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Abstract
This article considers the situation that arises when a survey data producer has collected data from
a sample with a complex design (possibly featuring stratification of the population, cluster
sampling, and / or unequal probabilities of selection), and for various reasons only provides
secondary analysts of those survey data with a final survey weight for each respondent and
“average” design effects for survey estimates computed from the data. In general, these “average”
design effects, presumably computed by the data producer in a way that fully accounts for all of
the complex sampling features, already incorporate possible increases in sampling variance due to
the use of the survey weights in estimation. The secondary analyst of the survey data who then 1)
uses the provided information to compute weighted estimates, 2) computes design-based standard
errors reflecting variance in the weights (using Taylor Series Linearization, for example), and 3)
inflates the estimated variances using the “average” design effects provided is applying a “double”
adjustment to the standard errors for the effect of weighting on the variance estimates, leading to
overly conservative inferences. We propose a simple method for preventing this problem, and
provide a Stata program for applying appropriate adjustments to variance estimates in this
situation. We illustrate two applications of the method to survey data from the Monitoring the
Future (MTF) study, and conclude with suggested directions for future research in this area.

Background
Standard practice in the design-based analysis of complex sample survey data requires data
analysts to identify variables containing final survey weights (possibly compensating for
unequal probabilities of selection, nonresponse adjustments, and/or post-stratification
adjustments) and either variables identifying first-stage sampling error strata and first-stage
sampling error computation units (SECUs, or “ultimate clusters”), or variables containing
replicate survey weights, enabling the use of replicated variance estimation procedures
(Heeringa et al., 2010, Chapter 4). In both cases, the final survey weights enable
computation of unbiased estimates of descriptive parameters and regression parameters in
finite populations. In the former case, one estimates the sampling variance of a parameter
estimate using a first-order Taylor Series approximation (approximating the parameter
estimate as a linear function of weighted sample totals, and then computing the variance of
this approximation). This is known as “Taylor Series Linearization,” or TSL, and this
variance estimation method introduces a slight positive bias in variance estimates (and
slightly conservative inferences about the population of interest); see Wolter (2007) for
more details. Replicated variance estimation methods, such as Jackknife Repeated
Replication (JRR) and Balanced Repeated Replication (BRR), are also possible when these
design codes are available. In the latter case, when only the final survey weight and replicate
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survey weights are available, JRR and BRR can be used to estimate variances.
Asymptotically, TSL, JRR, and BRR converge to very similar variance estimates for most
parameter estimates (Rao and Wu, 1985).

The Stata software provides data analysts with several easy-to-use tools implementing these
analysis procedures, including svyset (for identifying complex design features), svydes (for
simple descriptive analyses of the identified design features) and the ability to insert the svy:
modifier before a wide variety of descriptive (e.g., mean) and model-based (e.g., regress)
commands to implement appropriate design-based analyses. Unfortunately, not all public-
use survey data sets contain all of the necessary variables enabling the alternative variance
estimation procedures. Stratum and SECU codes are often excluded from public-use survey
data sets to maintain respondent confidentiality and limit disclosure risk (Lu and Sitter,
2008). Some data sets may also exclude replicate weights, providing data analysts with only
the final survey weight (e.g., Johnston et al., 2008). In this case, the data producer needs to
provide the data user with design effects for a wide variety of key parameters (e.g., Johnston
et al., 2011, pp. 532-552), which the data user can then use to adjust variance estimates and
associated confidence intervals, correctly accounting for complex sampling features (e.g.,
Thomas et al., 2005).

In general, following the notation used by Park et al. (2003), the design effect for a given
parameter estimate  is defined as follows:

(1)

In (1),  refers to an estimate of the parameter ignoring the weights and assuming simple

random sampling with replacement (SRSWR). The total design effect  (which is
estimated in practice) accounts for the multiplicative change in the variance of an estimate
under SRSWR due to complex sample design (CD) features, including without-replacement
selection, stratified cluster sampling (generally resulting in an increase in the variance due to
the cluster sampling, i.e., Deft2clust > 1, and a decrease in the variance due to stratified
sampling, i.e., Deft2strat < 1), and the use of weights in estimation (generally resulting in an
increase in the variance, i.e., Deft2weights > 1; see Heeringa et al., 2010, Section 2.5).

Previous work has shown that the total design effect for an estimated mean is an
approximate function of complex interactions between the various sample design features,
the relationship of the variable of interest with the sampling weights, and the distribution of
the variable of interest (Park and Lee, 2004). For practical purposes, we write the total
design effect in (1) as the simple product of three separate design effects due to each
complex sampling feature, as suggested by Park et al. (2003). Importantly, this result only
holds if the survey variable of interest and the survey weights are independent (Park and
Lee, 2004). Under this assumption, if a data producer only provides a data user with a final
survey weight and average total design effects, the data user can compute weighted
estimates and linearized variance estimates based on the weights (introducing Deft2weights),
and then further adjust the estimated variances to incorporate additional design effects due to
stratified cluster sampling.

Because total design effects include effects on the variance due to all of the elements of
complex sampling (weighting, stratification, and clustering), one does not want to “doubly
adjust” for the effects of weighting if a linearized variance estimator incorporating the
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weights has already been used. For example, suppose that a data producer provides the
public with a survey weight in a data file, possibly incorporating compensations for unequal
probability of selection, differential nonresponse, and post-stratification. The data producer
also provides the data user with average design effects for many estimates of interest,

several of which suggest that . Importantly, this average design effect of 2.0
already includes multiplicative increases in the variance due to weighting (as computed by
the data producer), as shown in (1). The data user then computes weighted estimates and
linearized variance estimates for those weighted estimates (which incorporate increases in
variance due to variability in the weights), and proceeds to multiply the estimated variance
by the average design effect of 2.0 (which already includes the increase in variance due to
weighting), as instructed by the data producer. The net result is an unnecessary inflation of
the variance of the estimate, and overly conservative inferences.

A simple adjustment procedure [based on the approximation in (1)] can be used if the data
user is only provided with a final survey weight and an average total design effect for a
number of key statistics. The design effect due to the use of weights (which we denote as
Deft2weights) can first be estimated using the estat effects command in Stata, after estimating
a parameter and using TSL to estimate the variance of the parameter estimate. The average

design effect provided by the data producer  can then be divided by the design effect
due to weighting to “extract” the approximate portion of the overall average design effect
due to stratified cluster sampling:

(2)

This extracted portion of the overall design effect can then be used to adjust estimated
variances and corresponding test statistics and confidence intervals. If degrees of freedom
based on the complex sample are also provided by the data producer, these can be
incorporated into the adjustments as well. If not, large-sample critical values based on the
standard normal distribution can be used to compute p-values for standard test statistics and
construct confidence intervals.

The following Stata .ado file defines a simple command that takes five inputs [a weighted
parameter estimate (1), the linearized estimate of the standard error (2), an average design
effect (3), a design effect due to weighting (4), and an indicator of whether exponentiated
forms of parameter estimates are desired (5)] and enables this type of design effect
adjustment.

program define deft2corr

capture log close

di “ ”

if ‘5’ == 1 {

    di “Exponentiated Estimate: ” exp (‘1’)

    di “95% CI LL: ” exp (‘1’ - 1.96* ‘2’* (sqrt (‘3’)/sqrt (‘4’) ) )

    di “95% CI LL: ”exp (‘1’ + 1.96* ‘2’* (sqrt (‘3’)/sqrt (‘4’) ) )

}

if ‘5’ == 0 {
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    di “Estimate: ” ‘1’

    di “95% CI LL: ” ‘1’ - 1.96* ‘2’ * (sqrt (‘3’)/sqrt (‘4’) )

    di “95% CI LL: ” ‘1’ + 1.96* ‘2’ * (sqrt(‘3’)/ sqrt (‘4’) )

}

di “Z statistic: ” ‘1’ / (‘2’ * (sqrt (‘3’) / sqrt (‘4’) ) )

if ‘1’ / (‘2’ * (sqrt (‘3’) / sqrt (‘4’) ) ) > 0 di “p-value: ” 2 * (1- normal (‘1’ / (‘2’* (sqrt (‘3’) / sqrt(‘4’) ) ) ) )

if ‘1’ / (‘2’ * (sqrt (‘3’) / sqrt (‘4’) ) ) < = 0 di “p-value: ” 2 * (normal (‘1’ / (‘2’ * (sqrt (‘3’) / sqrt (‘4’) ) ) ) )

end

exit

We illustrate the use of the deft2corr command by analyzing data from the Monitoring the
Future (MTF) study (years 2007-2009).

Illustration
Nonmedical use of prescription opioids is a growing public health problem in the United
States. Previous research focusing on young adults has found that more than 1 in every 10
lifetime nonmedical users of prescription opioids report intranasal administration (snorting)
(McCabe et al., 2007). Furthermore, approximately 67% of intranasal users screened
positive for drug abuse in the past year relative to approximately 6% of non-users and 26%
of nonmedical users who reported oral administration only. The use of prescription opioids
via intranasal and other non-oral routes of administration is an extremely dangerous drug use
behavior that has been linked to a number of adverse physical consequences (Jewers et al.,
2005; Watson et al., 2004; Yewell, Haydon, Archer, & Manaligod, 2002). Additionally, the
rate of delivery of drug to the brain directly correlates to the abuse potential of the drug and
intranasal along with other non-oral routes of administration deliver drug to the brain at a
much faster rate than oral administration (Kollins, 2003; Roset et al., 2001).

In this example, we analyze survey data from the Monitoring the Future (MTF) Study
(Years 2007-2009), and focus on two research objectives for 12th grade students in the
United States. The first objective is to estimate the proportion of nonmedical users of
prescription opioids among high school seniors (modal age 18) using via intranasal
administration. The second objective is to use logistic regression modeling to estimate
differences in the odds of intranasal administration between nonmedical users only,
nonmedical users who began using nonmedically prior to medical use, and nonmedical users
who began using medically before nonmedical use (adjusting for race / ethnicity, year,
geographic region of the school, and metropolitan statistical area). The MTF study only
provides data users with a final survey weight (the variable V5; Johnston et al., 2008), and
includes appendices of total design effects for a variety of estimates, enabling the
computation of average total design effects (Johnston et al., 2011, Appendix C). For this
illustration, we use an average MTF total design effect of 2.0 (Johnston et al., 2011).

Prior to running the analyses, we examined the critical assumption underlying the result for
the total design effect in (1), and found that the correlation of the survey weight variable
(V5) and the nasal administration indicator (V1615) was negligible (r = 0.01, p = 0.82). The
following Stata commands implement the analyses, and illustrate the use of the deft2corr
command:
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* Set up survey weight and linearized variance estimation (default).

svyset [pweight = V5]

* Estimate the proportion of nonmedical users (subpop) using nasal

* admin (V1615).

svy, subpop(if usehistory == 3 | usehistory == 4 | usehistory == 5): prop V1615

* Request DEFT2 due to weighting (only).

estat effects

* Apply deft2corr, inputting the estimate, linearized SE, average

* total DEFT2, and DEFT2 component due to weights.

deft2corr 0.3627 0.0257 2 1.3528 0

* Estimate logistic regression model for odds of nasal admin.

svy, subpop(if usehistory == 3 | usehistory == 4 | usehistory == 5): logit V1615 ib3.usehistory i.V1151 i.V1 i.V13
i.V17

* Request DEFT2 estimates due to weighting (only).

estat effects

* Apply deft2corr for each parameter estimate, requesting

* exponentiated estimates (adjusted odds ratios).

deft2corr 1.7938 0.5310 2 1.4987 1

deft2corr 2.0390 0.5172 2 1.5098 1

Table 1 presents results from running the commands above (columns 2 and 5), along with
the resulting 95% confidence intervals when only using the weights without any adjustment
for stratification and clustering (column 3), and the confidence intervals computed when
applying the average total design effect on top of the linearized standard error already
incorporating the weights (the “double adjustment”; column 4).

An estimated 36.27% of nonmedical users of prescription opioids in the 12th grade (modal
age 18) during 2007-2009 administered the opioids intranasally, while nonmedical users
who used nonmedically prior to any medical use and nonmedical users only (with no
medical use ever) had 6.01 and 7.68 times greater odds of intranasal administration than
nonmedical users who used medically first, holding the other covariates fixed.

The results in Table 1 clearly show how the correct design effect adjustment (last column)
produces 95% confidence intervals for the parameters of interest with lower and upper limits
that lie in-between the overly conservative limits computed using the “double” adjustment
for the effect of weighting, and the overly liberal limits computed without adjusting for the
effects of stratification and clustering. In the cases of the two adjusted odds ratios, the level
of significance actually varies depending on the adjustment used. This suggests that the
overly conservative “double” adjustment could certainly impact tests of significance in other
cases and contexts.

Notably, the average total design effect provided by a data producer (2.0 in this case) is
essentially arbitrary, and can have a big impact on inferences. For this reason, it is essential
for data users to obtain an appropriate average total design effect for the subpopulation and
the estimates in which they are interested when using these adjustment methods. We also
acknowledge that more complex types of corrections may be needed if the provided survey
weights are informative, or strongly related to the survey variables of interest. Future
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research on this scenario needs to consider whether the results of Park and Lee (2004) can
be applied to enable data users who are only provided with survey weights and average
design effects to correctly compute estimated standard errors that fully reflect all of the
complex features of a given sample design.
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Table 1

Comparisons of Design-Based 95% Confidence Intervals for Selected Parameters using Alternative Design
Effect Adjustments (Source: MTF 2007-2009).

95% Confidence Interva s:

Parameter Weighted Estimate Without Adjustment
for Stratification and
Clustering

With “Double
Adjustment” for
Weighting

With Correct Adjustment

Proportion: Nasal Administration 0.3627 (0.3124, 0.4130) (0.2915, 0.4339) (0.3015, 0.4239)

AOR: NMPM vs. MPNM 6.0120
(2.1230, 17.0245)

**
(1.3798, 26.1973)

*
(1.8067, 20.0071)

**

AOR: NMO vs. MPNM 7.6826
(2.7874, 21.1746)

***
(1.8320, 32.2206)

**
(2.3923, 24.6734)

***

NOTES: AOR = Adjusted Odds Ratio. NMPM = Nonmedical Use Prior to Medical Use. MPNM = Medical Use Prior to Nonmedical Use. NMO =
Nonmedical Use Only. t-test of null hypothesis that regression parameter is equal to 0:

***
p < 0.001

**
p < 0.01

*
p < 0.05.
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