Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 May;80(9):2539–2543. doi: 10.1073/pnas.80.9.2539

Orientation of a human leukocyte interferon molecule on its cell surface receptor: carboxyl terminus remains accessible to a monoclonal antibody made against a synthetic interferon fragment.

H Arnheiter, M Ohno, M Smith, B Gutte, K C Zoon
PMCID: PMC393861  PMID: 6302694

Abstract

An 125I-labeled monoclonal antibody made against a synthetic 56-residue fragment of human leukocyte interferon (IFN) alpha 1 recognizes human, Escherichia coli-derived IFN alpha A bound to the surface of Madin-Darby bovine kidney cells. A major fraction of the antibody recognizes IFN specifically bound to the cells, because the number of bound antibody molecules corresponds to the number of cell-bound IFN molecules (as measured with radiolabeled ligand) and because the fraction of the IFN unspecifically bound to the cells is less than 10% of the total bound IFN. A synthetic carboxyl-terminal 16-residue IFN peptide, though not inhibiting binding of IFN to cells, inhibits binding of antibody to IFN. A recombinant IFN alpha A molecule with a carboxyl-terminal 13-residue deletion, though still able to compete for binding of IFN to cells, is not recognized by the antibody. Scatchard plot analysis of the binding data revealed apparent dissociation constants of 6.0 x 10(-10) M for the antibody-IFN interaction and of 4.0 x 10(-11) M for the IFN-cell receptor interaction. The antibody inhibits the binding of IFN to cells only weakly and neutralizes the antiviral activity of the ligand only when in a large molar excess. We conclude that the carboxyl-terminal 10-16 residues that are predicted from the cloned IFN cDNAs and that are present in some natural IFNs are not involved in binding to cells but are antigenic and hence exposed on the molecules' surface. That the carboxyl terminus is not directly involved in binding to cells is consistent with the observation that some IFNs with carboxyl-terminal deletions are biologically active.

Full text

PDF
2543

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERER F. A. Preparation and properties of an artificial antigen immunologically related to tobacco mosaic virus. Biochim Biophys Acta. 1963 Apr 2;71:246–248. doi: 10.1016/0006-3002(63)91077-1. [DOI] [PubMed] [Google Scholar]
  2. Aguet M., Blanchard B. High affinity binding of 125I-Labeled mouse interferon to a specific cell surface receptor. II. Analysis of binding properties. Virology. 1981 Dec;115(2):249–261. doi: 10.1016/0042-6822(81)90108-2. [DOI] [PubMed] [Google Scholar]
  3. Aguet M. High-affinity binding of 125I-labelled mouse interferon to a specific cell surface receptor. Nature. 1980 Apr 3;284(5755):459–461. doi: 10.1038/284459a0. [DOI] [PubMed] [Google Scholar]
  4. Arnheiter H., Thomas R. M., Leist T., Fountoulakis M., Gutte B. Physicochemical and antigenic properties of synthetic fragments of human leukocyte interferon. Nature. 1981 Nov 19;294(5838):278–280. doi: 10.1038/294278a0. [DOI] [PubMed] [Google Scholar]
  5. Branca A. A., Baglioni C. Evidence that types I and II interferons have different receptors. Nature. 1981 Dec 24;294(5843):768–770. doi: 10.1038/294768a0. [DOI] [PubMed] [Google Scholar]
  6. Branca A. A., Faltynek C. R., D'Alessandro S. B., Baglioni C. Interaction of interferon with cellular receptors. Internalization and degradation of cell-bound interferon. J Biol Chem. 1982 Nov 25;257(22):13291–13296. [PubMed] [Google Scholar]
  7. Evinger M., Rubinstein M., Pestka S. Antiproliferative and antiviral activities of human leukocyte interferons. Arch Biochem Biophys. 1981 Aug;210(1):319–329. doi: 10.1016/0003-9861(81)90195-8. [DOI] [PubMed] [Google Scholar]
  8. Franke A. E., Shepard H. M., Houck C. M., Leung D. W., Goeddel D. V., Lawn R. M. Carboxyterminal region of hybrid leukocyte interferons affects antiviral specificity. DNA. 1982;1(3):223–230. doi: 10.1089/dna.1.1982.1.223. [DOI] [PubMed] [Google Scholar]
  9. Frankel M. E., Gerhard W. The rapid determination of binding constants for antiviral antibodies by a radioimmunoassay. An analysis of the interaction between hybridoma proteins and influenza virus. Mol Immunol. 1979 Feb;16(2):101–106. doi: 10.1016/0161-5890(79)90051-8. [DOI] [PubMed] [Google Scholar]
  10. Gutte B., Däumigen M., Wittschieber E. Design, synthesis and characterisation of a 34-residue polypeptide that interacts with nucleic acids. Nature. 1979 Oct 25;281(5733):650–655. doi: 10.1038/281650a0. [DOI] [PubMed] [Google Scholar]
  11. Hopp T. P., Woods K. R. Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3824–3828. doi: 10.1073/pnas.78.6.3824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Levy W. P., Rubinstein M., Shively J., Del Valle U., Lai C. Y., Moschera J., Brink L., Gerber L., Stein S., Pestka S. Amino acid sequence of a human leukocyte interferon. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6186–6190. doi: 10.1073/pnas.78.10.6186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mantei N., Schwarzstein M., Streuli M., Panem S., Nagata S., Weissmann C. The nucleotide sequence of a cloned human leukocyte interferon cDNA. Gene. 1980 Jun;10(1):1–10. doi: 10.1016/0378-1119(80)90137-7. [DOI] [PubMed] [Google Scholar]
  14. McCray J. W., Weil R. Inactivation of interferons: halomethyl ketone derivatives of phenylalanine as affinity labels. Proc Natl Acad Sci U S A. 1982 Aug;79(16):4829–4833. doi: 10.1073/pnas.79.16.4829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mogensen K. E., Bandu M. T., Vignaux F., Aguet M., Gressner I. Binding of 125I-labelled human alpha interferon to human lymphoid cells. Int J Cancer. 1981 Nov 15;28(5):575–582. doi: 10.1002/ijc.2910280508. [DOI] [PubMed] [Google Scholar]
  16. Rehberg E., Kelder B., Hoal E. G., Pestka S. Specific molecular activities of recombinant and hybrid leukocyte interferons. J Biol Chem. 1982 Oct 10;257(19):11497–11502. [PubMed] [Google Scholar]
  17. Rubinstein M., Levy W. P., Moschera J. A., Lai C. Y., Hershberg R. D., Bartlett R. T., Pestka S. Human leukocyte interferon: isolation and characterization of several molecular forms. Arch Biochem Biophys. 1981 Aug;210(1):307–318. doi: 10.1016/0003-9861(81)90194-6. [DOI] [PubMed] [Google Scholar]
  18. Secher D. S., Burke D. C. A monoclonal antibody for large-scale purification of human leukocyte interferon. Nature. 1980 Jun 12;285(5765):446–450. doi: 10.1038/285446a0. [DOI] [PubMed] [Google Scholar]
  19. Staehelin T., Durrer B., Schmidt J., Takacs B., Stocker J., Miggiano V., Stähli C., Rubinstein M., Levy W. P., Hershberg R. Production of hybridomas secreting monoclonal antibodies to the human leukocyte interferons. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1848–1852. doi: 10.1073/pnas.78.3.1848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Streuli M., Hall A., Boll W., Stewart W. E., 2nd, Nagata S., Weissmann C. Target cell specificity of two species of human interferon-alpha produced in Escherichia coli and of hybrid molecules derived from them. Proc Natl Acad Sci U S A. 1981 May;78(5):2848–2852. doi: 10.1073/pnas.78.5.2848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Streuli M., Nagata S., Weissmann C. At least three human type alpha interferons: structure of alpha 2. Science. 1980 Sep 19;209(4463):1343–1347. doi: 10.1126/science.6158094. [DOI] [PubMed] [Google Scholar]
  22. Weck P. K., Apperson S., May L., Stebbing N. Comparison of the antiviral activities of various cloned human interferon-alpha subtypes in mammalian cell cultures. J Gen Virol. 1981 Nov;57(Pt 1):233–237. doi: 10.1099/0022-1317-57-1-233. [DOI] [PubMed] [Google Scholar]
  23. Weck P. K., Apperson S., Stebbing N., Gray P. W., Leung D., Shepard H. M., Goeddel D. V. Antiviral activities of hybrids of two major human leukocyte interferons. Nucleic Acids Res. 1981 Nov 25;9(22):6153–6166. doi: 10.1093/nar/9.22.6153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wong T. W., Merrifield R. B. Solid-phase synthesis of thymosin alpha 1 using tert-butyloxycarbonylaminoacyl-4-(oxymethyl)phenylacetamidomethyl-resin. Biochemistry. 1980 Jul 8;19(14):3233–3238. doi: 10.1021/bi00555a021. [DOI] [PubMed] [Google Scholar]
  25. Zoon K., Zur Nedden D., Arnheiter H. Specific binding of human alpha interferon to a high affinity cell surface binding site on bovine kidney cells. J Biol Chem. 1982 May 10;257(9):4695–4697. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES