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Abstract

Two separate cognitive processes are involved in choosing between rewards available at different points in time. The first is
temporal discounting, which consists of combining information about the size and delay of prospective rewards to
represent subjective values. The second involves a comparison of available rewards to enable an eventual choice on the
basis of these subjective values. While several mathematical models of temporal discounting have been developed, the
reward selection process has been largely unexplored. To address this limitation, we evaluated the applicability of the Linear
Ballistic Accumulator (LBA) model as a theory of the selection process in intertemporal choice. The LBA model formalizes the
selection process as a sequential sampling algorithm in which information about different choice options is integrated until
a decision criterion is reached. We compared several versions of the LBA model to demonstrate that choice outcomes and
response times in intertemporal choice are well captured by the LBA process. The relationship between choice outcomes
and response times that derives from the LBA model cannot be explained by temporal discounting alone. Moreover, the
drift rates that drive evidence accumulation in the best-fitting LBA model are related to independently estimated subjective
values derived from various temporal discounting models. These findings provide a quantitative framework for predicting
dynamics of choice-related activity during the reward selection process in intertemporal choice and link intertemporal
choice to other classes of decisions in which the LBA model has been applied.
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Introduction

In order to choose between rewards available at different points

in time it is often necessary to evaluate the tradeoff between the

size of potential rewards and the corresponding delays until their

receipt. For example, deciding whether to save or spend a certain

amount of money requires determining whether ensuring greater

future wealth is worth delaying the pleasure of spending and

consuming now. When engaged in this form of decision making, a

class of decisions known as intertemporal choice, humans and

other species discount the value of rewards in proportion to the

delay at which they are available. Moreover, the behavior

observed in intertemporal choice experiments reveals preferences

consistent with a steep reduction in the value of rewards delayed

from the present moment but more modest discounting of rewards

delayed from future time points [1]. This property is particularly

evident as a greater reluctance to forego immediate for delayed

rewards compared with when both outcomes are delayed, a

tendency that manifests itself in impulsivity and a predilection for

procrastination. Several mathematical models have been shown to

account for this pattern of delay discounting [2]. However,

subjective valuation is only one of the cognitive processes involved

in intertemporal choice behavior [3,4].

In addition to representing the value of delayed rewards,

intertemporal choices require comparing alternatives and selecting

among them. One proposal for how delayed rewards might be

compared and selected is through a process of sequential sampling

of discounted values [3]. Similar processes are commonly assumed

to underlie perceptual judgments based on sensory evidence [5].

This hypothesis suggests that there exists a direct connection

between choices made on the basis of discounted values and other

choices which have been argued to derive from sequential

sampling processes. However, the hypothesis that a sequential

sampling process underlies intertemporal decision-making has not

been empirically tested. Therefore, our primary goal is to

determine whether intertemporal choice behavior can be ex-

plained by a sequential sampling process based on discounted

value.

There are several computational models that employ sequential

sampling mechanisms to explain choice behavior (cf. [6–8]). A

major accomplishment of all of these models is their ability to

provide a process-level account of how experimental manipula-

tions such as time pressure and stimulus ambiguity simultaneously

affect response times (RT) and error rates. While many of these

models might be able to explain intertemporal choice behavior, we

used the Linear Ballistic Accumulator (LBA) model [8] in our

analyses. The LBA model incorporates the fundamental features

of all sequential sampling models, including trial-to-trial variability

in the rate of evidence accumulation, a decision criterion, and

constants to account for perception and motor execution times.

The major advantage of the LBA model is its analytical

tractability, which facilitates testing several versions of the model

to determine which combination of parameters best accounts for

intertemporal choice behavior. We show that the LBA model

provides an excellent description of the relationship between
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choice outcomes and RT and that best-fitting model parameters

can be directly related to subjective values.

Materials and Methods

Subjects
Fifty healthy adults participated in this study (28 females, ages

19–46 years, mean 24.36 years). All subjects gave written informed

consent. Stanford University’s Institutional Review Board ap-

proved the study. One subject was excluded because the behavior

did not allow us to estimate reliable temporal discounting

parameters. Another three subjects were excluded because of

data collection problems. Data from a total of forty-six subjects

were analyzed (28 females, ages 19–46 years, mean 24.26 years).

Temporal discounting model and task design
The experiments were conducted over two sessions. The

purpose of the first session was to estimate each individual’s

discount rate using a hyperbolic discounting model. For half of our

subjects (n~23) the second session consisted of an electroenceph-

alography (EEG) experiment. For the other half the second session

consisted of a functional magnetic resonance imaging (fMRI)

experiment. The analyses reported below were obtained from the

behavior observed during these EEG and fMRI sessions.

We assumed that the subjective value of delayed rewards was

discounted according to

VD~
r

1zkt
ð1Þ

where r is the magnitude of a reward offered at delay t. The

individually-determined parameter k is the discount factor [9].

While subjects completed the first session, we used a stair-stepping

procedure to approximate k. All choices required participants to

select between a delayed reward (of amount r available at delay t)
and a fixed immediate reward of $10. For any choice, indifference

between the immediate and delayed options implies a discount

rate of k~(r{10)(10t){1. We refer to this implied equivalence

point as keq; our procedure amounted to varying keq systematically

until indifference was reached. Specifically, we began with

keq~0:02. If the delayed offer was chosen, keq was decreased by

a step size of a~0:01 for the next trial. Otherwise, keq increased

by the same amount. At every second choice reversal, occurring

within five consecutive trials, the step size was reduced by 5%. A

total of 60 trials were completed. We placed no limits on the time

subjects could take to respond, and presented both offers on the

screen, as ‘‘$10 now’’ on the left side, and ‘‘$r in t days’’ on the

right.

Critically, our use of the hyperbolic discounting model to

summarize behavior in this first experimental session had no

bearing on the modeling results that follow. We used the

hyperbolic model because it provided a good fit to behavior with

a single parameter (k) summarizing preferences. Fits of this model

were used solely to generate choices for the second experimental

session. Alternative delay discounting functions that may or may

not provide better fits to behavior would have a subtle impact on

the choice set (dollar amounts of choice options) for the second

study, but no impact on the model fitting that is the primary aim of

the current study.

After completing the first session, we fit a softmax decision

function to participants’ choices. Intuitively, this procedure

allowed us to determine how consistently participants selected

the option with greater subjective value. Practically, we fit the

softmax to better equate choices during the second session, across

participants. In particular, our aim was to equate the relative

impact of delayed rewards, across subjects, with respect to actual

choice outcomes (i.e. the likelihood of selecting the delayed

option). Best fitting softmax functions were estimated by maxi-

mizing the likelihood of observed choices. We assumed that the

likelihood of selecting a delayed reward (PD) was given by

PD~
1

1ze{m(VD{VI )
ð2Þ

where VD is given by Equation 1, VI~$10 (i.e., the fixed-value of

the immediate reward also given by the right side of Equation 1)

and m describes a subject’s sensitivity to changes in VD.

We used individually determined values of k and m to generate

choices for the second session. At every trial, t was randomly

selected from a range of 30–45 days. We then calculated and

offered an amount r that would give PD of 0.1, 0.3, 0.5, 0.7, or 0.9

(Figure 1a-b). The EEG group completed 30 trials at every PD

level, except at PD = 0.5, for which they completed 60 trials. The

fMRI group completed 40 trials at every PD level, except at

PD = 0.5, for which they completed 80 trials. Non-uniform trial

distributions as a function of PD were introduced to allow us to

study the effects of choice difficulty on EEG and fMRI measures,

with equal numbers of trials at each difficulty level. We report the

results of these analyses elsewhere. Trial types were randomized

and counterbalanced over two blocks for the EEG group and over

four blocks for the fMRI group. We also counterbalanced the

mapping between choices and button presses for every subject.

During the first half of the second session, approximately half of

subjects (13 in EEG, 11 in fMRI) indicated choices of the delayed

reward by pressing a button with their left index finger and

immediate choices by pressing a different button with their right

index finger. The other subjects indicated their choices by the

inverse left-right mapping. All subjects switched the initial

response mapping during the second half of the session.

To ensure reliable neural measures, we used a sequential

presentation of delay and amount during the second session

(Figure 1c). During pilot studies we found that a simultaneous

presentation of delay and amount caused participants to sequen-

tially fixate the information, producing excessive EEG artifacts.

Having the information presented sequentially allowed subjects to

maintain central fixation during the task, avoiding these artifacts.

As we show below, this sequential presentation of delayed reward

information had no adverse effects on behavior. We maintained

the same sequential presentation during the fMRI study for the

purpose of facilitating direct comparisons and pooling of

behavioral data. We report RT as measured from the onset of

the decision period, 1000 ms into the trial. The duration of the

decision period was fixed at 4000 ms. When subjects made choices

in less than 4000 ms the amount information disappeared and the

screen remained blank until 4000 ms elapsed. Trial length was

thus fixed at 5000 ms. We discarded any trial in which a response

was made in less than 200 ms or fell outside of the decision period.

To optimize experimental time and separability of neural signals

across trials for both groups, we introduced a long inter-trial-

interval for the fMRI group (between 4–10 s), whereas the inter-

trial-interval was shorter for the EEG group (100–350 ms). In

exchange for participation subjects received $10 cash and an

additional amount, determined by their choice in a randomly

selected trial, taken from either the first or second sessions.

Model specification and fitting
Figure 2 provides an illustrative diagram of our LBA model of

intertemporal choice. To provide a formal description of the

Ballistic Accumulation in Intertemporal Choice
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model, we denote the RT on the ith trial for the jth subject in the

vth value condition as RTi,j,v[(0,?), and the corresponding

choice as Ci,j,v where Ci,j,v[fI ,Dg. I and D are the immediate and

delayed rewards respectively. The model assumes that evidence for

I and D is accumulated independently in separate accumulators.

Both accumulators begin with some choice bias, which is provided

as independent amounts of starting point evidence faI ,aDg,
sampled from a common uniform distribution U½0,A�. Evidence

then increases through time at rates fdI ,dDg, which are sampled

from independent normal distributions with means fmI ,mDg.
Mean accumulation rates vary across value conditions, but the

standard deviation s is the same for I and D. Therefore,

dI*N (mv,I ,s) and dD*N (mv,D,s). Each accumulator gathers

evidence until either one reaches a response threshold b. The

observed RT is the sum of the decision time, plus some extra time

t, which accounts for non-comparison and selection processes,

such as temporal discounting and motor execution. Letting

faI ,aDg = a and fdI ,dDg = d, the RT in any given trial is

given by

RT~ min
fI ,Dg

b{a

d

� �
zt: ð3Þ

The model provides a closed-form and joint account of RT and

choice probability across value conditions by specifying ‘‘defec-

tive’’ probability density functions (PDF) for I and D in terms of

the parameters just described. These defective PDFs give the

probabilities of each accumulator reaching the bound at time t.

For our best fitting model, the full PDFs are given by

PDFv,I (I ,RT jmv,I ,tv,aI ,b,s)~fI (RT{t)(1{FD(RT{t)), and

PDFv,D(D,RT jmv,D,tv,aD,b,s)~fD(RT{t)(1{FI (RT{t)),

ð4Þ

where f (RT{t) and F (RT{t) are the PDF and cumulative

density functions of each accumulator (see [8] for details).

We estimated LBA model parameters using a hierarchical

Bayesian procedure. This procedure offers two advantages over

conventional maximum likelihood methods, providing measures of

uncertainty for every parameter estimate and allowing the sharing

of information across subjects (e.g., [10,11]), which improves

fitting accuracy[12–14]. We assume that the data for each subject

is characterized by an individual set of LBA model parameters h,

and that these subject-specific parameters are constrained by a set

of group-level parameters w, which characterize the central

tendency and dispersion of h across subjects. The procedure first

samples the posterior distributions for every subjects’ h and uses

these estimates to derive the posterior distribution of w. On every

subsequent iteration, the posterior estimates of w are used to

constrain the sampling of possible values of h for every subject. We

specified mildly informative priors for h, based on empirical

evidence from previous fits of the LBA model using the

hierarchical Bayesian procedure [15]. For w, we specified a

conjugate relationship between prior and posterior (see, e.g., [16]).

Assuming a conjugate relationship at the group-level allowed us to

derive exact conditional posterior distributions, so that we could

perform the estimation of all of the parameters simultaneously,

based on a single sample of subject-level parameters. The joint

posterior distribution estimated by this procedure is given by:

p(h,wjC,RT)!p(w)p(hjw)L(C,RT jh) ð5Þ

where p(w) is the prior distribution for w, p(hjw) is the prior

distribution for h given w, and

L(C,RT jh)~P
i
P
j
P
v

PDFv,Ci,j,v
(Ci,j,v,RTi,j,vjhj)

Figure 1. Experimental design. (a) Delayed reward offers corre-
sponded with one of five different levels of discounted value. Each level
of discounted value corresponded to one of five probabilities of
choosing the delayed reward: 0.1, 0.3, 0.5, 0.7 or 0.9. (b) Every delay
could be combined with any of five different amounts to yield a
different discounted value and probability of choosing the delayed
reward. (c) Delay and amount information was presented sequentially.
Delays were presented first for 1000 ms. Amounts were presented
second, replacing the presentation of the delay and remaining on the
screen for a maximum of 4000 ms. After every trial, a fixation cross was
presented on the center of the screen for a randomly chosen inter-trial-
interval in the order of hundreds of milliseconds during the EEG
experiment and several seconds during the fMRI experiment.
doi:10.1371/journal.pone.0090138.g001

Figure 2. Illustrative diagram of the Linear Ballistic Accumula-
tor model for intertemporal choice, where each response
option is represented as a separate accumulator. Following the
presentation of a stimulus and some non-decision time t, information
accumulates ballistically for each alternative. A decision is made that
coincides with the accumulator that reaches the threshold b first. The
model assumes trial-to-trial variation in both starting point and drift
rate.
doi:10.1371/journal.pone.0090138.g002

Ballistic Accumulation in Intertemporal Choice

PLOS ONE | www.plosone.org 3 February 2014 | Volume 9 | Issue 2 | e90138



is the likelihood function of the data under the LBA model (given

by Equation 4).

To satisfy scaling conditions, we imposed a constraint such that

the drift rates sum to one (i.e., mv,Izmv,D~1). Consequently, it is

sufficient to only estimate the drift rate for the delayed reward. For

the subject-specific parameters, we first transformed the param-

eters so that they had continuous, infinite support (i.e., can take on

any real value). Thus, for parameters bounded by zero, we applied

a log transformation, whereas for the drift rates – which were

bounded by zero and one – we used a logit transformation.

Following these transformations, we specified the following priors

for h:

logit(mv,D,j)*N (m(v)
m ,m(v)

s ),

log (tv,j)*N (t(v)
m ,t(v)

s ),

log (Aj)*N (Am,As),

log (bj)*N (bm,bs), and

log (sj)*N (sm,ss):

To obtain the desired conjugate relationship between prior and

posterior at the level of w, we specified the following priors for the

group-level means:

m(v)
m *N (0:75,0:5),

t(v)
m *N ({1,0:5),

Am*N (1:5,0:8),

bm*N (1:5,0:8), and

sm*N (0:75,0:5),

and the following priors for the group-level standard deviations,

m(v)
s *C{1(4,10),

t(v)
s *C{1(4,10),

As*C{1(4,10),

bs*C{1(4,10), and

ss*C{1(4,10),

where C{1(a,b) denotes the inverse gamma distribution with

shape parameter a, and scale parameter b. This particular choice

of a and b for the priors produces a skewed distribution with an

approximate 95% credible set of (1.14, 9.05), and an expected

value of 3.32. These choices reflect our a priori beliefs: we did not

expect the between-subject variability to be less that 1, and felt that

larger values would become increasingly less likely to account for

these data.

While our prior selections were informed by other similar

modeling applications (see, e.g., [15]), we remained conservative in

our choices to avoid undue parameter constraint, because our

experimental task was considerably different from prior research

using the hierarchical version of the LBA model.

We used Gibbs sampling to estimate parameters at the group-

level[16], and differential evolution with Markov chain Monte

Carlo to estimate parameters at the subject-level (DE-

MCMC;[15,17]). For the subject level estimates, we used 24

chains and obtained 5,000 samples after a burn-in period of 5,000

samples. We then thinned the chains to reduce autocorrelation by

retaining every fourth sample. Thus, our estimates of the joint

posterior distribution of LBA model parameters are based on

30,000 samples. The burn-in period allowed us to converge

quickly to the high-density regions of the posterior distribution,

while the rest of the samples allowed us to improve the reliability of

the estimates.

To find the optimal number of parameters needed to account

for intertemporal choice behavior, we tested a variety of model

variants where different sets of parameters were assumed to vary

across value conditions. We fit a total of eight variants, following a

model building approach based on the Bayesian predictive

information criterion (BPIC; [18]). Table 1 shows the model

variants we fit (left column) with the particular constraints that

were imposed (right column) along with the resulting BPIC values

obtained (middle column). We started with the simplest possible

model and added parameters only if they improved model fits on

the basis of BPIC. The most basic model (M1) only allowed the

mean drift rates fmI ,mDg to vary across value conditions. Another

four models freed each of the remaining parameters (t,A,b and s),

independently, across value conditions. Because the model that

freed t (M2) was superior to M1, we considered three additional

models that freed fmI ,mDg and t, together with each of the

remaining parameters independently. None of these three models

improved fits, indicating that no additional parameter combina-

tions needed to be tested. We did not consider any models that

freed parameters other than m between I and D because we found

no a priori justification for them.

Results

Model fits
Table 1 shows BPIC results for all the models tested. The best

overall model, albeit by a small margin, was M2, which allowed

mean drift rates (m) and non-decision times (t) to vary across

experimental conditions. Figure 3 shows the quality of the fits

obtained with this model. The match between the data and the

model predictions is clear in each of the defective PDFs and

histograms shown on the top row. These fits speak to the LBA

model’s ability to simultaneously account for observed RT

distributions and choice probabilities during intertemporal choice.

The bottom row of Figure 3 shows the model fits with the RT

distributions for both accumulators on the same axis to better

Ballistic Accumulation in Intertemporal Choice
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illustrate the relationship between choice probability and RT. As

net value (i.e. VD{VIj j) increases, choices for the reward of less

subjective value are slower relative to choices for the reward of

greater value. This finding is illustrated by the increased separation

of RT medians as the probability of choosing the delayed reward

deviates further from PD~0:5 (Figure 3). We confirmed the

reliability of this pattern in the data by analyzing RT medians for

choices that were consistent versus inconsistent with estimated

subjective values. Specifically, we performed a rank-test on RT

medians for consistent and inconsistent choices for all value

conditions for which PD=0:5 and confirmed that inconsistent

responses were slower relative than consistent responses in all

conditions where PD=0:5 (p~5:883|10{12). A similar relation-

ship between RT and choice probability is commonly observed

during perceptual decision making under stressed accuracy

conditions. As choice probabilities deviate from PD~0:5, the

means of the drift rate distributions (fmI ,mDg) grow further apart

(cf. [19,20]). Recall that mI~1{mD. However, subjects maintain

an elevated accumulation bound (b) relative to the starting points

(faI ,aDg). As a result, choices for the reward of less subjective

value only occur in the improbable trials where the drift rate for

the highest valued reward is unusually low, the drift rate for the

lowest valued reward is unusually high, and subjects require more

accumulated information before a decision can be made. If the

starting points were large relative to the decision bound we would

observe the opposite interdependence of RT and choice proba-

bilities. Inconsistent choices would be faster than consistent

choices, because fast errors occur when the initial choice bias

drives the accumulation close to the decision bound before much

evidence influences the decision. This value accumulation

mechanism can explain why our model fitting results indicated

that variability in b or A was not required to provide a good fit for

these data (i.e., M1 and M2 performed better than M3, M4, M6,

and M7).

Non-decision time
The best fitting model, M2, specifies a total of 13 subject-specific

parameters, four more than the next best, and simplest model, M1.

The four additional parameters modeled differences in non-

decision time (t) by value condition (PD). To evaluate whether

there was indeed systematic variance in non-decision time, we first

inspected group-level estimates of t, shown in the left panel of

Figure 4. These parameter estimates showed a positive quadratic

pattern centered at PD~0:5. To test the quadratic relationship

between t and value, we performed a mixed-effects regression

analysis with the nlme package in R (Jose Pinheiro et al., 2013),

specifying subjects as random effects, and the regressor (PD{:5)2

as a predictor of subject-specific maximum a posteriori (MAP)

estimates of t. The results corroborated a positive quadratic

relationship between t estimates and value (t(183)~3:506,

p~6|10{04), suggesting that there is an increase in valuation

and/or motor-execution times as net value increases.

Table 1. Mean Bayesian predictive information criterion fit
statistics for each model variant we tested (standard
deviations of the BPIC values computed across chains appear
in parentheses).

Model BPIC (std. dev.) Constraint

M1 20101.37 (19.02) m

M2 20090.73 (26.91) m, t

M3 20168.13 (71.25) m, A

M4 20197.20 (58.93) m, b

M5 20135.33 (46.86) m, s

M6 20138.64 (98.01) m, t, A

M7 20111.70 (44.94) m, t, b

M8 20153.45 (28.34) m, t, s

For each model, the third column indicates the set of parameters assumed to
vary across value conditions.
doi:10.1371/journal.pone.0090138.t001

Figure 3. A comparison of model fits to empirical data. The top row shows the aggregated posterior predictive distribution (densities) overlaid
on the aggregated empirical data (histograms). The response time distribution for the immediate reward is plotted on the left (i.e., with a negative
axis; red), whereas the delayed reward is plotted on the right (green). The choice probability can be inferred by comparing the relative heights of the
two distributions. The bottom row shows the same distributions as overlapping density functions with corresponding colors. The model fits are
shown as black densities. The median response times for the empirical data are shown as the dashed vertical lines with corresponding colors.
doi:10.1371/journal.pone.0090138.g003
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In the LBA model, t functions as an offset term that captures

differences in condition-wise RT that are not captured by the

other parameters. The obvious empirical statistics related to

average RT differences are condition-wise median and minimum

RT. We therefore next tested whether (1) t estimates were related

to either median or minimum RT, and (2) whether minimum

and/or median RT differed by value condition as suggested by the

positive quadratic relationship between t estimates and value.

The middle and right panels of Figure 4 plot subject-specific

MAP estimates of t against minimum and median RT,

respectively. We conducted two mixed-effects regressions (using

subjects as random effects) to determine whether t estimates were

related to minimum or median RT at each value condition. As

hypothesized, t estimates showed a significant linear relationship

with minimum RT (b~0:137, t(183)~9:716, pv1|10{16) and

also a significant linear relationship with median RT (b~0:029,

t(183)~4:599, pv1|10{16).

Given these results, we next sought to determine whether RT

differed across value conditions in the same manner as did

estimates of t. To test this hypothesis, we ran two additional

mixed-effects regressions using the quadratic regressor (PD{:5)2

as a predictor of minimum and median RT (with subjects again as

random effects). Recall that t estimates showed a positive quadratic

relationship with value. This relationship with value was not

evident in analyses of minimum or median RT. Specifically,

minimum RT did not show a significant quadratic relationship

(t(183)~{0:403, p~0:688), and median RT showed a significant

negative relationship with value (t(183)~{6:169, pv1|10{16).

We conclude from these results that neither minimum nor median

RT alone can explain the positive quadratic relationship between

t and value. Taken together, our results suggest that the additional

degrees of freedom in M2 allowed the model to capture within-

subject changes in minimum RT and residual variance of median

RT across value conditions.

Drift rates and value
To obtain a more precise characterization of M2 as a

mechanistic theory of discounted value accumulation, we exam-

ined the relationship between independently estimated accumu-

lation rates and discounted values. We first tested whether there

were systematic differences in group-level estimates of mD as a

function of PD. Group-level means of mD increased as a function of

PD. Specifically, we ran a mixed-effects regression of subject-

specific MAP estimates of mD on PD (using subjects as random-

effects). This test revealed a significant positive linear relationship

(b~0:124, t(183)~30:587, pv1|10{16; Figure 5, left plot).

Next, we tested for a relationship between observed choice

probabilities for the delayed reward and MAP estimates of mD and

mI at the level of individual subjects. Specifically, we hypothesized

that drift rates (m) should be related to subjective value through a

linear transform, with a slope parameter to account for differences

in scale (i.e. mD and mI are restricted to be between 0 and 1 but VD

and VI are in dollars with a mean of $10) and an offset parameter

to account for differences in drift rate and value means. We further

reasoned that if drift rates were directly related to discounted

subjective value then drift rates ought to be related to choice

probability in the same way that differences in value are related to

choice probability. Based on fits of the hyperbolic temporal

discounting model (Equation 1) to choice outcomes, we already

knew that a sigmoidal relationship (Equation 2) existed between

subjective value (i.e. DV~VD{VI ) and choice probabilities (i.e.

PD). If modeled drift rates had the same relationship then we

would expect a similar relationship between PD, mD, and mI .

However, mD and mI were not independent in our model

specification. They were restricted such that mDzmI~1. Thus,

the difference in drift rates, Dm~mD{mI reduces to a linear

transformation of mD : Dm~2mD{1. We therefore tested whether

a sigmoidal relationship exists between subject- and condition-

specific PD and a linear transform of mD:

PD~
1

1ze{(b1zb2mD)
, ð6Þ

where b1 and b2 are subject specific parameters.

We tested for evidence to support Equation 6 in two ways. First,

we performed a mixed-effects logistic regression using mD to

predict PD, with subjects as random effects. This analysis revealed

a significant fit (b1~{4:782, b2~9:556, z~47:03,

pv1|10{16). The sigmoidal relationship is also clearly evident

in the center plot of Figure 5 which plots PD against mD. Next, we

Figure 4. Relationships between model parameters, choice probability, and RT statistics. The left panel shows the estimated group level
non-decision time parameter for each value condition. The middle and right panels show the maximum a posteriori (MAP) estimate for each subject’s
non-decision time parameter against their minimum and median response time, respectively.
doi:10.1371/journal.pone.0090138.g004
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tested whether the relationship between PD and DV (i.e., Equation

2) was directly related to the relationship between PD and Dm (i.e.,

Equation 6). If so, then the logistic function in both analyses should

be equivalent and the following relationship should hold:

mD~
m(VD{VI ){b1

b2

: ð7Þ

We estimated all of the parameters in Equation 7 from separate

logistic regression analyses. Namely, b1 and b2 were obtained from

fitting Equation 6, m derived from fitting Equation 2, and VD{VI

was obtained from best fits of Equation 1, all independently for

every subject. In a group-level analysis, we used a mixed-effects

regression with subjects as random effect and the right side of

Equation 7 as the predictor. This analysis revealed a highly

significant slope near unity (b~0:881, t(183)~51:326,

pv1|10{16). Together, these analyses indicated that there was

a strong and direct relationship between drift rates and discounted

value. Parameter estimates derived from fitting the LBA model to

behavior therefore provided an independent means of estimating

subjective values. Moreover, subjective values estimated from the

LBA model corresponded closely with values estimated using a

hyperbolic discounting model.

Generalizability of the relationship between drift rates
and value

The previous analysis showed that a relationship existed

between drift rates derived from LBA model fits and subjective

value calculated based on a hyperbolic discount function. Of

course, subjective value may actually be determined in a manner

that differs in functional form from the hyperbolic equation (cf.

[2]). Indeed, numerous functions have been proposed to account

for delay discounting. In this final section, we aimed to show that

drift rates derived from the LBA model are related to subjective

value more generally; that is, that the relationship between drift

rates and subjective value does not strictly depend on capturing

subjective value using the hyperbolic discount function. To do so,

we first fitted two additional discounting models to individual

subjects’ choices, substituting the right side of Equation 1 with

exponential and ‘‘quasi-hyperbolic’’ value functions. For the

exponential discounting function, we assumed VD to be given by:

Ve
D~re{at, ð8Þ

where r is the delayed reward amount, a is the discount rate, and t

is the delay. Similarly, for the quasi-hyperbolic discounting

function, we assumed VD to be given by:

V
bd
D ~rbdt, ð9Þ

where r is again the delayed reward amount, b is 1 when there is

no delay or some fixed value between 0 and 1 when there is a

delay, d is between 0 and 1, and t is the delay (always greater than

zero).

We then obtained estimates of VD{VI using Equation 8 and

Equation 9, as well as two independent estimates of m, one for

each discounting function, from Equation2, for every subject.

Next, we ran mixed-effects regression analyses with subjects as

random effect and the right side of Equation 7 as predictors of

subject-specific drift rate estimates. The analysis using Ve
D revealed

a significant slope near unity (b~:938, t(183)~25:662,

pv1|10{16) and the analysis using V
bd
D also revealed a

significant positive slope (b~:47, t(183)~15:58, pv1|10{16).

We therefore conclude that drift rates are related to subjective

value independent of the specific functional form assumed for

delay discounting.

Discussion

We have shown that intertemporal choice behavior is consistent

with a process of discounted value accumulation instantiated by

the LBA model. Our findings support the broader hypothesis that

selecting among delayed rewards can be explained by a sequential

sampling process that corresponds closely with mechanisms known

to predict other types of choices (cf. [3]). Thus, perceptual and

value-based decision making may depend on similar comparison

and selection processes. It is interesting to speculate on whether

this similarity reflects a direct correspondence between the

cognitive and neural processes that support selection across diverse

Figure 5. Relationships between model parameters, choice probability, and discounted value. The left panel shows the estimated group
level drift rate for each value condition. The middle panel shows the maximum a posteriori (MAP) estimate for each subject’s drift rate against
observed choice probabilities for the delayed reward (PD). The right panel shows the MAP estimate as a function of subject-specific discounted
values for the delayed reward (VD).
doi:10.1371/journal.pone.0090138.g005
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domains or whether there is simply a common motif for action

selection used in separate choice domains.

The LBA model we employed here has been used to explain

neural activity during perceptual decision making (cf. [20–22]).

Furthermore, sequential sampling processes such as that imple-

mented by the LBA model provide a direct link between neural

dynamics and decision making behavior. For example, evidence

about visual motion is believed to be integrated in the lateral

intraparietal (LIP) area, resulting in a progressive increase in LIP

neuron firing rates that reflect the accumulation of sensory

evidence and predict choice outcomes and response times [23,24].

Our results represent a first step in extending such findings from

perceptual decision making tasks to generate quantitative predic-

tions about discounted value accumulation in intertemporal

choice. Moreover, our hierarchical LBA model fitting method

might be particularly advantageous for studying the neural

mechanisms of value accumulation when used in combination

with the ‘‘joint modeling framework’’, which was designed to

simultaneously explain neuroimaging and choice data [25,26].

Using this framework, [25] have shown that it is possible to link

neural and behavioral measures in a way that maps the

mechanisms assumed by cognitive models directly to neural

function. This approach allows for the specification of a priori

predictions for how neural mechanisms should influence the

modeled cognitive processes that presumably best explain behav-

ior, providing a basis for hypothesis tests that are simultaneously

informed by neural data, model parameters, and behavior.

Our results revealed a relationship between response time and

choice probability, such that low probability choices are associated

with increased response time. Similar results have been observed

in previous studies using accumulation models to account for

behavior in risk preference[27–29] and simple choice tasks [30–

34]. Our observation that the LBA model can accommodate the

relationship between response times and choice probability during

intertemporal choice is thus consistent with previous findings and

suggests that the LBA model might also be useful in accounting for

behavior in other value-based decision domains.

Our best-fitting model included variability in drift rates and

non-decision times across value conditions. This result violated our

a priori expectation that drift rate variability across value conditions

would be sufficient to account for our behavioral manipulation.

Moreover, our results indicate that the model containing non-

decision time variability performed only slightly better than the

simplest model which was consistent with our theoretical

expectation. Thus, from a purely theoretical standpoint, we favor

the simplest model. However, for methodological consistency and

empirical validity, we supported and analyzed the fits obtained

from the best-fitting model. The BPIC statistic provides a measure

of model quality that penalizes for the total number of parameters

in the model [18]. Relying on the BPIC statistic we corroborated

our prediction that very few parameters needed to vary across

conditions, but also found that the best model was not the simplest

one. Future studies using the LBA could corroborate if in fact the

simplest model generalizes better than the model with variability

in non-decision time.

We showed that drift rates estimated with the model are directly

related to discounted subjective values independently derived from

behavioral models of intertemporal choice. The drift rate

parameters of the LBA model therefore have a direct psycholog-

ical interpretation and suggest a powerful means to estimate

subjective values independent of assuming and fitting a specific

form for temporal discounting (e.g. the hyperbolic model in

Equation 1). In contrast, we are uncertain about how to interpret

the variability in non-decision times across value conditions. On

average, non-decision times decreased with increased difficulty.

Moreover, although median RT showed a modest relationship

with non-decision times, median RT increased with choice

difficulty, reflecting a dependence on accumulation rates. Non-

decision times also correlated strongly with minimum RT, which

did not vary systematically across value conditions, but was highly

variable across subjects. This suggests that our best-fitting model is

reflecting the fact that minimum RT varies considerably across

value conditions. It is unclear what to conclude from these

findings. Our belief is that non-decision times capture idiosyncratic

differences in choice strategies and valuation processes across

subjects and that incorporating a parameter to absorb these trends

improves model fits overall and the interpretability of drift rates

more specifically.

In summary, we have demonstrated that an LBA model

provides an excellent description of the choice process in

intertemporal decision making. The model fits RT distributions,

provides an explanation for interdependence between RT and

choice probability, and can be interpreted in terms of value

accumulation. These results validate the LBA model as a

complementary tool to temporal discounting models for studying

the cognitive and neural mechanisms of intertemporal choice.

Because the LBA has been applied to a wide range of perceptual

decision making tasks, our findings not only demonstrate that a

general mechanism of evidence accumulation drives decision

making but also support a common and analytically tractable

framework for explaining it.
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