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Data integration is a central activity in systems biology. The integration of genomic, transcript, protein, metabolite, flux, and
computational data yields unprecedented information about the system level functioning of organisms. Often, data integration is
done purely computationally, leaving the user with little insight in addition to statistical information. In this article, we present a
visualization tool for the metabolic network of Synechocystis sp. PCC 6803, an important model cyanobacterium for sustainable
biofuel production. We illustrate how this metabolic map can be used to integrate experimental and computational data for
Synechocystis sp. PCC 6803 systems biology and metabolic engineering studies. Additionally, we discuss how this map, and the
software infrastructure that we supply with it, can be used in the development of other organism-specific metabolic network
visualizations. In addition to the Python console package VoNDA (http://vonda.sf.net), we provide a working demonstration
of the interactive metabolic map and the associated Synechocystis sp. PCC 6803 genome-scale stoichiometric model, as well as
various ready-to-visualize microarray data sets, at http://f-a-m-e.org/synechocystis.

The recent advances in high-throughput experimental
technologies and whole-genome sequencing resulted
in an explosion of biological data availability. These
genome-scale data sets are generally described as
“omics” data sets, of which transcriptomics, meta-
bolics, and fluxomics data are examples (Gstaiger and
Aebersold, 2009; Wang et al., 2009; Grabherr et al.,
2011; Kahn, 2011). Analyses and integration of these
data types can reveal important information about the
system level functioning of organisms (Berger et al.,
2013), and these methods are having a large impact on
biology. To gain additional insight into cellular be-
havior, data sets are also used to develop computa-
tional models at a genome-scale level. Both the central
role of metabolism for maintenance of cellular integrity
and growth and the availability of genome-scale data
sets led to an increased interest in genome-scale re-
constructions of metabolism. These reconstructions are

based on the metabolic reactions that they can per-
form, given the content of their genome (Oberhardt
et al., 2009; Thiele and Palsson, 2010). Essentially, all
metabolic reactions are catalyzed by enzymes, but for
most reactions, the enzyme kinetics are unknown. Con-
sequently, genome-scale reconstructions are often solely
based on the reaction stoichiometry, and they are there-
fore generally referred to as genome-scale stoichiometric
models (GSSMs) of metabolism.

To leverage the biological information that is included
in GSSMs and to compute physiological properties,
various stoichiometric network analysis tools are avail-
able (Price et al., 2003; Maarleveld et al., 2013). These
tools can be used to computationally study the growth
characteristics of microorganisms in detail. For instance,
flux balance analysis (FBA) and flux variability analysis
(FVA) have been used to predict the internal flux dis-
tribution and its variability while optimizing for cellular
growth yield (Mahadevan and Schilling, 2003; Orth et al.,
2010; McCloskey et al., 2013). Stoichiometric computa-
tional methods can also directly be of practical value. For
example, OptKnock (Burgard et al., 2003) can be used to
predict which gene knockout strategies would result in
increased production of metabolites of interest, such as
biofuels.

The analysis of GSSMs results in large data sets that
often contain thousands of reactions. These results come
in the form of long lists of (reaction) identifiers and
(flux) values. This makes the interpretation of these
data, which often come in files comprising thousands of
lines, a rather tedious process. Yet, to be of any biological
value, interpretation of FBA results in terms of biological
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functions, modules, and pathways is required. To ach-
ieve this, adequate visualization is paramount, and at-
tempts to visualize genome-scale data have been made.
These approaches can be classified into supervised
(human-driven) and nonsupervised (fully automatic)
ones. The latter approach, fully automated mapping of
genome-scale models, results in (mathematical) graphs
that are even more difficult to interpret than the raw
data one set out to visualize on them, so we will not
discuss them in detail here.

Human-driven visualization methods, on the other
hand, are considerably more popular, as hand-drawn
maps are markedly easier to interpret. Tools such as
Kyoto Encyclopedia of Genes and Genomes (KEGG;
Kanehisa and Goto, 2000), Cytoscape (Smoot et al.,
2011), CellDesigner (Funahashi et al., 2003), and the Con-
straints Based Reconstruction and Analysis (COBRA)
Toolbox (Schellenberger et al., 2011) each offer their own
particular take on modeling and visualization. Never-
theless, because none of them was originally designed
for visualizing genome-scale models or genome-scale
data, they are of limited use for this purpose. This be-
comes clear when one attempts to share, extend, or adapt
an existing map. Commonly, users who attempt this
quickly find their progress obstructed by the need for
special software or incompatible identifiers or simply by
not being able to access an editable version of the desired
image.

Understandably, these issues have thus far prevented
the widespread communal use of visualization aids,
as well as their use in combination with computational
results. However, the increased availability of high-
throughput data makes the lack of adequate graphical
interpretation tools more dearly felt than ever. Here, we
address this problem by presenting the first compre-
hensive data visualization tool, namely, a graphical
map of metabolism that is capable of displaying any
type of data that is associated with reaction identifiers,
gene identifiers, or metabolite identifiers. Based on the
increased interest in photosynthetic microorganisms
and its importance as a model organism for metabolic
engineering studies, we decided to base our graphical
metabolic map on the metabolic reconstruction of Syne-
chocystis PCC 6803 (hereafter, Synechocystis; Shastri and
Morgan, 2005; Knoop et al., 2010; Nogales et al., 2012;
Saha et al., 2012), the best characterized and most
extensively studied cyanobacterium. The direct con-
version of CO2 into carbon compounds makes these
microorganisms of great interest for the development of
production techniques for third-generation biofuels
(Chisti, 2007; Ducat et al., 2011; Angermayr et al., 2012).
We illustrate the use of the map of this organism’s
metabolism and discuss how similar maps can be made
for other organisms using the Synechocystis map as a
template.

Our map is also directly useful for other (micro)or-
ganisms, because the metabolic core (e.g. the carbohy-
drate, energy, amino acid, and nucleotide metabolism)
is highly conserved between different microorganisms
(Peregrín-Alvarez et al., 2009). Therefore, the map can

easily be extended to cover additional pathways or or-
ganisms. This process will become progressively easier
as more reactions are added to the map, as any added
reactions can in turn be used in further mapping efforts.
To demonstrate the usefulness of our graphical map, we
have integrated it into the Flux Analysis and Modeling
Environment (FAME; Boele et al., 2012) at http://f-a-m-e.
org/synechocystis. Here, our map can be readily used
for the analysis and visualization of the genome-scale
model of Synechocystis, which also comes preloaded.
The map and a Python console application of our
visualization software Visualization of Network Data
(VoNDA) can also be downloaded separately from
http://vonda.sf.net. The console application can be
used to visualize the output of popular constraint-
based modeling software such as the COBRA Tool-
box. It can also be used to take advantage of the recent
development of constraint-based modeling software in
Python. Using VoNDA in combination with the Python
Simulator for Cellular Systems-Constraint Based Mod-
eling (PySCeS-CBM; Olivier et al., 2005) or COBRApy
(Ebrahim et al., 2013) allows for (interactive) modeling
and visualization in Python.

RESULTS AND DISCUSSION

Metabolic Map of Synechocystis

We have developed a comprehensive metabolic map
of Synechocystis (Fig. 1A). It is based on the metabolic
reconstruction of Nogales et al. (2012), which we ex-
tended with reactions from Knoop et al. (2010) and
other sources (Supplemental Data S1). The extended
model contains 904 reactions and 816 metabolites. The
associated map provides an overview of the reactions
in the model and the resulting metabolic pathways.
Together, the model and the map act as a readily ex-
tensible framework for human-friendly visualization
of simulation results or experimental data (Fig. 1,
B and C). Throughout this project, we aimed at offer-
ing an environment that can easily be extended with
additional data and analysis types. To ensure its ap-
plicability to a maximum number of data and analysis
types, as well as to maximize its potential for reuse and
adaptation by the cyanobacterium community or other
communities, a number of considerations were made
during the development of the graphical map of the
metabolism of Synechocystis.

An essential feature is that simulation results, such
as FBA or FVA, can be displayed within the tool that
generated them (Fig. 1, A and B). Moreover, experi-
mental data, such as various flavors of omics’ data
sets, can be displayed (Fig. 1C). This was achieved by
ensuring that the identifiers of the reactions, metabo-
lites, and genes in the underlying model match those
on the map. Such an annotation link is essential, and as
long as experimental data sets use the same identifier
classification, they can be visualized. In our map, the
underlying identifiers can be easily detected by a
mouseover of the element of interest in a Web browser.
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We used the Scalable Vector Graphics (SVG) format
to represent the map, as this allowed us to make it
interactive. Specifically, we included hyperlinks that can
direct the user toward sources of additional information
(e.g. KEGG) or, when FAME is used to generate simula-
tion results and display them on the map, to details about

the run that generated the displayed results. Had we
utilized one of the budding visualization standards such
as the Systems Biology Graphical Notation (Le Novère
et al., 2009) or Systems BiologyMarkup Language (SBML)
layout (Gauges et al., 2006), this functionality would re-
quire the user to install additional third-party software

Figure 1. An overview of the graphical map of the metabolism of Synechocystis and its capabilities. Various elements (reac-
tions, metabolites, and squares) are clickable and direct the user to the KEGG database or to run result details. A, When
displaying FBA results, the arrows denoting reactions are colored according to the color scale in the top left corner. Gray re-
actions carry no flux. B, Detailed view of a section of the map when it is used to display FBA results. C, Detailed view of the
same section of the map as in B, but now it is being used to display gene expression results. Here, the reaction lines are only
displayed to indicate the general structure of the metabolic map, whereas the gene expression information is conveyed by
colored boxes next to each reaction for which gene association information is available.
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Figure 2. Example use cases of the map. Visualization of the difference in flux distribution when growing in the presence (A) or
absence (B and C) of light. When light is present (A), the FBA solution harbors no surprises. However, when light is absent (B),
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simply to view the image. Using SVG directly allows the
user full graphical control over the image and allows di-
rect embedding of dynamic, interactive elements that
point to metabolite and reaction resources. The SVG for-
mat is commonly used on the Web, and popular image
manipulation software (such as InkScape or Adobe Illus-
trator) can import SVG files. Therefore, these files can be
used for figures in scientific publications. Using SVG also
makes sure our map is readily extensible with new reac-
tions or visualization applications. Moreover, the format is
programmatically accessible, which allows for extraction
and visualization of subnetworks of the entire metabolic
map or development of a new metabolic map for another
organism, using this map as a blueprint.
To demonstrate that our tool greatly simplifies the

analysis of genome-scale data sets, we will provide
two example use cases. One example concerns the
physiological adaptation of cyanobacteria to changing
environmental conditions. The other illustrates the
expansion of the map with new reactions for biofuel
production. Given GSSM constraints such as light
availability, FBA is generally an accurate method to
predict the optimal product or biomass yield. How-
ever, because these GSSMs are typically large, the as-
sociated metabolic flux distributions are large, which
makes them difficult to analyze in detail. To exemplify
this, FVA done on our GSSM predicts that, in an op-
timized GSSM, about 600 to 700 reactions can carry a
flux during light and dark conditions. Our metabolic
map allows for visualization of these FBA and FVA
predictions, which allows for direct insight into, for
instance, unexpected and interesting behavior.

Visualizing the Physiological Adaptation to Light and
Dark Conditions

We will provide an example of unexpected behavior
that can be found by modeling cyanobacteria in dif-
ferent environmental conditions in this section. Cya-
nobacteria such as Synechocystis are subject to a diurnal
light-dark cycle and adjust their metabolism via cir-
cadian control. In the GSSM, we can simulate these
conditions by changing the availability of light (photon
influx) and adjusting the model constraints to indicate
whether glycogen is to be produced as part of biomass
(see Supplemental Data S2 for details).
In Figure 2, we illustrate FBA predictions of the

metabolic activity under light and dark conditions. We
limit ourselves to the visualization of the metabolic
surroundings of Rubisco. Rubisco is a well-known key
enzyme for carbon fixation during photoautotrophic
growth, which carboxylates or oxygenates D-ribulose
1,5-bisphosphate. The carboxylation process (carbon

fixation) yields two molecules of 3-phosphoglycerate,
while the oxygenation process (photorespiration) re-
sults in one molecule each of 3-phosphoglycerate
and 2-phosphoglycolate. 2-phosphoglycolate is toxic
to Synechocystis and inhibits proper functioning of the
Calvin-Benson cycle (Bauwe et al., 2012) and, as a result,
reduces the conversion of solar energy into chemical
energy. Nevertheless, both carbon fixation and photo-
respiration are essential for cyanobacteria in photo-
autotrophic growth conditions (Eisenhut et al., 2008).

We predicted steady-state flux values through this
segment of metabolism by using FBA to optimize the
biomass synthesis rate. Note that this rate optimization
is carried out relative to other fixed nutrient uptake
reaction rates and that we are effectively optimizing
flux ratios (yields) rather than rates. Now, instead of
working one’s way through a list of about 1,000 pre-
dicted flux values for unexpected behavior, our map
directly shows that both FBA and FVA predict that, in
addition to carbon fixation, photorespiration is essen-
tial for obtaining an optimal growth yield in light and
dark conditions (Fig. 2, A and B). The reason is that,
in the metabolic model, photorespiration is the only
way to produce glyoxylate, which is necessary for the
production of the amino acids Cys, Gly, and Ser.

As “dark photorespiration” is not generally consid-
ered plausible, an alternative was proposed by Knoop
et al. (2010). They added the conversion of L-Pro to
Hyp (identified by a BLAST search (Altschul et al.,
1997)) to provide a second, perhaps more plausible
mechanism for glyoxylate synthesis in dark conditions.
After inclusion of this reaction, our computational
analysis showed that in light conditions no activity
was predicted for the conversion of L-Pro to Hyp due
to a lower carbon efficiency. According to FBA simula-
tions, glyoxylate synthesis via L-Pro breakdown would
be more efficient in dark conditions (Fig. 2C).

In addition to directing fixated carbon toward the
production of precursors for (immediate) growth (e.g.
nucleic acids or amino acids), Synechocystis also syn-
thesizes the storage compound glycogen (Fig. 2A).
During photoautotrophic growth, this results in a
suboptimal growth strategy, as a lower growth rate
will be obtained. In the absence of light, Synechocystis
consumes the stored glycogen via either fermentation
or respiration, depending on the availability of O2. In
the absence of light and presence of O2, FBA predicts
the breakdown of previously stored glycogen and en-
ergy generation via respiration. This enables the orga-
nism to maintain its integrity and grow under dark
conditions. If the maintenance requirements of Syne-
chocystis in the absence of light were known, modeling
could help determine the minimal glycogen amount
that should be stored during the light phase. This could

Figure 2. (Continued.)
FBA predicts that photorespiration is active, which is unlikely. C, Adding a reaction that converts L-Pro to Hyp returns the model
to its expected state under dark conditions. Note that some glyoxylate is still produced from other precursors than glycolate (not
shown here) to enable the production of amino acids.
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represent an optimal strategy for this organism: opti-
mize glycogen storage during the day to grow as fast as
it can and then survive the night on the stored glycogen.

Exploring the Properties of Synechocystis Photosynthesis

In addition to photorespiration, photosynthesis is
another key part of the metabolism of Synechocystis
that is essential for growth. We studied the flexibility
of this metabolic subnetwork by maximizing the spe-
cific growth rate as a function of the HCO3

– and pho-
ton uptake rates (Fig. 3A). The specific growth rates we
predict are in agreement with experimentally mea-
sured rates (Shastri and Morgan, 2005). We subse-
quently selected three combinations of HCO3

– and
photon uptake rates for further exploration (Fig. 3A).
Briefly, these are (1) a state in which carbon and light
are both limiting for growth (carbon- and light-limiting
state [CLLS]), (2) a state in which light, but not carbon,
limits growth (light-limiting state [LLS]), and (3) a state
in which carbon, but not light, limits growth (carbon-
limiting state [CLS]). We give a detailed overview of
the characteristics of these conditions in Supplemental
Data S2 and of the FBA predictions under each condition
in Table I. In this section, we will discuss some analysis
results that illustrate the practical application of our tool.

Visualization of FBA predictions on our metabolic
map immediately shows that the model predicts dif-
ferent photosynthesis strategies under different con-
ditions, indicating the flexibility of this system. The
predictions in the CLLS (Fig. 3B) and LLS (Fig. 3C) are
conceptually identical, although the predicted absolute
fluxes are different. However, the two conditions can
be distinguished on the basis of carbon secretion: the
CO2 that cannot be fixed in the LLS is released by
the cell.

By comparing the visualization of photosynthetic
fluxes, it is readily apparent that a different strategy is
exploited in the CLS (Fig. 3D). Excess photons are used
to transfer protons from the cytosol to the thylakoid, a
process that is carried out by quinol oxidase (Cyto-
chrome bd). These protons are then used to generate
ATP. This explains the relatively low flux through PSI
compared with PSII (JPSI/JPSII) and relatively high ATP
formation flux compared with NADPH formation flux
(JATP/JNADPH); more details can be found in Table I. The
resulting ATP is subsequently used in metabolism.
FVA results (not shown) suggest that quinol oxidase is
not essential for obtaining a maximal biomass yield.
For example, the Mehler reaction can be used to oxi-
dize the excess NADPH to NADP+ (Supplemental Fig.
S1A; in that case, JPSI/JPSII = 1 and JATP/JNADPH = 1.28,
indicating linear electron flow).

Figure 3. We used FBA to explore the properties of the Synechocystis model and map under various conditions, i.e. CLLS, LLS,
and CLS. A, Predicted growth rate as a function of carbon and light uptake rates. The black dots in the phase plane indicate the
conditions (in terms of photon flux and HCO3

– uptake) that are shown in panels B to D. B to D, Visualization of predicted FBA
fluxes for the three scenarios (CLLS, LLS, and CLS). Arrows indicate flux direction; the color bar indicates flux magnitude.
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In addition to the photosynthetic linear electron
flow, different alternative electron flow (AEF) path-
ways exist that allow for different ATP/NADPH ratios
(Kramer and Evans, 2011). From Figure 3, B to D, we
can immediately conclude that these AEF pathways
are active during (these instances of) conditions of
optimal growth yield. When the AEF pathways are
removed from the model, the predicted growth yield is
lower, indicating that AEF pathways are essential if
maximum yield is to be attained under these condi-
tions (Supplemental Fig. S1B).
Apart from plotting model predictions on the map,

we can use the tool for visualization of many more
data types. In Figure 4, we use microarray data under
conditions of carbon limitation (similar to the condi-
tions modeled above). Visualizing this type of data
allows for convenient identification of genes that are
over- or underexpressed compared with the wild type
in a pathway-specific manner. For instance, compared
with the wild type, our visualization shows that many
genes associated with photosynthesis and respiration
are initially underexpressed (Fig. 4A) upon CO2 limi-
tation. The transcriptomics data are from a time series,
whereas predictions from FBA assume steady state.
Therefore, these data sets are not directly comparable.
After 12 h of CO2 limitation, the situation most likely

represents a steady-state condition, and it can there-
fore be compared with FBA predictions. When this
comparison is made, 73% of the photosynthetic gene
expression data agree with predicted fluxes, while 27%
do not match the flux predictions. For instance, genes
associated with linear electron flow were underex-
pressed (Fig. 4B). FBA results visualized in Figure 3,
B and D, show that lower fluxes are predicted in most
reactions associated with the linear electron flow. By
contrast, a decrease in ATPase gene expression was
found under CLS conditions, whereas FBA/FVA pre-
dicted a higher flux through this enzyme. The gene
expression data also indicate increased expression of
NADH dehydrogenase 1 (NDH1) and NDH1 type 3.

While FBA does not predict a flux through these re-
actions in CLS conditions, FVA results indicate that a
flux through NDH1-related pathways would decrease
the growth yield in LLS but not in CLS conditions.
Thus, the NDH1 gene expression data, too, are con-
sistent with the predicted solution space for photo-
synthesis fluxes in Synechocystis.

Expansion of the Map with a Biofuel Production Pathway

To illustrate how the metabolic map can be extended
or modified to other microorganisms, we added a
biofuel production pathway to the map and model.
Recently, the development of a Synechococcus elongatus
PCC 7942 strain that produces the bulk chemical 2,3-
butanediol (23BD) was reported (Oliver et al., 2013).
The production of 23BD using cyanobacteria offers
several benefits compared with other higher alcohols.
For instance, 23BD has a low host toxicity, which al-
lows for a higher biofuel product concentration. More-
over, the common metabolite pyruvate is used as a
substrate for 23BD production, and NADPH can be
utilized as a reducing agent; no conversion of NADH to

Figure 4. To demonstrate the applicability of our map to gene-associated
(“omics”-sized) data, we used it to visualize microarray data for various
CO2-limiting growth conditions. The colored squares indicate differential
expression relative to the wild type; yellow corresponds to overexpression,
and blue corresponds to underexpression. The sections depict differential
gene expression after 1 (A) and 12 h (B) of CO2 limitation compared with
wild-type Synechocystis.

Table I. A summary of the results of various (flux balance) analyses on
the Synechocystis model

When optimizing for biofuel production, we fixed the growth rate to
10% of its maximum. The constraints that were used for each of these
simulations can be found in Supplemental Data S2. Jhv, Photon flux;
KO AEF, knockout of AEF pathways; JRubisco,Co2/Jhv, Rubisco carboxylase
flux divided by the photon flux; J23BD, 2,3-butanediol flux; m(h21),
growth rate.

Simulated

Conditions
JPSI/JPSII JATP/JNADPH JRubisco,CO2/Jhv m (h–1) J23BD

CLLS 0.99 1.6 0.085 0.045 0
CLS 0.058 7.2 0.011 0.012 0
LLS 0.99 1.6 0.085 0.017 0
KO AEF 1.0 1.28 0.075 0.040 0
Biofuel 0.99 1.3 0.13 0.0045 0.427
Biofuel CLS 0.058 8.1 0.014 0.0012 0.113
Biofuel LLS 0.99 1.3 0.13 0.0017 0.203
Biofuel KO

AEF
1.0 1.28 0.11 0.0045 0.37
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NADPH is necessary. Finally, catabolic enzymes from
O2-tolerant organisms can be used for the production of
23BD, which is important because O2 is produced by the
photosynthetic machinery of Synechocystis. We therefore
extended our map with a pathway that produces 23BD
(see “Materials and Methods;” Supplemental Fig. S2).

We performed FBA on the model after adding the
23BD synthesis pathway under the same conditions as
above (i.e. CLLS, LLS, and CLS; Fig. 5). Ideally, cya-
nobacteria can be used as cell factories (Angermayr
et al., 2012), i.e. a nongrowing population that cata-
lyzes the conversion of CO2 into products of interest.
To account for biomass replenishment and for the fact
that a little growth will always occur, we fixed the
growth rate to a basal growth level of 10% of its
maximum specific growth rate. We then optimized for
23BD production (Fig. 5A). Given these conditions,
our GSSM predicted 23BD production rates up to
0.90 mmol g–1 dry weight h–1. Interestingly, the ratio of
Rubisco carboxylase activity over the photon uptake flux
was about 1.5 times higher when we optimized the flux to
23BD compared with optimizing the specific growth rate
(Table I). Our metabolic map allowed for a straightfor-
ward identification of different factors (Supplemental
Fig. S3) that contributed to this difference. Firstly, HCO3

–

is not entirely converted into CO2 when biomass is
synthesized. Instead, a substantial part (7%) of HCO3

– is
used for the synthesis of malonyl-CoA, an essential

precursor for fatty acid biosynthesis. Secondly, the two
reactions converting pyruvate to R-acetoin (the precur-
sor of 23BD) release CO2, which is subsequently fixed in
the Calvin cycle. Lastly, it takes fewer photons to opti-
mize the flux to 23BD (compared with optimizing for
biomass production).

The production pathway of 23BD we added to the
model requires NADPH but not ATP (Supplemental
Fig. S2B). Therefore, we expected a lower JATP/JNADPH
ratio compared with the optimization of specific
growth rate. Our simulations show that when opti-
mizing for 23BD production, the percentage of flux
through PSI devoted to AEF pathways is much lower
for both the CLLS and LLS (Fig. 3, B and C, versus
Fig. 5, B and C). As a result, optimization of 23BD
production required a lower JATP/JNADPH ratio. This
ratio is relatively close to the ratio that is obtained via a
linear electron flow. Therefore, one may expect that the
AEF knockout yields a similar flux toward 23BD.

However, surprisingly, an AEF knockout in the CLLS
and LLS resulted in a decrease of 12% in 23BD produc-
tion rate. As it turns out, the relatively small fraction of
flux through the AEFs is eventually used for HCO3

–

uptake. Without the AEF pathways, less HCO3
– can be

imported into the cell, which results in a lower produc-
tion of 23BD. By contrast, in the CLS, where light is
available in excess, many metabolic routes will lead to an
optimal FBA solution, even though the objective that is

Figure 5. We used FBA to explore the properties of the Synechocystis model and map under various conditions (i.e. CLLS, LLS,
and CLS), while optimizing for 23BD production. A, Predicted flux to 23BD as a function of carbon and light uptake rates. B to
D, Visualization of predicted FBA fluxes for the three scenarios (CLLS, LLS, and CLS, respectively) indicated in A. Arrows in-
dicate flux direction; the color bar indicates flux magnitude.
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optimized for may differ; in the case of our simulations,
the objective was either growth (Fig. 3D) or biofuel
production (Fig. 5D). Consequently, the characteristics of
the system in a CLS are quite similar between these two
objectives (compare with Figs. 3D and 5D).

Implementation

With the development of the first interactive map of
cyanobacterial metabolism, we provide the commu-
nity with a graphical means of interpreting the large
amounts of data generated by high-throughput ex-
perimental or computational methods. Given the ab-
sence of commonly available visualization options for
results of analyses of genome-scale models, our main
aim was the creation of an immediately useful map of
Synechocystismetabolism. Visualization of heterogeneous
data on this map is enabled by the standalone VoNDA
package or the integration into FAME.
In addition to providing a pathway-oriented, human-

friendly overview of the contents of the genome-scale
metabolic model of Synechocystis, we included a num-
ber of features in our graphical map that will facilitate
interpretation despite not being common practice in
current-day visualization efforts. An important one is
the choice to include multiple instances of common
metabolites, such as ATP, ADP, NAD(P)(H), and other
cofactors. These metabolites are included on the map in
various locations, which greatly reduces the clutter that
would arise if only one instance of each were drawn
(graph-based visualization solutions tend to do this).
Other helpful features are hidden when they are not in

use but deserve a brief explanation here. Space has been
reserved on the map to display flux values for reactions
and the direction in which the reaction takes place. An
example is reaction-associated squares, which can be
used for the visualization of gene expression data
(Figs. 1C and 4). Each metabolic reaction has three
such squares associated with it; if a reaction has more
than three genes associated with it, we visualize the
three genes with the highest differential expression
value. Furthermore, when displaying run results gener-
ated in FAME, metabolite names link to a page with a list
of fluxes that produce and consume the respective me-
tabolite. Finally, when displaying run results, the lines
that represent reactions are color coded to represent the
magnitude of the flux through them (or the variability of
this flux, in the case of FVA results), and an explanatory
color bar is displayed at the top of the image.

Exploiting the Metabolic Map of Synechocystis for
Other Microorganisms

To alleviate the effects of our design decisions on users
that would have favored another approach, we created
the entire map in SVG, an open-source image format. Our
GSSM uses the BiGG nomenclature (Schellenberger et al.,
2010), and therefore, our map is of direct value for all
GSSMs that utilize this commonly used nomenclature. In

addition, all identifiers on the map can be easily migrated
to cognate identifiers in another nomenclature system
(Lang et al., 2011; Bernard et al., 2014; Kumar et al., 2012).
More importantly, the map can be modified to suit dif-
ferent species than Synechocystis. The addition of reactions
and metabolites to the map can be done using either text
or image manipulation software; when using an image
editor, one must make sure that each new element is
somehow assigned the correct identifier. We provide an
online SVG editor in FAME, which allows for easy ma-
nipulation of the metabolic map, including any results
superimposed on it. While the quality of any customized
map will be strongly dependent on the knowledge and
skill of whoever modified it and on the quality of the
model it describes, this work presents the community
with a solid basis from which to start this process. We
provide an example of how one can go about this in
“Materials and Methods” and in Supplemental Figure S2.
Our demonstration of the expansion of the map and
model with a biofuel production pathway not only illus-
trates the extensibility of our work, but also how adequate
visualization can lead to novel biological insights.

Regardless of any discussion about its implementa-
tion, the presentation of the first map of metabolism
that is both computer and human friendly will surely
help advance our understanding of Synechocystis but
also of other organisms to which the map can be
adapted. By offering this resource not only as a flat file,
but also as an integrated part of an interactive online
analysis environment, we hope it will be of even
greater use to the community.

CONCLUSION

The increased pace at which experimental data can
be generated has fueled genome-scale research efforts,
which presently call for genome-scale interpretation
efforts. For the case of Synechocystis, an important
model organism for biotechnological applications, we
now enable the interpretation of these data from a
biological (pathway) perspective by presenting the
first comprehensive graphical map of its metabolism.
This is the first results interpretation tool that is
graphical, interactive, machine friendly, and, impor-
tantly, extensible. We expect that it will add great
value to the community of cyanobacterium researchers
but also to the scientific community as a whole.

MATERIALS AND METHODS

Adaptation of the Synechocystis Model and Creation of the
Corresponding Map

We present a metabolic map and a corresponding stoichiometric model of
Synechocystis sp. PCC 6803 metabolism consisting of 904 reactions, 816 species,
and 686 genes. The model we present here is an extension of the iJN678 model
described in Nogales et al. (2012). Pathways that were amended include the
tricarboxylic acid cycle (Zhang and Bryant, 2011), Arg metabolism (Schriek
et al., 2007, 2008, 2009), and Pro metabolism (Knoop et al., 2010). A full list of
the modifications we made can be found in Supplemental Data S1. For
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example, we modified the succinate dehydrogenase reactions in iJN678 to
ensure that FADH2 can be synthesized and degraded (originally, iJN678 was
unable to degrade FADH2). This modification also allowed us to extend Arg
metabolism, where FADH2 is synthesized. To facilitate the interpretation of
results deriving from the model, we decomposed the biomass function into
reactions toward nine major components (e.g. DNA, RNA, and protein). This
allows users to track the uptake and destination of each of these components
individually (Supplemental Fig. S2).

In spite of its usefulness to biotechnology, the biological relevance of 23BD
to organisms is relatively low, which makes it a rare find on metabolic maps,
and our initial version of the Synechocystis map was no exception. The first
reaction, the conversion of two pyruvate molecules into 2-acetolactate and
CO2, is an essential metabolic reaction and was therefore already on our map.
We added two new reactions to our map (R_ACLDC and R_23BDD), as well
as the metabolites they connect (R-acetoin and 23BD). We also added ex-
change reactions to the map and model.

In total, we added 44 reactions and 22 species, removed seven reactions, and
revised incorrect mass and charge balancing for 19 reactions. We refer to our
new version of the model as iTM686 (Supplemental Data S3 and S4; the model
can be accessed or downloaded in the SBML Level 3 format at http://f-a-m-e.
org/synechocystis. The model’s constraints and objectives are represented
using features from the recently launched Flux Balance Constraints package
(http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/
Flux_Balance_Constraints_(flux)).

Analyses Performed on the Model

We analyzed all instances of the Synechocystismodel using FBA and FVA.
As these analyses hinge upon the quasi-steady-state assumption, they can
only predict steady-state flux distributions. In-depth descriptions of these
computational methods are abundant in literature. We therefore refer to
Price et al. (2003), Orth et al. (2010), and Santos et al. (2011) for an overview
of the technical and methodological details. Throughout this article,
wherever we mention performing an FBA, this FBA was performed with the
additional objective of minimizing the absolute sum of fluxes to obtain a more
biologically sensible solution. The details of all simulations, including the
constraints and objectives that were used, are described in Supplemental
Data S2.

Integration with FAME

To demonstrate the functionality of themap as well as to facilitate its use, we
have added a Synechocystis-specific section to FAME (Boele et al., 2012).
Visiting http://f-a-m-e.org/synechocystis causes the Synechocystis genome-
scale model (iTM686) and our map to be loaded. The user is then able to
view, edit, and run the model and to have analysis results visualized on the
map we present in this article. Though the ability to visualize results on custom-
made maps was already present in FAME, the URL described above preloads
the model and map and eliminates the need for loading several files separately.

In addition, we have expanded FAME with an in-browser image editor and
with the ability to visualize gene expression data from microarray profiling
experiments on maps that support this kind of data. We have preloaded
the results of 98 experiments from the CyanoExpress microarray data set
(Hernandez-Prieto and Futschik, 2012) into the Synechocystis section of FAME.
These data sets can be selected and superimposed on the map for analysis as a
demonstration of the ability of the Synechocystis map to display gene expres-
sion data as well as flux analysis results.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Results of knock-out simulations.

Supplemental Figure S2. The addition of a 2,3-butanediol pathway to the
Synechocystis map.

Supplemental Figure S3. Predicted import and export fluxes when opti-
mizing for different objective functions.

Supplemental Data S1. A full list of modifications made to the genome-
scale model iJN678.

Supplemental Data S2. FAME batch commands to reproduce the results
presented in this article.

Supplemental Data S3. Synechocystis metabolic network file.

Supplemental Data S4. Synechocystis metabolic network overview.
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