches were found (described

further in the next section). Simulations were performed at a cycle

length (CL) of 400, 600, and 1,000 ms to constrain the populations

of models and to examine potential rate-dependent effects.

Both models were downloaded from the CellML model

repository (http://models.cellml.org/cellml). [K+]i was unclamped

and the Shannon model was corrected as suggested previously

[44]. The CellML files were converted to C++ using the Cellular

Open Resource (COR) software (http://cor.physiol.ox.ac.uk/)

[45] and simulations were performed using an ordinary differential

equation solver with adaptive time-stepping (Sundials CVODE,

version 2.4.0) and relative and absolute tolerances set to 1027 and

1029, respectively. Simulation duration was set to 1,000 s and run

Table 1. Normal range of rabbit epicardial APD50 and APD90

used to define physiological parameter sets.

CL (ms)

Biomarker 400 600 1,000

APD50 (ms) 104–135 116–159 137–188

APD90 (ms) 142–185 160–220 167–230

Values are derived from previously reported studies [46–58], as described in the
text.
doi:10.1371/journal.pone.0090112.t001

Figure 1. The dimensional stacking process. (A) The effect of two
‘low order’ conductances (g1 and g2) are plotted in a contour plot, with
all other conductances held constant at their control value. This plot is
then embedded in a larger grid spanning two ‘medium order’
conductances (g3 and g4). For each value of g3,4, the g1,2 plot is
repeated for the respective values. This process is repeated to represent
the two ‘high order’ conductances (g5 and g6). (B) Example showing a
random stack order (left), versus an optimised stack order (right) for the
same variable.
doi:10.1371/journal.pone.0090112.g001

Computational Investigation of Cardiac Variability

PLOS ONE | www.plosone.org 2 February 2014 | Volume 9 | Issue 2 | e90112

http://models.cellml.org/cellml
http://cor.physiol.ox.ac.uk/


across all parameter sets using the Nimrod/G distributed

computing grid [32,34], part of a suite of software tools developed

by the Monash eScience and Grid Engineering Laboratory for

parameter sweeps and grid execution, including scheduling across

multiple computer resources [33]. Simulated APs with each

parameter set were checked for steady state by comparing

corresponding data points from the last two APs; the cell was

considered to be in steady state if the difference for each point in

the AP was less than 5% of the maximum-minimum AP values. In

almost all cases steady state was reached well before 1000 s; in

those cases where steady state had not been reached, yet cell

excitation was present, the simulation was continued to steady

state (although it is worth noting that in cases where extended

simulations were needed to reach steady state, the same would be

true for cells in experiments).

Model output was measured using several commonly used

biomarkers for describing AP morphology: maximum rate of

membrane potential (Vm) increase (dVm/dtmax); diastolic Vm

(Vrest); Vm during the AP plateau (Vplat), determined as the point

after the spike in Vm due to activation at which dVm/dtmax reaches

the smallest absolute value less than or equal to zero; and APD at

50% and 90% repolarisation (APD50 and APD90, respectively),

measured as the time interval between the point of dVm/dtmax and

the point when Vm was repolarised by 50% or 90% (i.e., when Vm

was less than or equal to Vrest+0.5 or 0.1*[maximum Vm2Vrest]).

In addition, the following biomarkers for describing changes in

[Ca2+]i were used: diastolic and systolic [Ca2+]i ([Ca2+]i
dia and

[Ca2+]i
sys, respectively); amplitude of the Ca2+ transient (CaT),

measured as [Ca2+]i
sys-[Ca2+]i

dia; and Ca2+ transient duration at

50% and 90% restoration of [Ca2+]i
dia (CTD50 and CTD90,

respectively), measured as the time interval between the point of

maximum rate of [Ca2+]i increase and the point when [Ca2+]i was

reduced by 50% or 90% (i.e., when [Ca2+]i was less than or equal

to [Ca2+]i
dia+0.5 or 0.1*CaT). All analyses were performed using

MATLAB (R2011b, version 7.13.0.564; Mathworks, Natick, MA).

Constraining APD to Define a Physiological Population of
Ventricular Models

In order to constrain the populations of models to those

representing physiological variability, only parameter sets that

produced APD50 and APD90 values that fell within the normal

range for rabbit epicardium were included (these two biomarkers

were chosen based on the availability of published experimental

values). APD90 for rabbit epicardium has been well documented

and a physiological range was readily established for all CLs [46–

58]. Reports of APD50 values sufficient to derive a normal range,

however, were not available at all CLs. Alternatively, values from

the literature were used to establish a mean value for APD50

[48,51] and the percentage change was assumed to be the same as

for APD90. The resulting values are shown in Table 1.

Assessing the Accuracy of Biomarker Combinations for
Determining the Goodness-of-fit of Generated Output to
the Original Model

In order to investigate the relative importance of individual

parameters to model response, as well as their interaction

(described further in the next section), a method was established

for comparing generated output to that of the original model. AP

and Ca2+ transient morphology for each parameter set were

directly compared to the original model by calculating the

normalised root-mean-square deviation (NRMSD) between sig-

nals, defined as:

MNRMSD~
1

Mmax{Mmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SN

j~1(Mcombination(j){Moriginal(j))
2

N

s

where Mmax and Mmin are the maximum and minimum Vm or

[Ca2+]i values for the original model, Mcombination(j) and Moriginal(j)

are the data points for Vm or [Ca2+]i for a given parameter set and

the original model, and N is the number of data points.

Importantly, the normalisation step in this equation allowed

VNRMSD and Ca2+
NRMSD to be directly compared. By using data

from the entire AP or Ca2+ transient, this method is a robust

measure of goodness-of-fit; however, it is computationally expen-

sive and poorly suited for comparison of model output with noisy

experimental data. To address these limitations, the use of

combinations of the calculated biomarkers was investigated. For

each combination of biomarkers, the ,250 parameter sets whose

output most closely matched the output of the original model were

determined by increasing the acceptable percentage difference

until as close to 250 parameter sets were selected. Likewise, ,250

parameter sets were selected based on the minimum combined

VNRMSD and Ca2+
NRMSD. To quantify the ability of each

biomarker combination to assess goodness-of-fit, the percentage

overlap between the parameter sets selected by the two methods

was calculated.

Investigating the Interaction of Current Conductances
and their Relative Importance to the Ventricular AP

The effect of simultaneously varying the magnitude of six

current conductances can be thought of as comprehensively

exploring a six-dimensional parameter space. In order to represent

the resulting data as completely as possible, we employed a

technique developed for studies of variability in the electrophys-

iology of neurons known as ‘clutter-based dimension reordering’

[35–38], that enables visualisation of higher dimensional param-

Table 2. Number of parameter sets producing both APD50 and APD90 values within the physiological range.

CL (ms)

Model 400 600 1,000 400>600 400>1,000 600>1,000 400>600>1,000

Mahajan 3,946 1,031 0 577 0 0 0

Shannon 1,691 2,631 5,352 1,384 1,511 2,526 1,352

Expanded
Mahajan

9,447 11,229 5,650 6,797 779 4331 779

Parameter values were varied by 630% from the original parameter set, and then further for the Mahajan model (‘Expanded Mahajan’) as explained in the text. x>y and
x>y>z represent parameter sets that produce physiological values at a CL of x and y, or a CL of x, y, and z, respectively.
doi:10.1371/journal.pone.0090112.t002
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eter spaces in two dimensions. This method can be thought of as a

linear projection of a multi-dimensional space to a lower

dimensional space, with each point in n-dimensions assigned to a

unique point in two-dimensions (much like slicing a cube and

placing the resulting squares next to each other, only with ‘slices’

taken in more than three-dimensions, such that with continuous

slicing the dimensionality of the space is iteratively reduced until it

can be visualised in two-dimensions).

The first step in clutter-based dimension reordering is ‘dimen-

sional stacking’ (Fig. 1A). In our case, two of the conductances

being varied were randomly chosen (g1 and g2), and with all other

conductances held constant at control values, their effect on the

measured biomarkers was displayed by a contour plot (‘Level 1’ in

Fig. 1). Two other conductances were chosen (g3 and g4) and the

original contour plot was repeated for each combination of these

parameters. The subsequent plots were arranged in a grid

reflecting the variation of g3 and g4 (‘Level 2’ in Fig. 1), i.e. the

Level 1 plot that has g3 and g4 at their minimum values is at the

bottom left of the Level 2 grid, and the Level 1 plot that has g3 and

g4 at their maximum values is at the top right of the Level 2 grid.

This process was then repeated for the last two conductances.

The resulting ‘dimensional stack’ was then optimised by

rearranging the levels of the conductances (Fig. 1B). This was

achieved by minimising the absolute difference between each point

and its four neighbours in the x and y plane. The result of this

optimisation was to ‘smooth’ the resulting plot, which leads to the

‘low order’ conductances (that have the smallest effect) being in

Level 1, and the ‘high order’ conductances (that have the largest

effect) being in Level 3. By determining the optimum ‘stack order’,

patterns within the data are revealed. For instance, the greatest

changes in the biomarker being considered are observed on the

largest scale of the highest order conductances. It should be noted

that in some cases the stack order before optimisation was used, to

allow direct comparison of individual stacks for revealing inter-

stack differences.

Results

Physiological Ventricular AP Variability can be
Reproduced using a Population of Cell Models with
Diverse Repolarising Current Conductances

By using the values derived from the literature to describe

physiological ranges for APD50 and APD90 (Table 1), it was

possible to constrain the combinations of current conductances to

those producing experimentally measured variability at each CL.

The numbers of parameter sets that produced a physiological

output are given in Table 2, with the associated minimum, mean,

and maximum values for all computed biomarkers presented in

Table 3.

With the Shannon model, there existed at least one parameter

set that produced a physiological output at each CL, with some of

these generating a physiological output at all CLs (interestingly,

however, this did not include the original parameter set,

demonstrating that the original Shannon model does not

reproduce physiological output under some conditions). On the

other hand, while a relatively large number of parameter sets

produced a physiological output at a CL of 400 ms with the

Mahajan model (the CL for which the Mahajan model was

designed), fewer parameter sets matched at a CL of 600 ms, and

none at a CL of 1,000 ms (the increase in APD with increasing CL

was disproportionately large).

In order to address the failure of the Mahajan model in finding

parameter sets that generated a physiological output with

increased CL, the range of conductance variation was expanded.

To determine an appropriate new parameter space to be explored,

first the ranges of APD50 and APD90 used for constraint were

moderately extended (610%) and the model population was

compared to this new range. This extended range of APD resulted

in 24 matches with outputs at a CL of 1,000 ms. Based on the

distribution of the conductance values that were present in these

matching parameter sets, the range of conductance values for each

current was expanded by following the underlying trend. The

expanded ranges chosen were: gto = 215%–+45%; gCa,L = +30%–

+90%; gKr = 215%–+45%; gKs = +45%–+105%; gK1 = 215%–

+45%; gNaK = 245%–+15%. A new parameter search was then

performed as before, using the original physiological ranges for

Table 3. Minimum, mean, and maximum values of all
computed biomarkers produced with the physiological
parameter sets.

Biomarker CL (ms) Model Minimum Mean Maximum

dV/dtmax (V/s) 400 Shannon 233 302 329

Mahajan 200 230 252

1000 Shannon 278 327 352

Mahajan 248 279 311

Vrest (mV) 400 Shannon 292 288 282

Mahajan 288 286 285

1000 Shannon 288 286 281

Mahajan 289 288 287

APD50 (ms) 400 Shannon 112 126 135

Mahajan 104 108 117

1000 Shannon 137 155 181

Mahajan 165 182 188

APD90 (ms) 400 Shannon 143 154 169

Mahajan 142 155 185

1000 Shannon 167 186 217

Mahajan 207 223 230

[Ca2+]i
dia (mM) 400 Shannon 1.24 1.29 1.32

Mahajan 0.29 0.37 0.47

1000 Shannon 0.82 0.84 0.86

Mahajan 0.15 0.16 0.18

[Ca2+]i
sys (mM) 400 Shannon 4.49 4.92 5.22

Mahajan 1.43 2.78 4.46

1000 Shannon 3.13 3.33 3.68

Mahajan 0.41 0.59 0.76

CaT (mM) 400 Shannon 3.25 3.63 3.91

Mahajan 1.14 2.41 4.00

1000 Shannon 2.30 2.49 2.82

Mahajan 0.26 0.42 0.58

CTD50 (ms) 400 Shannon 123 130 134

Mahajan 133 139 147

1000 Shannon 139 150 157

Mahajan 208 231 268

CTD90 (ms) 400 Shannon 263 267 271

Mahajan 245 249 260

1000 Shannon 382 394 404

Mahajan 460 510 585

doi:10.1371/journal.pone.0090112.t003
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APD and with current conductances varied in 15% increments

across their new range, resulting in an additional 15,625

parameter sets at each CL. In the case of this expanded search,

the number of parameter sets that matched at all CLs was

approximately half of that with the Shannon model.

The parameter sets producing a physiological output with the

Shannon model are shown using a dimensional stack in Fig. 2,

along with the generated Vm and [Ca2+]i profiles at a CL of 400

and 1,000 ms, and the associated distribution of conductance

values. The most obvious trend was that parameter sets producing

a physiological output generally had a simultaneous reduction in

both gCa,L and gK1. This is evident in both Fig. 2A, demonstrated

by a clustering of the valid parameter sets at the bottom left of the

dimensional stack, and from the associated distribution of

conductances, shown in Fig. 2D. It also appears that the

distribution of the other conductances was fairly even, however

a closer examination of the dimensional stack in Fig. 2A reveals

trends between the parameters (demonstrating the power of the

Figure 2. Parameter sets for the Shannon model that produce values of both APD50 and APD90 that fall within the experimentally
derived range. (A) Dimensional stack image showing the location of matching parameter sets for each CL and their overlap. (B) Vm and [Ca2+]i

(inset) profiles for the matching parameter sets at a CL of 400 ms. (C) Vm and [Ca2+]i (inset) profiles for the matching parameter sets at a CL of
1,000 ms. (D) Distribution of conductance values for the valid parameter sets. For both (B) and (C), the physiological ranges of APD50 and APD90 are
represented by the blue and red rectangles, respectively.
doi:10.1371/journal.pone.0090112.g002
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clutter-based dimension reordering technique for visualisation of

multi-dimensional parameter spaces). For instance, within the

gNaK/gKr surfaces (Level 2 of the stack), the matching parameter

sets are spread in an approximately diagonal line from top left to

bottom right, indicating that when gNaK was increased, this was

offset by a decrease in gKr, and vice versa. As gCa,L and gK1 decrease,

this diagonal line moves further towards the bottom left corner,

indicating that a further reduction of gNaK and gKr was required to

continue to produce a physiological output.

The effect of gto was more complicated. When gCa,L and gK1

were reduced by 30%, and gNaK was also reduced, matching

parameter sets then included those with an increased gto. The

opposite was true when gNaK was increased, as in these cases a

decrease in gto was necessary (square A1 in Fig. 2A). As gK1 was

increased, fewer parameter sets with an increased gNaK were valid,

such that an increase in gto was observed (squares B1, C1, and D1

in Fig. 2A). However, in all cases where gCa,L was not reduced by

30%, the opposite was true: parameter sets including reduced gNaK

and increased gto were no longer valid (squares A2 and A3 in Fig.

2A). Finally, in all valid parameter sets as gKr was increased, gto

decreased. On the other hand, there appeared to be no limitations

on the values of gKs.

Figure 3. Parameter sets for the expanded Mahajan search that produce values of both APD50 and APD90 that fall within the
experimentally derived range. (A) Dimensional stack image showing the location of matching parameter sets for each CL and their overlap. (B)
Vm and [Ca2+]i (inset) profiles for the matching parameter sets at a CL of 400 ms. (C) Vm and [Ca2+]i (inset) profiles for the matching parameter sets at a
CL of 1,000 ms. (D) Distribution of conductance values for the valid parameter sets. For both (B) and (C), the physiological ranges of APD50 and APD90

are represented by the blue and red rectangles, respectively.
doi:10.1371/journal.pone.0090112.g003
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For the expanded Mahajan search, the parameter sets

producing a physiological output, the generated cellular profiles,

and the distribution of valid conductance values are shown in Fig.

3. There are some differences compared to the Shannon model.

For instance, with the Shannon model, gKs appeared to have no

effect in determining the validity of parameter sets, while with the

Mahajan model it had a strong influence, as most matching

parameter sets included the largest conductance variation

(+105%). The opposite was true for gK1: while it had a large

influence with the Shannon model, it was relatively unimportant

with the Mahajan model. Similarly, with the Shannon model, gto

and gNaK generally varied in the opposite direction, while with the

Mahajan model they changed in the same direction.

With the Mahajan model there was also a strong correlation

between gNaK and gKs, such that when gNaK was increased, gKs also

increased (demonstrated by a shift of matching parameter sets

from the predominantly lower left corner to the upper right corner

of level two plots; for instance, compare the distribution within E1

and E3). On the other hand, there appeared to be no limitations

on the values of gKr.

A Combination of APD50, APD90, and CaT Provides the
Most Accurate Measure of Goodness-of-Fit

In order to investigate the relative importance of individual

parameters and their interaction (reported in the next section), a

method for comparing generated APs to the original model using

combinations of biomarkers was defined. Fig. 4 shows the

percentage overlap of parameter sets whose output was deter-

mined to match the original model output by the NRMSD metrics

and by combinations of biomarkers. It can be seen that when

[Ca2+]i-based biomarkers were included, there was greater

overlap. The percentage overlap for the Shannon and Mahajan

models was not consistent. Overall, however, a combination of

APD50, APD90, and CaT was most accurate (with a combination

of APD50 and APD90 also showing a relatively high percentage

overlap). Consequently, a combination of APD50, APD90, and

CaT was used to assess goodness-of-fit.

Relative Importance of Current Conductances and their
Interaction is Rate-Dependent

As demonstrated by the differences in the dimensional stacks

presented in Figs. 5 and 6 (summarised as differences in optimum

stack order in Table 4), the relative importance of the varied

current conductances was dependent on the CL. In considering

this, it should be noted that the non-linear interaction between

currents and the subsequent changes in ion concentrations and AP

waveform, often resulted in different changes in current magni-

tudes than might be expected from the change in current

conductance. For instance, when gKs was subjected to 630%

variation at a CL of 1,000 ms, the amplitude of the slow delayed

rectifier K+ current varied from 299% to +386%.

For the Shannon model, the relative importance of gto

increased, and that of gK1 decreased, with CL (demonstrated by

the optimum stack orders presented in Table 4). On the other

hand, at most CLs, gCa,L and gKs were the highest and lowest order

conductances and gKr and gNaK were generally of medium order.

For the Mahajan model, as CL increased, the relative

importance of gto decreased. This was opposite to the response

seen with the Shannon model. At the same time, gKs became more

influential, despite little change in its position in the optimum stack

order. This can be seen by examining the difference between the

dimensional stacks with CLs of 400 and 1000 ms shown in Fig. 6.

At a CL of 400 ms, the greatest effect on APD (represented by

deep red and blue) is seen at the edges of the dimensional stack

image (squares A1, A5, E1, and E5), indicating an extreme

increase/decrease in gCa,L and gNaK. However, with an increase in

CL, the maximum effect of the change is seen throughout the

dimensional stack, as a result of the increased importance of gKs. In

contrast, the relative importance of gNaK and gKr were independent

of CL, being consistently one of the highest and lowest order

conductances.

Biomarker Variability is Rate-Dependent
Histograms showing the variability of APD50, APD90, and CaT

across all combinations of current conductances are shown in Fig.

7. The Mahajan and Shannon models demonstrated similar

distributions for both APD50 and APD90 (upper and middle panels

in Fig. 7). They differed, however, in that the Mahajan model

demonstrated more narrow distributions than the Shannon model,

while the Shannon model generated more APD values that fell

within the physiological range (discussed in the first section above).

For the Shannon model, the shape of the APD50 and APD90

distributions were relatively well conserved between a CL of 400

and 1,000 ms, other than an increase in the number of matching

parameter sets. In contrast, the Mahajan model demonstrated a

widening of the APD50 and APD90 distributions, as well as an

increase in their mean. In the case of simulations with a CL of

1,000 ms, the increase in mean APD was such that the entire

distribution fell outside of the physiological range.

The change in CaT distribution with a change in CL was more

dramatic (lower panels in Fig. 7). For the Shannon model, the

distribution narrowed with an increase in CL. The distribution

with the Mahajan model followed a similar pattern, however with

an even larger change. At a CL of 400 ms, the range of CaT was

Figure 4. Percentage overlap of matches between original
model output and model output generated using the ,250
parameter sets determined by the NRMSD metrics
([VNRMSD+Ca2+

NRMSD]) and by combinations of biomarkers.
While all combinations of biomarkers were tested, those shown
represent the combinations with a relatively high percentage overlap.
Combinations to the left of the dashed line include information about
both Vm and [Ca2+]i, while those to the right include only Vm data.
doi:10.1371/journal.pone.0090112.g004
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very broad (,0.1 mM to ,1.9 mM), indicating that CaT was

relatively poorly constrained within the parameter space. When

CL was increased, however, the range was greatly reduced

(,0.1 mM to ,0.5 mM).

Discussion

This study examined the effects of variability in six transmem-

brane current conductances on rabbit ventricular AP repolarisa-

tion (represented by APD). This was accomplished by performing

a systematic exploration of the multi-dimensional parameter space

using distributed computing software with two biophysically-

detailed computational models of the rabbit ventricular AP. The

results were used to determine a population of models that

reproduced experimentally reported intercellular variability in

APD at a variety of CLs. It was shown that the populations of

models were able to produce physiological ventricular APs with a

wide range of conductance values. Specialised techniques for

visualisation of the multi-dimensional spaces revealed interaction

of individual current conductances, as well as their relative

importance for APD. It was demonstrated that this interaction and

influence, as well as biomarker variability, were rate- and model-

dependent. Specifically, with the Shannon model, gCa,L had the

greatest influence on APD variability at both 400 and 1000 ms,

Figure 5. Dimensional stack images demonstrating the effect of simultaneously varying the magnitude of six repolarising current
conductances in the Shannon model. The top, middle, and bottom rows show the effects on APD50, APD90, and CaT, respectively. The left
column is based on simulations with a CL of 400 ms and the right with a CL of 1,000 ms. In the contour plots, red represents an increase from the
control value, blue a decrease, and white no change. The physiological range of APDs determined from the literature is represented by the grey
region next to the colour bars in each panel. Black dots represent parameter sets with which the model did not reach steady state. In this case the
optimum stack orders are not displayed; instead the order before optimisation has been used, which allowed direct comparison of the stacks to
reveal differences in effects on each biomarker.
doi:10.1371/journal.pone.0090112.g005
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along with gK1 and gto at 400 and 1000 ms, respectively. With the

Mahajan model, on the other hand, gNaK had the greatest

influence on APD variability at both 400 and 1000 ms, along with

gto and gCa,L at 400 and 1000 ms, respectively.

Understanding the effects of individual current conductances

was facilitated by the use of clutter-based dimension reordering

[35–38]. For instance, this technique revealed the importance of

gto to AP biomarkers, as well as its interactions with the other

conductances. These effects could not have been experimentally

elucidated, and thus are not evident without the use of this

technique. Further, as shown in Figs. 2 and 3, the combinations of

conductances that produced physiological outputs were not

equally distributed across all conductances. This reflects both a

difference in their relative importance for the ventricular AP, as

well as non-linear, interactions in the currents that they affect.

However, due to the complex relationship between the various

conductances tested, trends were not generally evident from

distributions alone.

The results presented in Figs. 5 and 6, and summarised in Table

4, demonstrate the influence of CL on the relative importance of

various current conductances on the ventricular AP, along with

their interactions. As described above, the optimum stack order,

Figure 6. Dimensional stack images demonstrating the effect of simultaneously varying the magnitude of six repolarising current
conductances in the Mahajan model. The top, middle, and bottom rows show the effects on APD50, APD90, and CaT, respectively. The left
column is based on simulations with a CL of 400 ms and the right with a CL of 1,000 ms. In the contour plots, red represents an increase from the
control value, blue a decrease, and white no change. The physiological range of APDs determined from the literature for a CL of 400 ms is
represented by the grey region next to the colour bars in each panel (the grey region is absent for a CL of 1,000 ms as the APD values fell outside of
the physiological range). In this case the optimum stack orders are not displayed; instead the order before optimisation has been used, which allows
direct comparison of the stacks to reveal differences in effects on each biomarker.
doi:10.1371/journal.pone.0090112.g006

Computational Investigation of Cardiac Variability

PLOS ONE | www.plosone.org 9 February 2014 | Volume 9 | Issue 2 | e90112



which is an indication of the relative importance of the individual

conductances to the AP and illustrates their interrelation, changed

with CL. Changes, however, were unpredictable. The most

extreme example of an unexpected change in the relative

importance of a conductance to the AP was the change seen for

the influence of gto on APD50 and APD90 with the Shannon model.

At a CL of 400 ms, gto was a low-order conductance (reflecting a

low importance), while at a CL of 1,000 ms, it became a high-

order conductance. The importance of some conductances, on the

other hand, changed little with CL. For instance, gCa,L was

consistently of high-order and gKs of low-order. The importance of

CL in determining the effects of current conductance variability on

AP biomarkers highlights the need to consider rate in experimen-

tal investigations, as well as for adequately constraining model

populations for computational studies of variability.

Previous efforts to relate variability in current conductances to

ventricular AP variability have focused on three approaches: i) the

inclusion of stochasticity in model formulations; ii) the use of

parameter sensitivity analyses; and iii) the generation of model

populations (as in the present paper). Regarding the use of

stochastic formulations, studies by Pueyo et al. [3] and Sato et al.

[8] have investigated the effect of stochastic gating of the slow

delayed rectifier K+ current on human, guinea pig, and rabbit

ventricular AP repolarisation, and studies by Tanskanen et al. [9]

and Hashambhoy et al. [5] have done the same for stochastic

gating of the L-type Ca2+ current and sarcoplasmic-reticulum

Ca2+ release in a canine model; these, however, considered

variability in no other currents. Lemay et al., on the other hand,

did include stochastic gating in multiple currents of a guinea pig

model, but this was a purely computational investigation, without

the use of experimental data for model constraint [6]. In a study by

Walmsley et al. stochasticity was included in the gating variables of

a phenomenological guinea pig ventricular AP model, though this

did not allow for consideration of the effects of specific currents

[4]. Examples of the use of parameter sensitivity analysis come

from studies by Romero et al. [11,12] that investigated the role of

ionic current variability on biomarkers in human and rabbit

models, yet these were limited as they focused on variation of only

one current at a time, missing potential important current

interactions. Work by Sarkar and Sobie. has employed a

combination of sensitivity analysis and model populations with

human and canine models, but this work was restricted to random

sampling of a narrow parameter space close to the control model

conditions [13,14,19]. A population of 19 canine models was

utilised by Davies et al. to capture variability of the canine

ventricular AP, however this represents only a small population

[16]. Thus, there remains the need for investigations of the effects

of simultaneous variation of current conductances on ventricular

repolarisation over the entire physiological range.

This was recently addressed for the rabbit Purkinje AP by

Britton et al. [15]. In this study, a methodology was developed to

simulate the complete range of observed AP variability by

randomly varying current conductances and channel kinetics

across a wide range of values. By reducing the resulting population

of over 10,000 models down to 213 using experimental data, it was

shown that a wide range of parameter values could produce a

physiological Purkinje AP. Interestingly, while the results from that

study demonstrated non-uniform distributions of some current

conductance across the population of models, as in the present

work, they did not show any obvious relationships between

currents by pair-wise correlation analysis. This is in contrast to the

current study, in which important interactions between currents

were revealed by projecting the multi-dimensional parameter

space onto a two-dimensional representation using clutter-based

dimension reordering [35–38]. This re-emphasises the power of

this technique, as previously shown in neuroscience applications

[59–62], for revealing unsuspected compensatory mechanisms that

may contribute to normal cellular function. Differences in

outcomes of the two studies may relate to other important

methodological factors, such as effects of generating model

populations by random (as in Britton et al.) versus systematic (as

in the current study) sampling of the parameter space. The study

by Britton et al. employed the Latin hypercube sampling method

[63], which generates parameter sets without bias, but only

provides a random subset of the entire parameter space, while the

present work utilised the Nimrod/G distributed computing grid

platform [32,34] to perform a systematic exploration of the

complete parameter space. Finally, it should be noted that

dissimilarities may also represent differences between Purkinje

and ventricular electrophysiology and their model representations.

While the results presented here suggest that variation in

current conductances over a wide range of values may account for

normal variability in rabbit ventricular AP repolarisation, other

factors may be involved. One of the underlying assumptions of this

study was that AP variability is primarily a result of differences in

the relative magnitude of currents, rather than underlying current

dynamics, which were not varied. Changes in channel properties

other than conductance could result in similar changes in AP

biomarkers and also account for some of the experimentally

observed variability. A study by Romero et al., in which a one-

dimensional sensitivity analysis of the rabbit-specific models used

in this study was performed with a similar range of parameter

variation, showed that along with repolarisation currents, APD

was significantly modified by changes in the activation and

inactivation rates of the associated channels [11]. At the same

time, further constraints to the model populations (for example

matching of rate-adaption or restitution properties), as well as

consideration of additional biomarkers (for instance relating to

intracellular ion concentrations), may be necessary to ensure their

applicability to additional physiological states. This has been

recently demonstrated in a study by Walmsley et al., in which

Table 4. Optimum stack order for APD50, APD90, and CaT
with the two rabbit-specific ventricular AP models.

Optimum Stack Order (x, y)

Model Biomarker CL (ms) Low OrderRHigh Order

Shannon APD50 400 (gto, gKs) (gNaK, gKr) (gCa,L, gK1)

1,000 (gK1, gKs) (gNaK, gKr) (gCa,L, gto)

APD90 400 (gto, gKs) (gNaK, gKr) (gCa,L, gK1)

1,000 (gK1, gKs) (gNaK, gKr) (gCa,L, gto)

CaT 400 (gK1, gKs) (gNaK, gto) (gCa,L, gKr)

1,000 (gK1, gKs) (gNaK, gKr) (gCa,L, gto)

Mahajan APD50 400 (gKr, gK1) (gKs, gCa,L) (gto, gNaK)

1,000 (gKr, gK1) (gto, gCa,L) (gKs, gNaK)

APD90 400 (gKr, gCa,L) (gK1, gKs) (gto, gNaK)

1,000 (gKr, gK1) (gKs, gto) (gCa,L, gNaK)

CaT 400 (gKr, gK1) (gto, gKs) (gNaK, gCa,L)

1,000 (gKr, gK1) (gKs, gto) (gNaK, gCa,L)

Each pair of parameters represents low, medium, or high order current
conductances. For each pair, the first component is plotted on the x-axis and
the second component on the y-axis. The (x,y) order can be reversed without
affecting the result only if all (x,y) pairs are reversed.
doi:10.1371/journal.pone.0090112.t004
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populations of failing and non-failing human ventricular myocytes

with variation in current conductances were compared using

various biomarkers at numerous CLs to investigate which currents

drive variability in the two cell populations [64]. Finally, as the

range and resolution of parameter space sampling in the present

study was limited by computational tractability, there may be

additional influences and interactions of current conductances

important for ventricular AP variability that were not appreciated.

As mentioned above, it is not possible to assess the physiological

ranges of the current conductances investigated in this study, so

that they may be related to the values included in the calibrated

populations of models. We initially varied all conductances by

630%, yet it was necessary with the Mahajan model to expand

this range to generate a physiological output. Other computational

studies have used a larger range of conductances than in the

present study ([14–16]), possibly representing the true physiolog-

ical range of values, and supporting the expanded range used with

the Mahajan model.

While providing insights into rabbit ventricular AP variability,

the present study also represents an evaluation of the two most

commonly used rabbit-specific ventricular AP models. As has been

shown previously by Romero et al. [11], the effects and relative

importance of current conductance variation in the present study

were largely model-dependent. Also, while the models produced a

physiological output with their original parameter set under the

conditions for which they were designed, when CL was varied this

was not the case. These rate and model-dependent differences

highlight the importance of careful model selection, validation,

and appropriate use for computational studies [65,66].

In summary, we have demonstrated that experimentally

observed intercellular variability of the rabbit ventricular AP can

be reproduced by a population of computational models that

includes large variations in current conductances important for

repolarisation. Importantly, this work moved beyond previous

investigations of ventricular repolarisation variability by a system-

atic exploration of the multi-dimensional conductance space with

the use of distributed computing software and specialised

visualisation techniques. This represents a robust method for

investigating the interaction of current conductances and their

relative importance to the ventricular AP, an important step

towards a better understanding of intercellular variability in

ventricular repolarisation. Importantly, this can only be achieved

using a combination of advanced computational modelling and

experimental calibration. In the future, similar model populations

Figure 7. Histograms showing the range of APD50, APD90, and CaT in the model populations. The value generated with the control
parameter set for each model is indicated by the arrow. The physiological range of APD50 and APD90 derived from the literature are represented by
the boxed area.
doi:10.1371/journal.pone.0090112.g007
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may be applied to tissue and organ level studies of diseased states

to better understand the role of intercellular repolarisation

variability in the generation of ventricular arrhythmias.
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