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Abstract
Current mathematical models of tumor growth are limited in their clinical application because they
require input data that are nearly impossible to obtain with sufficient spatial resolution in patients
even at a single time point—for example, extent of vascularization, immune infiltrate, ratio of
tumor-to-normal cells, or extracellular matrix status. Here we propose the use of emerging,
quantitative tumor imaging methods to initialize a new generation of predictive models. In the
near future, these models could be able to forecast clinical outputs, such as overall response to
treatment and time to progression, which will provide opportunities for guided intervention and
improved patient care.

NEXT-GEN MODELS
At the turn of the 20th century, meteorology was in its infancy, and weather forecasts were
based on historical trends, experience, intuition, and guesswork. It was not until the
development of realistic mathematical models of atmospheric phenomena, as well as
advances in computation, that accurate weather prediction became a reality. At the onset of
the 21st century, our approach to “tumor-specific treatment” of cancer and personalized
patient prognosis resembles the early days of weather forecasting. However, with proper
deployment of noninvasive imaging and appropriate investment in the development and
validation of mathematical models, momentous advances in forecasting an individual
patient’s treatment outcomes are within reach. To make this vision a reality requires realistic
mathematical models of tumor growth initialized and constrained by patient-specific data.

Although much progress has been made building mathematical models of tumor growth,
they have not been centered on clinical data. Consequently, these models have had limited
impact on clinical practice. It is not enough to test the effect of various assumptions
mathematically (in silico); if they are to be of clinical value, these models must make
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predictions based on data that can be readily measured in people and that can be readily
tested (falsified) in the clinic.

In this Perspective, we argue that the development of clinically relevant mathematical
models of tumor growth and treatment response should meet a fundamental prerequisite: the
ability to incorporate quantitative, spatiotemporal data from the individual patient. Advances
in noninvasive imaging technologies make this possible. Such data integration into models
will catalyze acceptance of tumor-model–based forecasting into clinical practice.

A MODEL IMPASSE
There is an extensive literature on the mathematical modeling of tumor growth and
treatment response. Proposed models range in complexity from exponential growth of an
avascular tumor to complex equations describing molecules that promote invasion and
angiogenesis. Although these approaches have provided insights into tumor biology (1–4),
progress in this field has been somewhat overlooked by cancer biologists and clinical
practitioners (5). Furthermore, modelers are frequently not involved in experimental design
or data interpretation (6). In short, the measure-model feedback loop that is vital for model
refinement and traction has not been closed.

We suspect that a reason for the lack of interactions between modelers and experimentalists
is the way that models are constructed, studied, and presented. Briefly, papers reporting on
mathematical modeling of tumors contain a theoretical section in which the model is
described. Immediately after this exposition, there is frequently a table listing the model
parameters (sometimes dozens) and how parameter values are assigned. With these values
assigned, the papers then illustrate how model simulations evolve in time and how various
perturbations to the parameters lead to distinct outcomes. In principle, the structure of these
papers is correct and should produce powerful insights into tumor biology. In practice, there
are (at least) two translational weaknesses: (i) model parameter values are constrained from
published literature, often from different biological systems; and (ii) model predictions
depend sensitively on these parameters, yet they are frequently unable to be measured in an
actual patient. These limitations dampen enthusiasm from both the cancer biology and
oncology communities.

The impasse in the application of mathematical modeling to cancer therapy may be
overcome by alternative frameworks. For example, certain patient-specific, imaging-based
measurements obtained before and during therapy could be used to initialize, constrain, and
update models of tumor growth. The model predictions could then be directly compared
with clinical outcomes iteratively and the patient-specific model refined and adjusted.
Rigorous testing and subsequent adoption of this approach will require greater
communication between imaging scientists, modelers, cancer biologists, and oncologists and
will be hastened by the recent advances in both the quality and quantity of data available
from emerging medical imaging techniques.

QUANTITATIVE IMAGING
There are several quantitative, noninvasive imaging methods that are now capable of
reporting on biologically relevant, complementary tumor variables or parameters. Magnetic
resonance imaging (MRI) and positron emission tomography (PET) have matured to the
point where they offer patient-specific measures of tumor status at the physiological,
cellular, and molecular levels. The methods described below have independently proven
clinical utility. It is therefore natural to explore their integration into computational models.
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Tumor-cell density
The microscopic, thermally induced behavior of molecules moving in a random pattern is
referred to as self-diffusion or Brownian motion. The rate of diffusion in cellular tissues is
described by means of an apparent diffusion coefficient (ADC), which largely depends on
the number and separation of barriers that a diffusing water molecule encounters. Diffusion-
weighted MRI (DW-MRI) methods have been developed to map the ADC and have been
shown to correlate inversely with tissue cellularity (7, 8). ADC measurements can report on
the early effects of cytotoxic therapies and have therefore been widely deployed in clinical
trials as a surrogate biomarker of treatment response.

Tumor vascular characteristics
In dynamic contrast-enhanced MRI (DCE-MRI), images are collected before, during, and
after a contrast agent is injected into a peripheral vein. The signal can be analyzed over time
with a pharmacokinetic model so as to estimate physiological parameters related to vessel
perfusion and permeability, the extravascular volume fractions, and the plasma volume.
DCE-MRI methods are routinely used in clinical trials exploring the effects of
antiangiogenic therapies (9).

Tumor glucose metabolism
The PET radiotracer most frequently used in clinical practice is fluorodeoxyglucose (FDG).
As a glucose analog, FDG is taken up by tumor cells and phosphorylated to FDG-6-
phosphate. However, FDG-6-phosphate is not metabolized further and therefore remains
trapped intracellularly. PET quantification of FDG accumulation in tumors is a method of
assessing and, in some cases, predicting therapeutic response by providing a surrogate for
the metabolic activity of the tumor (10).

Tumor oxygen status
It is well known that hypoxia can induce changes in gene expression in tumor cells that lead
to a more aggressive phenotype, including stimulation of angiogenesis, inhibition of
apoptosis, and cell invasion. Clinical detection of hypoxia became available with the
introduction of radiotracers, such as fluoromisonidazole and copper diacetyl-bis(N4-
methylthiosemicarbazone), as well as blood oxygen level–dependent MRI methods (11). To
date, the most common uses for hypoxia imaging are for selecting patients who may benefit
from therapies designed to overcome hypoxia and for longitudinally assessing reduction in
hypoxia (12).

These are but a few examples of quantitative, dynamic tumor variables or parameters that
are currently obtained in the clinic with noninvasive imaging. As multimodal imaging of
tumors continues to develop and combined PET/MRI scanners come online in the clinic,
availability of tumor data from patients is bound to expand at a fast pace. Yet, harnessing the
predictive power of these data remains a challenge. The paradigm described in this
Perspective represents a realistic approach to optimizing the use of imaging data for
predicting the response of tumors on an individual patient basis.

INTEGRATING IMAGING AND MATHEMATICAL MODELS
There is preliminary evidence that mathematical models of tumor growth, if conceived
stringently with translational application as a goal, can be driven by data from noninvasive,
patient-specific imaging studies.
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Step 1: Cell number
Figure 1 provides an example of how clinically acquired, quantitative MRI data of an
invasive ductal carcinoma can be incorporated into a simple mathematical model of tumor
growth. The top row of three images depicts ADC maps of a tumor locus superimposed on
anatomical T1-weighted images obtained at three time points: before, after one cycle, and at
the conclusion of chemotherapy. These data can be transformed to an estimation of cell
number on a voxel-by-voxel basis. Then, the change in tumor cellularity from the
pretreatment to the post-one-cycle treatment is used to calculate proliferation or death rate
(depending on whether this value is positive or negative, respectively) for each voxel via the
logistic model of tumor growth. In both equations in Fig. 1, the carrying capacity θ is the
total number of tumor cells that fit within a given section of tissue. In imaging, the relevant
length scale is the voxel, which has a well-defined size; thus, assuming a reasonable
(measurable) mean tumor cell size fixes θ. Using the tumor cellularity (N) measured after
one therapeutic time point in conjunction with the proliferation/death rate (k), one can
predict cellularity at a future time point—and this predicted map can then be directly
compared with experimental data (13, 14).

Step 2: Incorporating cell motility
To improve the previous example of imaging correlating with tumor cell number, one could
incorporate the movement of tumor cells. A natural extension would include the random
diffusion of tumor cells as a function of both space and time—an approach studied by Wang
et al. (15) in human glioma. They used a reaction-diffusion partial differential equation that
described the rate of change in density of glioma cancer cells as the sum of a motility term
(random diffusion) and a proliferation term (similar to the logistic model of Fig. 1). By
analyzing serial MRI scans, the net proliferation and invasion rates can be estimated, and
these rates can then be used to grow in silico an “untreated virtual control,” which can be
compared directly with patient data. The authors showed that only patients with a low
velocity of radial expansion or a low net proliferation rate survive longer than the median
prognosis. Extending this approach for low-grade gliomas, Jbabdi et al. used diffusion
tensor imaging (DTI) to allow for anisotropic movement of tumor cells along fiber tracts,
which yielded improved shape and kinetic evolution of the brain tumors (16).

Step 3: Adding in mechanics
Tumor cell movement can be mechanically coupled to the surrounding tissue structure (17).
As shown in Fig. 2, we express the rate of change of tumor cell number (NTC) at a particular
location (x) and time (t) as the sum of random cell diffusion and logistic growth. Cell
diffusion (D) is also linked to the nascent mechanical stress environment as described by the
von Mises stress (σvm) and to an empirical coupling constant (γ). The mechanical stress
tensor (σ) in Fig. 2 is influenced by an expansive force originating from mass changes
associated with the proliferation of tumor cells and an empirical coupling constant (λ).
Prediction of tumor cellularity at the conclusion of therapy is analogous to that presented in
Fig. 1. Namely, the ADC maps obtained at three time points are transformed to estimates of
cell number. Using cellularity data from the first two time points and a model, the
proliferation parameter (k) can be estimated. As in Fig. 1, these initial cell number maps, the
model, and the extracted proliferation parameter are then used to predict the cell number and
distribution found in a human breast cancer patient at the conclusion of therapy and
compared with experimental data. A similar approach was offered by Clatz et al. (18), who
simulated the mechanical interaction of an invading glioblastoma into healthy brain
parenchyma, albeit without considering the mechanotransductive effects on tumor growth
mentioned here.
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MULTISCALE IMAGING = MULTISCALE MODELING
Multiscale data from combined PET-MRI could be used to initialize mathematical models
incorporating many realistic tumor properties. A simulation of one such example is
presented in Fig. 3: a coupled set of partial differential equations describing tumor cell
proliferation, angiogenesis, and glucose consumption. T is system, although currently
untested, closely resembles previous efforts (19–21) and has been recast to accept data from
DCE-MRI, DW-MRI, and FDG-PET studies to initialize the model and lead to patient-
realistic outcomes. Equations describing the rate of change of tumor cells, endothelial cells,
and glucose at point x and time t take values of the above imaging data to initialize the
model in order to predict distributions of these same parameters at future time points, which
can then be directly compared with experimental data. The diffusion of tumor cells (DTC)
can be estimated by using sequential anatomical MRI data (15). Similarly, sequential blood
volume maps available from DCE-MRI can potentially inform the diffusion of endothelial
cells (DEC). Once an estimate is obtained for DEC, chemotaxis of ECs (χEC) can be
estimated as the value that results in a local blood volume increase equal to what is seen in
vivo. MRI data can provide an estimate of NTC and θ. By adding a third imaging scan, the
equation describing rate of change of tumor cells (Fig. 3) can be fit to sequential DW-MRI
data in order to estimate kp,TC and kd,TC, which are the proliferation and death rates of the
tumor cells, respectively. Chemotaxis of tumor cells (χTC) can be estimated to provide an
equal tumor cell migratory/chemotaxic response to blood volume gradients as compared
with literature studies of migratory/chemotaxic response to oxygen gradients.

The diffusion value of glucose (DG) is a physical constant and can be safely assumed from
literature values. Glucose uptake by tumor cells (TG) can be estimated by the product of the
number of tumor cells and the glucose consumption rate per tumor cell. Although the
number of tumor cells can be estimated from ADC data (Fig. 1), glucose consumption is
more difficult to capture and may have to be assigned an empirical value. The delivery of
glucose to tumor cells (FG) can be written as the product of glucose delivery to a given
voxel, glucose in the blood, and the extraction fraction of glucose. Delivery is estimated
from DCE-MRI data, blood glucose concentration (CG) is readily accessible by a blood
draw, and the extraction fraction can be estimated by the difference between the
concentration of FDG in the voxel and blood glucose levels.

LINKING THE SCALES
If we take the macroscopic-scale structure of the tumor to be its volume, surface area, and
gross morphological features, then the mesoscopic-scale structure can be taken to be tumor
cellularity (or cell density) and vascularity (Fig. 1). At finer scales, we encounter cellular
properties such as glucose metabolism, proliferation, motility, or stress response (Figs. 2 and
3). Current, clinically available medical imaging methods report on all of these scales. [The
Cancer Imaging Archive (www.cancerimagingarchive.net) provides a range of imaging data
types available.] Although routinely available in vivo medical imaging approaches do not
offer adequate spatial or temporal resolution at finer scales (such as the gene scale) to
completely link all scales, it may be possible to link data accessible from imaging to the
genomic and histopathology data available from, for example, biopsies (22). In short, every
effort should be made to incorporate all available patient-specific data to more completely
constrain a predictive model.

The models presented above are informed by recent work in cancer cell biology, but efforts
are required to ensure measurements and associated predictions are consistent with the
growing understanding at the microscopic level. We do not yet have a thorough
understanding of how the biological properties not measured through imaging affect tumor
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modeling. Indeed, there are many ongoing efforts to understand the physical and biological
principles at the microscopic scales, perhaps most notably by the members of the National
Cancer Institute–National Science Foundation Physical Sciences in Oncology program (23).
However, phenomenological, macroscopic models have been successful in other disciplines
in both managing practical applications and providing lampposts for microscopic theories.
The methodology we suggest could bring mathematical modeling to immediate clinical
relevance through the use of phenomenological models that predict patient outcome from
currently available patient measurables and thus can be used to improve patient care.
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Fig. 1. Modeling cell number
ADC maps of a tumor can be superimposed on anatomical T1-weighted MR images
obtained at three time points during neoadjuvant chemotherapy. These data are first
transformed to an estimation of cell number. So transformed, these data enable the
calculation of the associated proliferation (k > 0) or death (k < 0) rate. The carrying capacity
θ is estimated as the total number of tumor cells that fit within a voxel. Then by using the
tumor cellularity measured at the second time point, the proliferation/death rate, and the
logistic model of growth, one can predict future cellularity, which enables explicit
comparison with experimental data (scatter plot).
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Fig. 2. Modeling cell number and biomechanics
Similar to Fig. 1, the top row of three images depicts color-coded ADC maps of a tumor
superimposed on (fat-saturated) T1-weighted MR images obtained at three time points
during chemotherapy. Again, the initial and intermediate data are transformed to an
estimation of cell number that, in conjunction with a biomechanical model (set of
equations), is used to estimate the proliferation k. Using the estimated k and the
biomechanical model, one can make predictions related to future cellularity, which can then
be compared directly with experimental data (in this case, the acquired third time point acts
as a comparator).
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Fig. 3. Multimodal outputs to describe tumor and vessel dynamics
Multimodal (PET and MRI), multiparametric imaging data (estimates of glucose utilization,
tumor cellularity, vascularity, perfusion, and tissue volume fractions) could be used to
initialize and constrain a coupled set of partial-differential equations describing tumor cell
proliferation, angiogenesis, and glucose utilization. The far left column represents the type
of data that would be available from routine DW-MRI (k, NTC), DCE-MRI (NEC), and FDG-
PET imaging (CG). These data can then be input into the equations provided to predict
distributions of these parameters at future time points (intermediate and final outcomes). As
with Figs. 1 and 2, the model outcomes can be directly compared with experimental data.
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