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Abstract

Heterogeneous and dynamic single cell migration behaviours arise from a complex multi-scale signalling network
comprising both molecular components and macromolecular modules, among which cell-matrix adhesions and F-actin
directly mediate migration. To date, the global wiring architecture characterizing this network remains poorly defined. It is
also unclear whether such a wiring pattern may be stable and generalizable to different conditions, or plastic and context
dependent. Here, synchronous imaging-based quantification of migration system organization, represented by 87
morphological and dynamic macromolecular module features, and migration system behaviour, i.e., migration speed,
facilitated Granger causality analysis. We thereby leveraged natural cellular heterogeneity to begin mapping the
directionally specific causal wiring between organizational and behavioural features of the cell migration system. This
represents an important advance on commonly used correlative analyses that do not resolve causal directionality. We
identified organizational features such as adhesion stability and adhesion F-actin content that, as anticipated, causally
influenced cell migration speed. Strikingly, we also found that cell speed can exert causal influence over organizational
features, including cell shape and adhesion complex location, thus revealing causality in directions contradictory to previous
expectations. Importantly, by comparing unperturbed and signalling-modulated cells, we provide proof-of-principle that
causal interaction patterns are in fact plastic and context dependent, rather than stable and generalizable.
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Introduction

A key challenge in biology is to understand how information is

coordinated globally within cells to generate and control complex

cellular processes, such as cell migration. Succinctly, what is the

wiring pattern of regulation that governs a particular cell

behavior? Importantly, this raises a second fundamental question

that we seek to address herein: is the wiring pattern for a particular

process stable and generalizable, or, plastic and contextually

dependent? The answer to this second question has important

implications for our understanding of both complex biological

processes and the design of the experimental strategies to address

them.

Cell migration is a process of vital importance in numerous

physiological and pathological processes including cancer cell

metastasis [1]. Cell migration is indeed a highly complex cellular

process, arising from a large, self-organizing molecular network to

produce behaviors that are dynamic, heterogeneous and adaptable

[2]. The dynamism of these behaviors suggests that underlying

plasticity in the wiring of the cell migration system might be both

more likely and more readily detectable than in relatively

constrained cellular phenomena. Thus cell migration provides

an appropriate framework within which to assess both the

structure and potential plasticity of cellular wiring patterns.

Cell migration is the product of interactions and interdepen-

dencies operating across molecular, macromolecular, and cellular

scales (see Figure 1). As noted above, a huge diversity of

components comprise the network underlying migration at the

molecular scale (Figure 1 A) [3–8]. Such large-scale molecular

networks tend to be arranged into hierarchically nested assem-

blages or modules [9,10]. These macromolecular modules often

represent functional units with distinct roles whose interactions

ultimately produce single cell migration behaviors (Figure 1 B and

C).

To understand how cell migration behaviors derive from

molecular-, macromolecular- and cellular-scale organization, it is

desirable to characterize all scales simultaneously and with

sufficient spatiotemporal resolution to delineate functional rela-

tionships between features at any scale. Live cell fluorescence

imaging provides the spatiotemporal resolution to track individual

migrating cells while concurrently monitoring features of their

molecular- and macromolecular-scale organization. Unfortunate-

ly, such imaging does not permit us to directly observe the
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Figure 1. Rationale for a coarse-grained analysis of causal influence in the cell migration system. Cell migration emerges from biological
properties encompassing multiple scales (A–C). At the molecular scale, thousands of distinct components and their interactions produce a complex
and modular molecular network comprising the cell migration system (A). At the macromolecular scale, this network gives rise to a variety of
functional macromolecular modules (B), which collectively produce single cell migration at the cellular scale (C). Unfortunately, it is not yet possible to
synchronously record the state of the molecular network underlying cell migration with spatiotemporal resolution (D). Instead, we coarse-grain
(orange arrow from A to B) this molecular complexity by focusing our analysis at the scale of macromolecular modules. Specifically, we focus on
CMACs and the F-actin cytoskeleton (green ovals in B) because these core modules directly mediate the process of cell migration. Their observable
features exemplify the state of both: i) their own molecular components (green box in A), and; ii) extrinsic sources of regulation distributed
throughout the broader molecular network from which they integrate information (black arrows in A). This information is functionalized through
adaptive changes in the organization of these core macromolecular modules and at the cellular-scale, leading to associated changes in migratory
behaviour. Through imaging and quantitative analysis of individual migrating cells expressing EGFP-Paxillin and RubyRed-LifeAct (markers for CMAC
and F-actin modules, respectively), we extract 88 quantitative features defining organizational (E) and behavioural features (F) of the cell migration
system (see Supporting Tables S1 and S2 for feature descriptions). Briefly, organizational features include those describing core macromolecular module
status (lime-green boxes in E, e.g. CMAC area, CMAC lifetime, RubyRed-LifeAct intensity within CMACs, etc) and cellular-scale morphological features
(pink boxes in E, e.g. cell perimeter, cell compactness (roundness), number of CMACs per cell), while behavioral features addressed in this study relate
exclusively to cell migration speed (F). Finally, Granger causality analysis enables causal influence mapping to define the nature and direction of causal
information flow between pairs of these coarse-grained features of the cell migration system (G).
doi:10.1371/journal.pone.0090593.g001
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complete state of molecular networks underlying cell migration

(Figure 1 D), and as a consequence we cannot synchronously and

globally observe how molecular signaling pathways are integrated.

The canonical means to overcome such limitations on direct

observation have been to assemble, piecewise, the functional

contributions and relations of individual molecular components

through perturbation-based epistasis analyses. Yet, despite facili-

tating great progress, reductionist perturbation-based approaches

alone may be insufficient to provide a systems-level understanding,

particularly of dynamic, heterogeneous processes with potentially

emergent properties [11–14]. In particular, there are substantial

risks of misattribution associated with the inference of molecular

function based on targeted component perturbation [15]. Thus,

there remain significant limitations on our ability to spatiotempo-

rally resolve, either through direct observation or perturbation-

based inference, how global information processing at the

molecular scale gives rise to migratory behaviors.

Given the modularity in molecular network structure noted

above, an alternative strategy is to analyze the state and

interactions of functional macromolecular modules within migrat-

ing cells. This provides a means to coarse-grain the overwhelming

molecular-scale complexity to a level that is tractable with

imaging-based approaches, as recently demonstrated [16,17]

(Figure 1 A and B). However, even given such coarse-graining,

it remains necessary to focus on a subset of selected modules that

are central to the process of interest. In the case of (mesenchymal)

cell migration, integrin-mediated cell-matrix adhesion complexes

(CMACs – including focal adhesions, focal complexes and nascent

adhesions) and the F-actin microfilament system are core

macromolecular modules that directly mediate the migratory

process (Figure 1 B) [8,18,19]. CMACs and F-actin serve as both

mechanochemical-sensors and -transmitters, acting at the interface

between cells and their environment to collect and functionalize

information derived from extrinsic regulators in the distributed

molecular network (Figure 1 A) [7,20]. As such, their status is

innately linked to, and therefore partially representative of, the

aggregate informational state of the cell migration system as a

whole [8].

Using live cell fluorescence imaging and quantitative image

analyses, organizational features (morphological, positional, dynam-

ical and compositional) of the cell migration system can be

extracted to create a quantitative, multivariate characterization of

CMAC and F-actin status on a per cell basis, as well as of cellular

scale morphology (Figure 1 E). Simultaneously, behavioral features

can be recorded describing the migration of the same individual

cells (Figure 1 F). This facilitates two of the critical enabling

capabilities of the research framework described herein, namely

the: i) direct integration, and ii) temporal resolution of organizational

and behavioral data on a per cell basis [21].

Firstly, direct data integration on a per cell basis allows the co-

variance that arises between any two features as a result of natural

cellular heterogeneity to define inter-feature correlations, making

perturbations unnecessary to achieve this result. Crucially, this

includes defining the relationships between features of cell

organization and behavior. Secondly, the temporal resolution of

variations in feature values allows us to move beyond correlative

analyses to define the direction of information flow, in the form of

causal influence, between pairs of system features using the

Granger causality concept. Again, unlike many other systems-level

causal analyses using, for example, network perturbation ap-

proaches [17,22–25], directed causal influences can be defined

using Granger causality without the need for perturbations.

The Granger causality concept originates from the field of

econometrics [26,27], wherein the study of causality cannot

routinely be facilitated by perturbation-based analysis. Similarly,

Granger causality has become a key tool in the perturbation-

independent mapping of neural connectivity and information

processing [28]. Herein we demonstrate one of the first

implementations of this approach to the study of fundamental

cell biology [15]. Essentially, the Granger conception of causality

stipulates causation if the combination of past information from

both a background variable, X, and a response variable, Y,

improves the prediction of future values of Y, when compared to

prediction of Y based on only its own past values. Such improved

prediction implies the presence of unique, pre-emptive informa-

tion in variable X and therefore its causal influence over variable

Y.

We now apply a statistical implementation of the Granger

causality concept to map directionally specific causal influences

between pairs of recorded features (Figure 1 G). Thus we begin to

define a wiring pattern for the unperturbed cell migration system.

Subsequently, we employ well-characterized perturbations to

reveal plasticity in this wiring pattern. This is a fundamentally

important finding because it demonstrates that the perturbations

frequently used to illuminate wiring patterns may, in some cases,

partially distort our view of such information processing structures.

We therefore propose that, for the purpose of mapping

information flow in complex cellular systems, perturbation-

independent strategies such as that described herein may provide

a valuable complement to existing perturbation-dependent

approaches.

Results

Imaging and Quantitative Analysis of Individual
Migrating Cells
Live randomly migrating H1299 (human non-small cell lung

carcinoma) cells stably expressing EGFP-Paxillin (CMAC marker)

and RubyRed-LifeAct (F-actin marker) (H1299-P/L cells) were

imaged by confocal microscopy. More than 4200 images were

analyzed to segment and track individual cells, as well as their

cohort of CMACs (totaling .70 000 CMACs) (Figure 2,

Supporting Movie S1). We then extracted 88 quantitative features

(Supporting Table S1) characterizing CMACs, their associated F-

actin, cell morphology and cell migration on a per cell basis to

produce a coarse-grained, synchronous characterization of cell

migration system organization and behavior based on morphological,

positional, dynamical and compositional features. Features

encapsulate differing states of data aggregation in accordance

with spatial and temporal data hierarchies (Supporting Figure S1).

Experimental and analytic standardization ensured the consistency

of quantitative data between, as well as within the time-course of,

individual experimental repeats (Supporting Figure S2).

Confirmation of a General Quantitative Link between
Organizational and Behavioral Features
A critical premise of this study is that the quantitatively recorded

CMAC, F-actin and cell morphological features should act as

informative representatives of the organizational state of the broader

cell migration system, and should therefore correlate on a per cell

basis with the behavioral output of that system. We tested this

premise to verify the basic relevance and informational value of

our extracted organizational features by determining whether

difference hierarchies, summarizing relative statistical distances

between cell subpopulations, were equivalent for measures of

organization and behavior (Supporting Figure S3). Importantly, we

used two complementary methodologies, stratifying control cell

subpopulations based on either their organizational (Supporting

Plasticity in Causal Networks of Cell Migration
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Figure S3 A–D) or behavioral (Supporting Figure S3 E–G) features.

In both cases, we observed an ordinal equivalence between the

difference hierarchies defined in organizational and behavioral data.

These findings confirm the existence of a quantitative link between

our organizational and behavioral measures, and further hint at the

possibility of their functional correspondence.

Selection of Organizational Features Associated with Cell
Migration Speed
We next used two independent feature selection methods to

identify specific subsets of organizational features that were

associated with variations in our main behavioral measure,

Instantaneous Cell Speed (ICS). Firstly, we used canonical vector

analysis (CVA) to cluster the slowest (S1, 1–20%) and fastest (S5,

81–100%) moving quintiles of control cells using all organizational

variables (Figure 3 A). CVA effectively separated these subpop-

ulations along the 1st canonical vector. Accordingly, ranking of

variables based on their absolute loading coefficient in the 1st

canonical vector highlighted organizational features associated with

the behavioral divergence between fast and slow migrating cells

(Figure 3 B).

As an alternative feature selection method, we performed

multiple regression via the elastic net (EN-regression) to estimate

cell migration behavior (ICS, response variable) based on iteratively

optimized combinations of 81 normalized organizational features

(background variables, non-normalizable features were excluded

to satisfy assumptions of ordinary linear regression). EN-regression

was specifically selected for this task due to the enhanced stability

of models produced in the presence of multicollinear background

variables. The resulting EN-regression model achieved a maximal

adjusted R2 value of 0.43, thus explaining 43% of the observed

variability in ICS in a linear regression model (Figure 3 C).

Figure 2. Imaging, segmentation and tracking of migrating cells and their CMACs. Confocal imaging of EGFP-Paxillin (A) and RubyRed-
LifeAct (B) was performed simultaneously for 8 h at 5 min intervals (Supporting Movie S1 [left]). EGFP-Paxillin (C) and RubyRed-LifeAct (D) images
were processed by median filtering and background correction. RubyRed-LifeAct signal was used for automated cell segmentation (dark blue outline
in E–H). CMACs were segmented based on EGFP-Paxillin signals (red outlines in E, Supporting Movie S1 [center], and enlarged in F from white box in
E). The RubyRed-LifeAct channel is shown overlayed by the EGFP-Paxillin-segmentation profile from E (G and enlarged in H from white box in G). Cells
and CMACs were tracked via nearest neighbor analysis. CMAC tracking clearly differentiates stationary adhesions (I, enlarged in J from cell front
(white box) in I) from sliding adhesions (I, enlarged in K from cell rear (yellow box) in I) (CMAC trajectories color coded for time, #10 time points
shown, Supporting Movie S1 [right]). (L) Cell displacement over several hours (images from three time points, 0 h:20 min, 3 h:10 min, 5 h:50 min
overlayed as red, green, blue, respectively). Quantitative variables describing cell and CMAC features/dynamics were automatically extracted (88
Single Cell Scale variables, Supporting Table S1, 29 variables defining individual CMACs, Supporting Table S2). Scale bars: A–K= 10 mm; L = 20 mm.
doi:10.1371/journal.pone.0090593.g002
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Figure 3. Selection of organizational features associated with Instantaneous Cell Speed (ICS). (A) Comparative CVA clustering of the
slowest (S1, 1–20%, blue) and fastest (S5, 81–100%, red) moving Instantaneous Cell Speed (ICS)-defined cell subpopulations using all organizational
variables achieves strong separation along the 1st canonical vector (X-axis, captures 99% of total variation). (B) Organizational features driving
separation of subpopulations selected by rank ordering according to absolute coefficient values associated with each feature in the 1st canonical
vector. (C) 81 normalized organizational features (background variables, Y-axis, compact feature names defined in Supporting Table S1) contribute to
EN-regression modeling of ICS (behavioral feature, response variable) for the entire control cell population. Horizontal color bars indicate coefficient
values (21,x,1) (green=negative, red = positive, black = near zero) associated with each variable at any iteration (X-axis) of the modeling process.
Red and green variables are positively or negatively correlated with ICS, respectively, while absolute coefficient values indicate the importance of
each variable to the estimation of ICS per model iteration. With progressive model iterations, the sum of all coefficient values is forced non-uniformly
towards zero, with coefficients redistributed to optimize the regression model according to adjusted R2. (D) Rank ordering of background variables
based on their absolute coefficient values in the optimal regression model (adjusted R2 = 0.43, horizontal yellow line, iteration 10, vertical yellow line)
provides a second list of organizational features associated with variations in ICS. Variables with grey backgrounds were implicated among the top 15
features by both feature selection methods (B and D).
doi:10.1371/journal.pone.0090593.g003
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Organizational features included within the optimal regression

model were ranked according to their absolute coefficient value,

which indicates their individual contribution to the estimation of

ICS (Figure 3 D).

Notably, comparison of the organizational features highlighted by

both CVA- and EN-regression-based feature selection methods

revealed more than 50% overlap among the high ranked

predictions (Figures 3 B and D, respectively), leading to greater

confidence in their potential importance. Conversely, disparities in

selected features may be either methodologically driven or

reflective of differences in input data, i.e. fast and slow control

cell subpopulations (40% of cells, CVA method) versus all control

cells (EN-regression method).

Analysis of Correlations between Organizational Features
and Cell Migration Speed
We next analyzed Spearman’s correlation coefficients (rs) for

pairwise combinations of all organizational and behavioral features

(Spearman’s selected due to improved handling of non-linear

correlations – similar values were obtained using Pearson’s

correlation coefficient). Results are represented as a global inter-

feature correlation heatmap (Figure 4 A). This summarizes the

inter-feature relationships dictated by both mathematical and

biological feature interdependencies. We then visualized the co-

distribution of rank-ordered ICS values versus rank-ordered values

of organizational features (Figure 4 B–G) chosen based on either the

feature selection process described in Figure 3 or literature-based

expectations. Ranked value visualization corresponds closely to

Spearman’s correlation analysis. Interestingly, despite ranking

highly according to both feature selection methods, Cell Area

showed little or no correlation with ICS (rs =20.05, Figure 4 B).

In contrast, Cell Compactness (rs = 0.32, higher values indicate less

round cells), Mean [CMAC Lifetime] per Cell (rs =20.56, values

indicate the temporal stability of CMAC populations, per cell) and

Sum [CMAC Total RubyRed-LifeAct Intensity] per Cell (rs =20.38,

values indicate the total enrichment (after local background

subtraction) of RubyRed-LifeAct signal within CMACs, per cell)

all showed strong correlations to ICS (Figure 4 C–E). Median

[EGFP-Paxillin – RubyRed-LifeAct Colocalization per CMAC] per Cell

(rs =20.29, values indicate the median Pearson’s correlation

between F-actin and CMAC marker signals within segmented

CMACs, per cell) also showed a negative correlation to ICS, as did

Median [CMAC Area] per Cell (rs =20.25, values indicate the

median area of individual CMACs, per cell). This final correlation

between adhesion size and cell speed is in agreement with recent

findings [16].

Identification of Directed Causal Interactions in Cell
Migration
To extend upon the directionally unspecific correlative indica-

tions derived via CVA, EN-regression and Spearman correlation

analyses, we next engaged the Granger causality concept [26,27].

This permitted detection of the directional flow of information, as

revealed by causal influence, between individual features defining

cell migration system organization and behavior. Specifically, we

performed Granger causality modeling via auto-regression to

determine how the values of background (organizational) variables at

preceding time-points (temporal lags) contributed to the prediction

of future values of the behavioral response variable, ICS. These

analyses focused initially on those variables previously highlighted

via correlative analyses (Figures 3 and 4).

As shown in Figure 5 A, auto-regression modeling indicated that

progressively adding temporal lags of ICS alone increased ICS

prediction accuracy to a maximal adjusted R2 of ,0.4. Thus,

current ICS is dependent on past ICS. Notably, as implied by the

preceding correlative analyses, temporal lags of the organizational

features Sum [CMAC Total RubyRed-LifeAct Intensity] per Cell and

Mean [CMAC Lifetime] per Cell each alone enabled (partial)

estimation of future ICS (adjusted R2 max 0.12 and 0.28,

respectively, Figure 5 A and B). Such results indicate either

correlation and/or causation between these organizational features and

ICS. Crucially, explicit evidence of Granger causation was achieved

by combining lags of ICS with lags of these background variables,

resulting in clear improvements in adjusted R2. Thus, both Sum

[CMAC Total RubyRed-LifeAct Intensity] per Cell and Mean [CMAC

Lifetime] per Cell contributed additional information to the

prediction of ICS, implying association with up-stream Granger

causal mechanisms.

We next assessed whether the improvements in prediction

provided by background variables were statistically significant over

a population of .2200 control cell observations. Impressively, the

addition of information from either Sum [CMAC Total RubyRed-

LifeAct Intensity] per Cell (Figure 5 C, left panel) or Mean [CMAC

Lifetime] per Cell (Figure 5 D, left panel) conferred statistically

significant improvements in adjusted R2 values for the majority of

background and response variable lag combinations. Thus, we

conclude that these variables Granger cause ICS. Specifically,

given the negative correlations observed, increases in CMAC

lifetime and total RubyRed-LifeAct associated with CMACs both

inhibit ICS. Note that the degree of autocorrelation in response

variables does not correlate with the ability to detect causal

interactions.

Because causal interactions may be bi-directional, we also tested

for Granger causation in the reverse direction. As shown in

Figures 5 C (right panel) and D (right panel), lags of ICS could not

consistently improve the estimation of future values for the two

selected organizational features. Combined, we interpret these

results as indicating predominantly uni-directional Granger

causation of Sum [CMAC Total RubyRed-LifeAct Intensity] per Cell

and Mean [CMAC Lifetime] per Cell on ICS and not vice versa.

Similarly, causality analysis of Median [CMAC Area] per Cell also

indicated that increasing values of this variable Granger caused the

inhibition of ICS (Figure 5 E, left panel), and again, no Granger

causation could be detected from ICS towardsMedian [CMAC Area]

per Cell (Figure 5 E, right panel).

Significantly, consistent with our correlative analyses, Cell Area

data did not improve the estimation of future ICS, and nor did past

ICS improve estimation of future Cell Area (Figure 5 F, left and right

panels, respectively). Thus, no evidence for Granger causation

could be discerned between these cellular features. In a surprising

contrast, analysis of Mean [Standardized CMAC Distance to Cell Edge]

per Cell (values indicate average CMAC proximity to the nearest

cell edge as a proportion of the distance from the cell edge to cell

center of area, per cell) provided no evidence for Granger

causation on ICS (Figure 5 G, left panel), but instead was Granger

caused by ICS (Figure 5 G, right panel), such that faster cell

migration drives a more centralized distribution of CMACs within

the cell.

Identification of a Chain of Causation in Cell Migration
We next explored the causal wiring pattern of cell migration

more comprehensively by examining an extended set of inter-

feature relationships. This revealed interconnected patterns of

Granger causation extending beyond single pairs of variables. As

an example, we present a short chain of Granger causal

interactions extending both up- and down-stream of ICS

(Figure 6 A). This sequence begins with the variable IDR [Change

Plasticity in Causal Networks of Cell Migration
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in CMAC Total EGFP-Paxillin intensity] per Cell (values indicate per

cell variance in the net rate of change in EGFP-Paxillin content

per CMAC). Increases in this variable enhanced Median [EGFP-

Paxillin – RubyRed-LifeAct Colocalization per CMAC] per Cell, which, as

noted previously, signifies the Pearson’s correlation between

paxillin and F-actin protein concentrations within CMACs. Such

enhancement Granger caused reduced ICS (Figure 6 A, center

panel). Finally, ICS Granger caused changes in cell shape, as

represented by Cell Compactness (a size-independent measure of cell

roundness), such that higher ICS promoted less rounded cells with

higher Cell Compactness values.

Differential Perturbation Reveals the Plasticity of the
Defined Causal Wiring Pattern
To assess the question of whether causal wiring patterns are

stable and generalizable, or plastic and contextually dependent, we

assessed the robustness of the Granger causality chain described in

Figure 6 A using data derived from cells perturbed via either the

inhibition of ROCK or the activation of Rho (Supporting Movies

S2 and S3). These represent treatments with strong, well-

characterized impacts on cell migration. The effects of these

perturbations were extensively assessed (Supporting Figure S4),

revealing excellent coincidence with previous observations.

Remarkably, despite dramatically altering both cell migration

system organization and behavior, inhibition of ROCK did not

significantly disrupt the chain of Granger causality first detected

under control conditions (Figure 6 B), thereby providing additional

support for the significance of these findings. In contrast, Rho

activation disrupted the first two causal relationships such that no

evidence of Granger causation could be detected (Figure 6 C).

Strikingly, the presence of the third causal relationship was

conserved following Rho-activation, but the impact of the

relationship was reversed such that increasing ICS reduced, rather

than increased, Cell Compactness. These results, particularly the

positive evidence indicating inversion of effects in the third

interaction, reveal the differential sensitivity of causal interactions

to perturbation and, more generally, their contextual dependence.

Fundamentally, this exposes plasticity in the causal wiring pattern

underlying the cell migration process.

Discussion

A variety of studies have previously described correlations

between organizational and behavioral features of cell migration, yet

the orientation of cause and effect in these relationships has

remained undefined [16,29–33]. We now extend on such

correlative analyses by describing a novel strategy for directionally

specific mapping of information flow in the form of causal

influence. A key differentiating aspect of our approach is the focus

on charting causal influences based on sensitivity to the natural

heterogeneity (specifically, time-resolved inter-feature co-variance)

that arises within individual experimental conditions, as opposed to

relying on perturbation-induced differences between conditions.

This permits: a) the delineation of causal influence patterns on a

per condition basis, which in turn facilitates; b) the comparison of

these wiring patterns between alternatively perturbed conditions.

Through these capabilities we now provide proof-of-principle for

plasticity and contextual-dependence in the regulatory wiring of

the cell migration system, while also delineating specific,

functionally significant relationships between key features within

this system.

The plasticity of causal wiring in the cell migration system is

illuminated by differences observed in pair-wise causal influences

under control (DMSO-treated) and Rho-activated conditions.

Specifically, this plasticity is evidenced by the disruption (or

weakening to undetectable levels) of two causal interactions within

the causality chain defined in control cells, and is positively

exemplified by alterations to the causal interaction detected

between cell speed and cell compactness. The nature and

implications of these specific alterations are discussed further

below. In general, however, these perturbation-induced differences

in inter-feature connectivity provide proof-of-principle as to the

flexibility and adaptability of the causal wiring pattern governing

cell migration. Concomitantly, the equivalence between the

causality chains revealed in control and ROCK-inhibited cells

strongly support the validity and relevance of the defined causal

interactions. Thus, in combination, these unique findings demon-

strate both robustness and contextually dependent plasticity in the

functional relationships between coarse-grained features at the

core of the cell migration system. These findings hold the

important implication that although some causal regulatory

influences may be conserved even under strongly altered

conditions, a singular characterization of inter-feature relations is

unlikely to be generalizable. This notion seems likely to also be

important for the molecular-scale networks and components that

underpin the coarse-grained macromolecular features assessed

herein.

It should be noted that the concept of plasticity is already well

established in the context of cell migration behavior [2]. However,

such behavioral plasticity may arise mechanistically from two

distinct types of variation within the underlying network: 1)

variation in the properties of features (nodes) within the network,

and/or; 2) variations in the connectivity (edges) between those

features. To date, numerous studies have described how specific

perturbations induce changes in the values of features-of-interest

within the cell migration system. In notable examples, extensive

arrays of F-actin, CMAC and cell behavioral properties were

monitored and compared across a spectrum of conditions wherein

ECM-density, intracellular contractility and/or growth factor

stimulus were modulated [29,30]. Although important correlative

links were implied by these studies, direct quantitative correlations

between many of the recorded features were inaccessible because

data were derived from distinct experimental sources. This

highlights the advantages of defining inter-feature connectivity

based on multivariate data derived from within individual

experimental sources and, indeed, from within individual condi-

tions (rather than by comparison between conditions). Such

strategies rely on sensitivity to natural heterogeneity within

conditions, thereby allowing the detection of variations in the

inter-feature connectivity between conditions. A highly relevant

study where this was achieved includes an analysis of how

correlative connections between CMAC morphology-features

Figure 4. Exploration of individual feature correlations. (A) A heat map of Spearman’s rank correlation coefficients (rs) summarizes the
pairwise correlative relationships between all 88 recorded variables (organizational and behavioral, compact feature names defined in Supporting
Table S1) based on ranked observation values (blue= negative rs; red= positive rs; green= rs, 0). (B–G) Selected correlations to ICS (indicated in heat
map by lines (B)–(G), corresponding to panels B–G) plotted as ranked values of ICS (X-axes) vs ranked values of organizational features (Y-axes): Cell
Area (B); Cell Compactness (C); Mean [CMAC Lifetime] per Cell (D); Sum [CMAC Total RubyRed-LifeAct Intensity] per Cell (E); Median [EGFP-Paxillin –
RubyRed-LifeAct Colocalization per CMAC] per Cell (F); Median [CMAC Area] per Cell (G). Red dotted trend lines represent linear best fits.
doi:10.1371/journal.pone.0090593.g004
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Figure 5. Mapping of directed causal influence based on Granger causality. (A and B) 3D surface plots of adjusted R2 values (Y-axes) based
on auto-regression (AR) modeling of the response variable, Instantaneous Cell Speed (ICS), using combinations of one to ten temporal lags (5 min
interval) of the response variable (ICS, Z-axes) and one to ten temporal lags of a background variable, either Sum [CMAC Total RubyRed-LifeAct
Intensity] per Cell (X-axis, A) or Mean [CMAC Lifetime] per Cell (X-axis, B). Grey arrows along X and Z axes indicate the inclusion of additional temporal
lags of the indicated variable (A and B). (C–G) Significance testing of improvements in adjusted R2 values caused by the addition of temporal lags of
background (X-axes) and response variables (Y-axes) to an AR model based on .2200 cell observations. White indicates no statistically significant
improvement in prediction. Blue and red color schemes (indicating negative and positive correlations between background and response variables,
respectively) are each divided into 4 levels of significance, with P values,0.05 (*),,0.01 (**),,0.001 (***) or,0.0001 (****), as indicated (color scale-
bar, upper right). Causation is tested reciprocally within variable pairs to discern evidence for the causal influence of organizational variables over ICS
(left panels, C–G) and vice versa (right panels, C–G). We infer causal influence only where significance-testing patterns are robust and ordered (as in C
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were altered by individual siRNAs within an RNAi screen [32].

Indeed, this study is particularly noteworthy because it documents

plasticity in the correlative relationships between morphological

CMAC features. Our work now builds on elements of this

important foundation in two ways: 1) assessment of the relation-

ships between features of cell migration system organization and

behavior, as facilitated by synchronous acquisition of both data types

on a per cell basis, and; 2) definition of the direction of causal

influences between features enabled by time-resolved data and

Granger causality analysis.

The extension of correlative analyses to delineate causal

influence marks a significant advance. As noted in a recent

commentary, the majority of analyses in cell biology are

correlative, with the analysis of causation remaining infrequent

[15]. This is particularly true at a systemic level where complex

patterns of inter-feature causation are considered. However, one

prominent strategy for empirically defining causal wiring patterns

is network perturbation [17,22–25]. Generally this approach

involves the characterization of an array of features in both the

presence and absence of perturbation(s). The variation in feature

values enforced by perturbations is then used to detect connectivity

between feature-pairs and, specifically, inter-feature causation.

Although extremely powerful, some limitations to the network

perturbation strategy may bear further consideration here. Firstly,

as with more locally focused epistasis strategies, inter-feature

connectivity is defined by comparison of feature values between

control and perturbed conditions. Because the combination of

conditions is used to define a single causal wiring pattern, network

plasticity cannot easily be addressed through the comparison of

wiring patterns. A noteworthy exception to this is the time-

resolved network perturbation analysis performed by Ku et al,

which demonstrated the temporal evolution of causal influence

patterns between coarse-grained features of microtubule, F-actin

and myosin machineries during neutrophil polarization [17]. A

second limitation associated with the network perturbation

strategy is that the required perturbations are assumed to alter

feature values (to illuminate inter-feature connectivity) without

distorting the ‘‘native’’ network architecture, or at least to do so

only locally at the expected point of perturbation [34]. Crucially,

our detection of plasticity in causal wiring following Rho activation

provides proof-of-principle that this assumption may not always

hold. Thirdly, in a critique common to many perturbation-

dependent strategies, the specificity of targeted perturbations is

often fundamental to the interpretation of causal directionality

within inferred wiring patterns. Of similar importance is the

relative timing of direct and indirect effects that propagate

downstream of the initial perturbation, including possible feedback

responses. Where these are not clearly characterized, appropriate

inference of causal directionality involves assumptions that,

although reasonable, may not always be satisfied. Thus, overall,

it seems important to recognize that limitations exist in relation to

the use of perturbations for the definition of causality, either locally

(as in epistasis) or at a network level. Though these perturbation-

based approaches are clearly valuable and indispensable, their

limitations in some cases coincide with relative strengths of the

novel strategy described here, wherein perturbations are not

required for the coarse-grained definition of ‘‘native’’ causal

influences. Thus, perturbation-independent strategies such as this

one may provide a useful complement to existing approaches.

The detection of causal wiring pattern-plasticity is a key finding,

but the individual inter-feature relationships defined herein each

also hold their own specific relevance. For example, the association

between F-actin and CMACs is thought to be a critical

determinant of migratory behavior [20]. Our finding that

increasing RubyRed-LifeAct signal (representing F-actin) associ-

ated with CMACs causes decreased cell speed resolves the

direction and effect of this previously correlative indication.

Similarly, correlations have also been shown between CMAC

stability (represented by lifetime) and cell speed [29–31]. We now

confirm existing assumptions regarding the inhibitory causal

influence of high CMAC stability over cell speed. Likewise, our

finding that increasing CMAC size inhibits cell speed is consistent

with the correlative indications of a recent study that used

aggregate inter-feature co-variance enforced by parallel perturba-

tions to define correlations between CMAC features and cell

migration [16]. Interestingly, we reveal that a variety of CMAC

features have causal influence over cell speed, while Kim et al

found that only CMAC area (of several assessed CMAC features)

robustly correlated to cell speed. One explanation for this

difference may be that causal wiring plasticity induced by each

perturbation (as demonstrated herein) may result in an uninten-

tional stringency within the Kim et al study, such that only those

correlations conserved under all conditions would be detected in

the final analysis. This emphasizes the value of a perturbation-

independent strategy for wiring pattern-definition.

While the three causal relationships noted above corresponded

to existing expectations based on previous correlative analyses, the

findings for cell area, CMAC localization and cell shape were less

expected. Firstly, no evidence was detected that cell area has any

causal relationship with cell speed. This was unexpected both

because cell area globally modulates intracellular signaling

networks [35,36] and because numerous perturbations impact

coincidently on cell migration and cell area, leading intuitively to

inference of a causal dependency. While the absence of evidence

for a causal interaction is not proof that no such relationship exists,

it might reasonably be interpreted as indicating either the absence

or relative weakness of an interaction. This is interesting in the

light of our feature selection results wherein cell area was

consistently indicated to be an important parameter. This

dichotomy may be explained by recognition of the fact that our

correlative and Granger analyses were pairwise, while feature

selection methods were multivariate. Whereas such pairwise

analyses have sensitivity for strong biological relationships that

are relatively direct and linear, multivariate analyses may provide

sensitivity towards complex and perhaps contingent relationships

between regulatory features. Thus, it is conceivable that cell area

may modulate the causal impacts of several other features

upstream of cell speed, in such a way that its own causal influence

is distributed and not directly discernable. It will therefore be

crucial in the future to develop multivariate statistical implemen-

tations of Granger causality analysis for this setting, including

improving sensitivity to non-linear causal interactions [37].

Even more surprising was that both CMAC localization and cell

shape features were regulated by cell speed. In general, these

findings highlight ongoing questions regarding the possible

orientations of causation relative to complexity in such complex

biological systems [38], and indeed about the relative positions of

such features in a hierarchy of complexity [9,10]. Specifically, we

were surprised in the first instance to find that faster cell migration

[left panel], D [left panel], E [left panel], G [right panel]. Stem plots (below X-axes, C–G, left and right panels) indicate the degree of autocorrelation in
respective response variables.
doi:10.1371/journal.pone.0090593.g005
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caused increased distances between CMACs and the cell edge,

reducing the peripheral skew in CMAC localization [39]. This was

unexpected because our empirical findings refute previous

perturbation-derived inferences that CMAC centralization may

cause the inhibition of cell migration [40,41]. Indeed, when

combined with evidence that CMAC lifetime causally regulates

cell speed, this finding allows the disentanglement of previously

convoluted correlations between CMAC centralization, CMAC

stabilization and cell migration. Thus, we find that CMAC

stability strongly influences cell speed, which in turn modulates

CMAC localization.

Equally unexpected was the finding that cell speed lies upstream

of cell shape determination, with faster migration in control cells

promoting a less round cell shape (with higher compactness

values). While the existence of a correlative relationship between

cell shape and cell speed has been abundantly clear [42,43], the

direction of causation has not. However, evidences that symmetry

breaking and associated cell deformations necessarily precede cell

migration [44] promote the assumption that cell shape would act

upstream of cell speed, rather than downstream as found here

under all three experimental conditions. A further investigation of

the relative magnitude and frequency of shape changes during

symmetry breaking and at different migration speeds may more

fully explain this surprising finding. In general, this observation

reveals a possible limitation in the sensitivity of our causal analysis

strategy, since each experimental conditions is described by a

single causal wiring pattern. This means that potential variations

in causal wiring arising within conditions may be lost. It is

conceivable, for example, that wiring patterns may differ during

alternate phases of migration (symmetry breaking, protrusion,

retraction) and/or between different migratory modes (mesenchy-

mal vs amoeboid). Indeed, the latter is hinted at by wiring changes

induced following Rho-activation, as discussed further below.

Methodologically, the ability to disaggregate data from within

experimental conditions to identify recurring migratory phases/

modes may help to contextualize our understanding of causal

network structures during evolving migratory behaviors, as

previously exemplified during cell polarization [17].

As noted above, the causal influence of cell speed over cell shape

revealed in control cells was recapitulated in both ROCK-

inhibited and Rho-activated cells. This is remarkable given the

dramatic alterations to organizational and behavioral features induced

by each of these perturbations. However, the inversion of the

causal effect of this interaction in Rho-activated cells is particularly

noteworthy, and not only as proof-of-principle for causal wiring

pattern-plasticity. Indeed, the finding in Rho-activated cells that

higher cell speed causes cells to become rounder, rather than more

protrusive, is reminiscent of a switch in the organizational state of

migratory machinery from a mesenchymal phenotype towards an

amoeboid phenotype. This is a known effect of Rho activation [2].

Such a switch in migratory mode is further supported by a

comparison of the quantitative changes recorded in our Rho-

activated cells and those observed following Rho-activation in

MDA-MB231 cells in 2D culture by means of Smurf1-depletion

[45] – a perturbation which drove a pronounced mesenchymal-

amoeboid transition in 3D culture. Thus, our analysis of causality

following Rho-activation reveals not only plasticity in causal

wiring, but that this plasticity may correspond to a recognized

switch between mesenchymal and amoeboid modes of migratory

behavior.

The observation that higher variation in the rate of net EGFP-

Paxillin incorporation/release from CMACs is predictive of

increased intra-CMAC colocalization between EGFP-Paxillin

and RubyRed-LifeAct is also noteworthy. It is consistent with

demonstrations that accelerated paxillin dynamics correlate with

high force application to CMACs [46,47], which in turn

correspond to CMAC maturation and reinforced associations

with F-actin [48,49], an effect observable via colocalization

analysis [33]. Remarkably, it is specifically the variance in

EGFP-Paxillin dynamics that is causal, since the median rate of

EGFP-Paxillin incorporation/release at CMACs shows no evi-

dence of causation. This highlights the potential for population

variance to have causal influence independent of mean/median

values – an information processing feature that may be associated

with relative rather than absolute signal processing. Finally, the

finding that increasing colocalization between EGFP-Paxillin and

RubyRed-LifeAct within CMACs causes inhibition of cell

migration is in correspondence with previous correlative findings

showing that increased CMAC-component-to-F-actin colocaliza-

tion coincides with force-driven CMAC maturation and reduced

cell migration [29,30].

In summary, we have presented a new imaging-based strategy

designed to detect causal influence transmission between coarse-

grained features synchronously characterizing the core machinery

and behavioral outputs of the cell migration system. This approach

employs the Granger causality concept to leverage natural

heterogeneity within experimental conditions, facilitating pertur-

bation-independent causal analyses. This is, to the best of our

knowledge, the first time the Granger causality concept has been

employed within such a cell biology setting. Using this approach,

we have mapped several pair-wise causal interactions between

features of cell organization and behavior, thereby alternately

confirming or refuting existing assumptions of causation derived

from previous correlative analyses. Most importantly, we have

provided empirical evidence of plasticity in the causal wiring

pattern underlying cell migration. This finding indicates that

causal analyses should be performed and interpreted in a

contextually dependent manner, since global causal wiring

patterns are unlikely to be entirely generalizable.

Ultimately, this work provides new insights into the architecture

of causal interactions that underlie cell migration, but more

generally also presents a highly extensible framework for further

exploration of this process. Future developments in experimental

design, data acquisition (including an emphasis on molecular-scale

information), and Granger causality analysis methods are likely to

deliver important insights into cell migration, as well as the

Figure 6. Causal influence patterns are plastic and contextually dependent. (A) Granger causality analysis revealed a sequence of causal
interactions extending both up-stream and down-stream of Instantaneous Cell Speed (ICS): Increasing IDR [Change in CMAC Total EGFP-Paxillin
intensity] per Cell (indicates per cell variation in the net rate of EGFP-Paxillin recruitment/release per CMAC) caused increased Median [EGFP-Paxillin –
RubyRed-LifeAct Colocalization per CMAC] per Cell (A, left panel). Increasing Median [EGFP-Paxillin – RubyRed-LifeAct Colocalization per CMAC] per Cell
caused reduced ICS (A, center panel). Increasing ICS caused increased Cell Compactness (A, right panel), indicating that fast moving cells become less
round. The causal links between these four variables are summarized schematically (grey boxes), with positive and negative relationships indicated by
arrows and capped lines, respectively. Analyses of Granger causality predictions for equivalent inter-feature relationships in ROCK-inhibited cells (B)
reveal comparable causal relationships while Rho-activated cells did not (C). Notably, although the final causal relationship (C, right panel) was still
detected, the causal effect was reversed such that increasing ICS caused decreasing Cell Compactness, i.e. increased cell speed caused cells to become
more round. All variables are defined in Supporting Table S1.
doi:10.1371/journal.pone.0090593.g006
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potential to explore a variety of complex, dynamic and hetero-

geneous cellular processes.

Materials and Methods

Cell Culture and Experimental Conditions
H1299 (human non-small cell lung carcinoma, ATCC) cells

were transfected with both EGFP-Paxillin and RubyRed-LifeAct

constructs using Lipofectamine 2000 (Gibco) according to the

manufacturers instructions. Double-expressing stable clones

(H1299-P/L) were selected and maintained in RPMI 1640

medium (Gibco) containing 1 mg/ml Geneticin (G-418 sulfate,

Gibco), supplemented with 1 mM Glutamine and 10% fetal

bovine serum (Gibco) at 37uC, 5% CO2. Fibronectin was purified

from human plasma as described previously [50]. Imaging

substrates were coated with purified Fibronectin (10 mg/ml) at

37uC for 2 h followed by blocking with 1% heat denatured bovine

serum albumin (Sigma-Aldrich) at 37uC for 1 h. H1299-P/L cells

were serum starved for 24 h prior to imaging. 4000 cells were

plated per well in fibronectin-coated 96-well glass-bottomed plates

(0.17 mm optical glass, Matrical Bioscience). Cells were treated

immediately with DMSO (Di-methyl sulfoxide, Sigma-Aldrich) as

control, or alternatively with either a Rho-associated protein

kinase (ROCK)-inhibitor (Y-27632; 25 mM, Sigma-Aldrich), or a

Rho activator (Calpeptin, 25 mg/ml, Cytoskeleton). In each

experiment, control (DMSO-treated, 9 experimental repeats) cells

were paired with one perturbed condition (ROCK-inhibition, 5

experimental repeats or Rho-activation, 4 experimental repeats) to

allow subsequent comparison of results between these three

conditions. Live cell imaging commenced after 2 h with treatments

ongoing.

Confocal Live Cell Fluorescence Imaging
Live cell imaging was performed on a Nikon A1R confocal

microscope with a PlanApo VC 60X/1.4 NA oil-immersion

objective. Images were acquired at 5 min intervals for 8 h with

a pixel resolution of 0.21 mm. Cells were maintained during

imaging in normal culture medium absent fetal bovine serum, at

37uC and 5% CO2.

Image Processing and Image Analysis
Acquired images were processed in ImageJ (W.S. Rasband,

NIH) using the Hybrid 3D median filter followed by local

background subtraction. Processed images were then analyzed

using PAD software (v6.3) (Digital Cell Imaging Laboratories,

Keerbergen, Belgium). Cell boundaries were detected based on

Ruby-LifeAct fluorescence, with cells excluded when contacting

image borders. CMACs with area .0.05 mm2 were then

segmented based on EGFP-Paxillin signal. Segmented Cells and

CMACs were tracked over time based on nearest neighbor

analysis. Cell and CMAC segmentation and object tracking were

verified by direct visual inspection of all images and image

sequences. Quantitative features defining cells, per Cell CMAC

populations (Supporting Table S1) and individual CMACs

(Supporting Table S2) were then automatically extracted. Intensity

values within CMACs were corrected in each channel for local

background within a 1 mm radius around the boundary of each

CMAC, excluding signal from any other segmented CMAC.

Data Parsing
Automated data parsing was performed prior to extensive

statistical analyses. This included the removal of CMACs observed

in only a single time point, thus dramatically limiting misclassi-

fication of noise as CMACs, especially given imposed limits on the

maximal inter-time point displacement of CMACs (2 mm).

Similarly, CMACs with minor axis values of less than a single

pixel (210 nm) were removed to exclude aberrant form-factor

calculations. CMACs present in the first and final images of an

image sequence were excluded from aggregate calculations of

CMAC Lifetime due to the biasing effect associated with the

inclusion of incomplete CMAC lifetimes.

Data Standardization
CMAC fluorescence intensity data was standardized by

calculating the median of all individual CMAC mean intensities,

per recorded channel, per experimental repeat in the control

(DMSO-treated) condition, of CMACs between 0.15 and 0.2 mm2.

This size range incorporates numerous CMACs and is above both

the optical and digital resolution of the acquisition system, limiting

ambiguity about actual CMAC area. All CMAC fluorescence

intensity values per experimental repeat were standardized to this

value.

Data Transformations
Cell trajectories were smoothed through the application of

smoothing splines. The parametrization of the smoothing was

based on a trade off between maintaining the properties of the

original trajectories (essentially no difference can be observed

between original and smoothed trajectories), and enhancing the

continuity of the instantaneous cell speed distribution. This

diversification of ICS values enhanced the efficacy of subsequent

statistical analyses (e.g. regression techniques).

Given our usage of ordinary least squares estimations in auto-

regression and elastic net-regression, and the associated assump-

tions of residual normality, Box-Cox transformations [51] with

individualized tunings were applied to normalize data distributions

for each cell migration system feature, so as to fulfill this necessary

assumption.

Subpopulation Discovery via the EM-algorithm
Principal component analysis (PCA) using singular value

decomposition of the normalized data matrix was first applied to

control cell observations based on all 87 organizational variables.

Subsequently, the first 25 principal components (containing 87.5%

of total variation) were used in an expectation maximization (EM)-

algorithm [52] for assignment of control cell observations to

quantitatively defined subpopulations. EM algorithm-based as-

signments were repeated 10 times each for designation of between

2 and 8 subpopulations. The Akaike information criterion (based

on the log-likelihood of the mixture model penalized by the

number of existing groups) [53] was used to identify the optimal

number of subpopulations. This number was found to be 4

(Figure 2). The final assignment of control cell observations

between four subpopulations was then determined according to

the lowest Akaike information criterion achieved after 100

iterations of the EM-algorithm (using the same data as above).

Importantly, the EM-algorithm was initiated using random

seeding so as to relieve the locking effect of initiating the algorithm

with clustering techniques such as k-means clustering.

Comparison of Defined Cell Subpopulations
Canonical vectors analysis (CVA) [54] was performed using

decompositions of the between-group and within-group covari-

ance matrices based on eigenvalue decomposition. Mahalanobis

distance measurements were applied to determine the pairwise

between-group distances using their structures of covariance.
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Agglomerative hierarchical clustering of the 87 dimensional

organizational data was performed on the mean vectors of

subpopulations, subject to the shortest distance using the

Euclidean distance as a metric. Notably, mean vectors were based

on principal components of the multivariate data matrix. Outputs

were displayed as standard dendograms.

Multivariate analysis of variance (MANOVA) was applied to the

87 dimensional data matrix to assess whether the between-group

and within-group covariance matrices differ significantly given

specific subpopulation assignments. Significance was determined

via Wilk’s test.

Pairwise univariate distribution tests were performed using the

two-sample Kolmogorov-Smirnov (KS)-test to determine whether

two empirical probability density functions were likely to have

arisen from the same underlying probability function. Significance

was determined based on comparison of between-distribution KS-

scores to the KS-test’s critical values at the 5% significance level.

Given KS-scores beyond the significance level, individual variable

distributions were visualized as probability distribution functions.

These were estimated using kernel density estimation with

Gaussian kernels and fixed bandwidths.

Feature Selection
CVA was applied to find the organizational features that

contribute to the separation of the fastest (5th quintile of ICS)

and slowest (1st quintile of ICS) cells (DMSO-treated). Features

were selected based on their absolute contribution to the first

canonical vector which contained .90% of the between-group

variation needed to maximally separate these subpopulations.

Regression via the elastic net (EN-regression) [55] was employed

using all control cell observations, with ICS as the response

variable (representing behavior) and organizational features as

background variables. As noted previously, in order to meet the

assumptions of the regression model, all variables were normalized

via individually tuned Box-Cox transformations. After supervision,

6 variables were discarded (as non-normalizable) and the

regression model was built using the remaining 81 organizational

features as background variables. For feature selection, features

were ranked based on their absolute contribution (coefficient) at

the model iteration yielding the optimal goodness-of-fit along the

shrinkage path of the EN-regression (as adjudged by the adjusted

coefficient of determination (adjusted R2)). The decision to use

EN-regression (as opposed to related techniques such as Ridge

regression or the LASSO) was based on its grouping effect wherein

the coefficients assigned to multicollinear (related) variables are not

shrunk independently. The use of the adjusted coefficient of

determination was motivated by our interest in the descriptive and

not the predictive accuracy of the model.

Analyses of Granger Causality
The concept of Granger causality [26] can be expressed in

terms of auto-regression where a variable X is stated to Granger-

cause another variable Y if lags of X, in the presence of lags of Y,

improve the auto-regression model’s explanatory power of

‘present’ values of Y. More specifically, let us have two models

A and B, where A has Y as the response variable and lags of Y as

the background variables, and B has Y as the response variable

and lags of both Y and X as the background variables. Then, given

a significant reduction in the residual sum of squares of model B

compared to model A, X is said to Granger-cause Y. Our analyses

of Granger causality were performed on this basis using linear

auto-regression. It is important to observe that as ‘‘older’’ lags are

included into each regression model, ‘‘younger’’ lags are also

retained, such that if a lag from 15 minutes prior to the ‘‘present’’

is included, the 5 and 10 minute lags are also included in the

model. As noted above, all variables used in these analyses were

normalized via individually tuned Box-Cox power-transforma-

tions. Furthermore, to confirm the stationarity of our data, we

applied the augmented Dickey-Fuller test. This indicated that our

time-series data did not contain significant trends such as

fluctuating means or variances. Notably, data stationarity is

necessary to satisfy the assumptions of ordinary least squares-based

estimation and therefore the auto-regressive modeling applied in

our assessment of Granger-causality. Finally, to test for significant

improvements in model fitting (corresponding to the addition of

the candidate causal variable) we utilized the Granger-Sargent

test.

Supporting Information

Figure S1 Spatial and Temporal Data Hierarchies.
Quantitative image analysis produces a data matrix that can be

aggregated and disaggregated to varying degrees in both spatial (A)

and temporal (B) dimensions, creating distinct but inter-operable

data hierarchies. (A) Statistical measures of Cell Populations

represent the most aggregated state of data in the Spatial Data

Hierarchy. Disaggregation of data to Single Cells provides the

Cellular Resolution Level. Each cell contains a CMAC Popula-

tion; therefore Aggregated CMAC Population Statistics are

necessary to describe the adhesion cohort of an individual cell.

In combination with descriptions of Individual Cell Properties,

these two spatial scales of data, collectively termed Single Cell

Scale, are used almost exclusively in this study (see green outline,

A). Features describing these scales are described in Supporting

Table S1. The properties of Single CMACs are also independently

recorded, providing access to Individual CMAC Properties as the

maximal level of spatial data disaggregation (data from this spatial

scale is presented in Supporting Figure S2, C and D, based on

features defined in Supporting Table S2). (B) Image data is

acquired over 8 h and therefore the combination of data from all

time-points represents the maximal level of data aggregation in the

Temporal Data Hierarchy. Varying degrees of data disaggregation

via Arbitrary Time Sampling, as employed in Supporting Figure

S2, can provide indications regarding the stability of experimental

conditions over time. Because migrating cells can enter and exit

imaging fields at any time, per-cell data may be aggregated to

reflect individual Cell Observation Periods. Within each cell, data

defining the properties of each CMAC may be aggregated over the

lifetime of each CMAC. Alternatively, as with Single Cell and Cell

Population data, CMAC data may be disaggregated to reflect

Instantaneous Dynamics defined at the maximal image sampling

frequency (5 min). Instantaneous Dynamics data is used in most

cases throughout this study.

(EPS)

Figure S2 Multivariate quantitative analyses indicate
high inter- and intra-experimental data consistency.
PCA analysis based on 88 Cell-Level variables (A, 2446 data

points = individual cells at single time-points, analyzed variables

defined in Supporting Table S1) or 29 CMAC-Level variables (C,

71076 data points = individual CMACs at single time-points,

analyzed variables defined in Supporting Table S2) color-coded by

experimental repeat date reveal high overlap between data derived

during independent experiments. Similar analyses of Cell-Level (B)

or CMAC-Level (D) data color-coded by intra-experimental time

(four non-overlapping 2 h windows) also show excellent consis-

tency indicating a stable-steady state during experimentation.

(TIFF)
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Figure S3 Recorded organizational and behavioral
features are quantitatively linked. (A) Principal component

analysis (PCA) was performed for all control cell observations

based on all 87 organizational features. An expectation maximiza-

tion (EM)-algorithm for Gaussian mixture models using principal

components 1–20 (including .99% of total variance) was

employed to assign control cell data into two subpopulations.

This was repeated ten times to achieve an optimized assignment as

determined by assessment of relative inter- and intra-group

variability using the Akaike information criterion (AIC). This

procedure was replicated for the assignment of control cell data

into between 2 and 8 subpopulations, revealing that control cell

organizational feature data is optimally represented as four

subpopulations. Multivariate analysis of variance (MANOVA)

allowed rejection of hypotheses that 1, 2 or 3 sub-populations exist

(P values = 0), indicating support for the existence of 4 or more

subpopulations. Accordingly, control cell observations were

assigned to one of four subpopulations (G1–G4), with assignments

finalized based on the lowest achieved AIC value following 100

randomly-seeded EM-algorithm iterations. Given these assign-

ments, canonical vectors analysis (CVA) was used to visualize the

multivariate distributions of subpopulations G1–G4 based on the

original 87 organizational features. Subpopulations G1 (blue) and

G3 (orange) partially overlap, with G4 (red) relatively proximal

and G2 (green) relatively distal. Both standardized Mahalanobis

distance measurement (B, blue - near; red - far) and independent

hierarchical clustering (C) confirm the structure of the organizational

feature-based difference hierarchy for these control cell subpop-

ulations. (D) To compare this organizational difference hierarchy

with the corresponding behavioral difference hierarchy, we

visualized the probability distribution function (P.D.F.) for

Instantaneous Cell Speed (ICS, behavioral feature) associated with each

control cell subpopulation defined in A. In correspondence to

results in A–C, G1 and G3 subpopulation behavior was highly

analogous (KS-test p-value G1 vs G3= 0.56) with a bias towards

fast moving cells, G4 had a bias towards moderately motile cells

(KS-test p-value G1 vs G4=0), and G2 was biased towards slow

moving cells (KS-test p-value G1 vs G2= 0). Thus, organizational

and behavioral difference hierarchies were ordinally equivalent

when control cell subpopulations were defined based on

organizational state. (E) To complement this methodology, behavioral

stratification of control cells was performed according to quintiles

(S1 [1–20%, dark blue], S2 [21–40%, light blue], S3 [41–60%,

green], S4 [61–80%, orange], S5 [81–100%, red]) of the ICS

distribution. (F) CVA based on all 87 organizational variables

(excluding ICS) revealed the progressive divergence of these

subpopulations in accordance with differences in behavior. Stan-

dardized Mahalanobis distance measurement (G) and independent

hierarchical clustering (H) confirmed the ordinal equivalence

between the difference hierarchies defined by organizational and

behavioral features when control cell subpopulations were assigned

based on behavioral state.

(EPS)

Figure S4 Assessing the efficacy and impact of ROCK
and Rho signaling perturbations. (A) CVA analysis of

control (DMSO, blue), ROCK-inhibited (ROCK, red) and Rho-

activated (Rho, yellow) cells defined by all Cell-Level variables

reveals near complete segregation of these populations as well as

high consistency within these experimental conditions. MANOVA

allows rejection of the hypotheses that there are one or two cell

populations (P values = 0), thereby supporting the existence of at

least 3 independent cell populations corresponding to treatment

conditions. These results support the general efficacy of these

perturbations. (B) KS-tests comparing the distributions of each

variable (compact feature names defined in Supporting Table S1)

between control and either Rho-activated (Rho, left column) or

ROCK-inhibited (ROCK, right column) conditions reveal a

broad array of perturbation effects (white circles denote KS-test

P-values ,0.05, colors indicate aggregate inter-distribution

distances (blue = proximal, red = distal)). (C–H) Selected probabil-

ity distribution functions (DMSO (control) = blue, ROCK

(ROCK-inhibited) = red, Rho (Rho-activated) = yellow) are high-

lighted here to provide comparison to previously published

analyses of Rho and ROCK manipulation, thereby confirming

the expected impacts of these perturbations. Specifically, Rho

activation significantly reduced cell migration speeds compared to

control [56–58], while ROCK inhibition increased the frequency

and maximal speeds of fast moving cells (C) [59–61]. Rho

activation promoted rounder, more compact cell morphologies

indicative of increased contractility (D) [62,63], while ROCK

inhibition lead to a more protrusive phenotype [64,65]. Both Rho

activation and ROCK inhibition promoted an increase in CMAC

number per cell, though ROCK inhibition had a markedly

stronger effect (E) [66,67]. ROCK inhibition dramatically reduced

the median area of CMACs (F) [60,63,68], while Rho activation

had inverse effects [67,69,70]. Correspondingly, ROCK inhibition

accelerated the turnover of CMACs, while Rho lead to a

significant increase in mean CMAC lifetime per cell (G) [61,71–

73]. Analysis of intra-CMAC colocalization between EGFP-

Paxillin and RubyRed-LifeAct showed that co-recruitment of

these components within CMACs was enhanced by Rho

activation and inhibited by ROCK inhibition (H).

(EPS)

Table S1 Definition of Organizational and Behavioral
features. This table includes classification and description of

those features defining cell migration system organization and

behavior that are discussed herein. Variables are alternatively

classified according to several criteria: relevance to organization or

behavior; Variable Class (Cell Dynamics, Cell Morphology, CMAC

Dynamics, CMAC Intensity, CMAC Localization, CMAC

Morphology, Colocalization); Spatial Scaling (Cellular, CMAC

population per Cell); and Temporal Scaling (Instantaneous,

CMAC Lifetime). Full variable names are listed, as well as a

shortened name code (used due to space restrictions in Figures 3

and 4 and Supporting Figure S3). The corresponding units and a

concise description are also included. Additional terms are defined

above relevant columns.

(XLSX)

Table S2 Definition of CMAC variables. This table

includes classification and description of those variables defining

instantaneous CMAC features (considered only in Supporting

Figure S2 C and D). Variables are alternatively classified

according to several criteria: Variable Class (CMAC Morphology,

CMAC Dynamics, CMAC Intensity, CMAC Localization,

CMAC Colocalization); Spatial Scaling (Individual CMAC values

only); and Temporal Scaling (Instantaneous values only). Full

variable names are listed, along with the corresponding units and a

concise variable description. Additional terms are defined above

relevant columns.

(XLSX)

Movie S1 Control cell migration. Control (DMSO-treated)

H1299-P/L cells expressing EGFP-Paxillin (green, left panel) and

RubyRed-LifeAct (red, left panel) were imaged at 5 min intervals

for 8 h. EGFP-Paxillin is concentrated within punctate cell-matrix

adhesion complexes (CMACs) while RubyRed-LifeAct associates

with the F-Actin cytoskeleton. After raw confocal image

acquisition (left panel), automated image analysis facilitated
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segmentation of individual cells based on RubyRed-LifeAct

fluorescence (cell boundary indicated by dark blue outline,

overlaying EGFP-Paxillin channel, center panel). Subsequently,

CMACs within each cell were segmented (CMACs detected based

on EGFP-Paxillin fluorescence, indicated by red outlines, center

panel). Finally, the centroids of both cells and their constituent

CMACs were tracked via nearest neighbor analysis to facilitate

time-resolved analyses of dynamic migratory processes (right

panel). CMAC trajectories are color-coded for time, #10 time

points shown. Scale bars in 1st frame= 50 mm.

(MOV)

Movie S2 Cell migration following ROCK-inhibition.
ROCK-inhibitor-treated H1299-P/L cells expressing EGFP-

Paxillin (green, left panel) and RubyRed-LifeAct (red, left panel)

were imaged at 5 min intervals for 8 h. Note the reduced size and

stability of EGFP-Paxillin-labeled CMACs, and the increased

mobility and protrusiveness of this representative cell. After raw

confocal image acquisition (left panel), automated image analysis

facilitated segmentation of individual cells based on RubyRed-

LifeAct fluorescence (cell boundary indicated by dark blue outline,

overlaying EGFP-Paxillin channel, center panel). Subsequently,

CMACs within each cell were segmented (CMACs detected based

on EGFP-Paxillin fluorescence, indicated by red outlines, center

panel). Finally, the centroids of both cells and their constituent

CMACs were tracked via nearest neighbor analysis to facilitate

time-resolved analyses of dynamic migratory processes (right

panel). CMAC trajectories are color-coded for time, #10 time

points shown. Scale bars in 1st frame= 50 mm.

(MOV)

Movie S3 Cell migration following Rho-activation. Rho-
activator-treated H1299-P/L cells expressing EGFP-Paxillin

(green, left panel) and RubyRed-LifeAct (red, left panel) were

imaged at 5 min intervals for 8 h. Note the increased size and

stability of EGFP-Paxillin-labeled CMACs, as well as the reduced

area and motility of this representative cell. After raw confocal

image acquisition (left panel), automated image analysis facilitated

segmentation of individual cells based on RubyRed-LifeAct

fluorescence (cell boundary indicated by dark blue outline,

overlaying EGFP-Paxillin channel, center panel). Subsequently,

CMACs within each cell were segmented (CMACs detected based

on EGFP-Paxillin fluorescence, indicated by red outlines, center

panel). Finally, the centroids of both cells and their constituent

CMACs were tracked via nearest neighbor analysis to facilitate

time-resolved analyses of dynamic migratory processes (right

panel). CMAC trajectories are color-coded for time, #10 time

points shown. Scale bars in 1st frame=50 mm.

(MOV)
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of the integrin adhesome show a myosin II-dependent recruitment of LIM

domain proteins. EMBO Rep 12: 259–266.

5. Kuo JC, Han X, Hsiao CT, Yates Iii JR, Waterman CM (2011) Analysis of the

myosin-II-responsive focal adhesion proteome reveals a role for [beta]-Pix in

negative regulation of focal adhesion maturation. Nat Cell Biol 13: 383–393.

6. Byron A, Humphries JD, Bass MD, Knight D, Humphries MJ (2011) Proteomic

analysis of integrin adhesion complexes. Sci Signal 4: pt2.

7. Geiger T, Zaidel-Bar R (2012) Opening the floodgates: proteomics and the

integrin adhesome. Curr Opin Cell Biol 24: 562–568.

8. Lock JG, Wehrle-Haller B, Stromblad S (2008) Cell-matrix adhesion complexes:

master control machinery of cell migration. Semin Cancer Biol 18: 65–76.

9. Oltvai ZN, Barabasi AL (2002) Systems biology. Life’s complexity pyramid.

Science 298: 763–764.

10. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL (2002)

Hierarchical organization of modularity in metabolic networks. Science 297:

1551–1555.

11. Welf ES, Haugh JM (2011) Signaling pathways that control cell migration:

models and analysis. Wiley Interdiscip Rev Syst Biol Med 3: 231–240.

12. Karsenti E (2008) Self-organization in cell biology: a brief history. Nat Rev Mol

Cell Biol 9: 255–262.

13. Strohman RC (1997) The coming Kuhnian revolution in biology. Nat

Biotechnol 15: 194–200.

14. Lazebnik Y (2002) Can a biologist fix a radio?–Or, what I learned while studying

apoptosis. Cancer Cell 2(3): 179–182.

15. Vilela M, Danuser G (2011) What’s wrong with correlative experiments? Nat

Cell Biol 13: 1011.

16. Kim DH, Wirtz D (2012) Focal adhesion size uniquely predicts cell migration.

FASEB J 27: 1351–1361.

17. Ku C-J, Wang Y, Weiner OD, Altschuler SJ, Wu LF (2012) Network Crosstalk

Dynamically Changes during Neutrophil Polarization. Cell 149: 1073–1083.

18. Geiger B, Yamada KM (2011) Molecular architecture and function of matrix

adhesions. Cold Spring Harb Perspect Biol 3: a005033.

19. Parsons JT, Horwitz AR, Schwartz MA (2010) Cell adhesion: integrating

cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 11: 633–643.

20. Gardel ML, Schneider IC, Aratyn-Schaus Y, Waterman CM (2010) Mechanical
integration of actin and adhesion dynamics in cell migration. Annu Rev Cell

Dev Biol 26: 315–333.

21. Lock JG, Stromblad S (2010) Systems microscopy: an emerging strategy for the

life sciences. Exp Cell Res 316: 1438–1444.

22. Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan GP (2005) Causal protein-
signaling networks derived from multiparameter single-cell data. Science 308:

523–529.

23. Janes KA, Gaudet S, Albeck JG, Nielsen UB, Lauffenburger DA et al. (2006)

The response of human epithelial cells to TNF involves an inducible autocrine
cascade. Cell 124: 1225–1239.

24. Tkachenko E, Sabouri-Ghomi M, Pertz O, Kim C, Gutierrez E et al. (2011)

Protein kinase A governs a RhoA-RhoGDI protrusion-retraction pacemaker in
migrating cells. Nat Cell Biol 13: 660–667.

25. Natarajan M, Lin KM, Hsueh RC, Sternweis PC, Ranganathan R (2006) A
global analysis of cross-talk in a mammalian cellular signalling network. Nat Cell

Biol 8: 571–580.

26. Granger CWJ (1969) Investigating causal relations by econometric models and

cross-spectral methods. Econometrica: Journal of the Econometric Society 424–

438.

27. Wiener N (1956) The theory of prediction. Modern mathematics for engineers.

165–190.

28. Bressler SL, Seth AK (2011) Wiener–Granger causality: a well established

methodology. Neuroimage 58: 323–329.

29. Gupton SL, Waterman-Storer CM (2006) Spatiotemporal feedback between
actomyosin and focal-adhesion systems optimizes rapid cell migration. Cell 125:

1361–1374.

30. Hou Y, Hedberg S, Schneider IC (2012) Differences in adhesion and protrusion

properties correlate with differences in migration speed under EGF stimulation.
BMC Biophys 5: 8.

31. Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE et al. (2004)

FAK–Src signalling through paxillin, ERK and MLCK regulates adhesion
disassembly. Nat Cell Biol 6: 154–161.

32. Winograd-Katz SE, Itzkovitz S, Kam Z, Geiger B (2009) Multiparametric
analysis of focal adhesion formation by RNAi-mediated gene knockdown. J Cell

Biol 186: 423–436.

33. Li Z, Lock JG, Olofsson H, Kowalewski JM, Teller S et al. (2010) Integrin-
mediated Cell Attachment Induces a PAK4-dependent Feedback Loop

Regulating Cell Adhesion through Modified Integrin avb5 Clustering and
Turnover. Mol Biol Cell 21: 3317–3329.

34. Pe’er D (2005) Bayesian network analysis of signaling networks: a primer.
Science Signaling 2005: pl4.

Plasticity in Causal Networks of Cell Migration

PLOS ONE | www.plosone.org 16 February 2014 | Volume 9 | Issue 2 | e90593



35. Huang S, Ingber DE (2000) Shape-dependent control of cell growth,

differentiation, and apoptosis: switching between attractors in cell regulatory
networks. Exp Cell Res 261: 91–103.

36. Maree AF, Grieneisen VA, Edelstein-Keshet L (2012) How cells integrate

complex stimuli: the effect of feedback from phosphoinositides and cell shape on
cell polarization and motility. PLoS Comput Biol 8: e1002402.

37. Jafari-Mamaghani M (2013) Non-parametric Analysis of Granger Causality
Using Local Measures of Divergence. Applied Mathematical Sciences 7: 4107–

4136.

38. Bar-Yam Y (2004) A mathematical theory of strong emergence using multiscale
variety. Complexity 9: 15–24.

39. Welf ES, Naik UP, Ogunnaike BA (2011) Probabilistic modeling and analysis of
the effects of extra-cellular matrix density on the sizes, shapes, and locations of

integrin clusters in adherent cells. BMC Biophys 4: 15.
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