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Abstract
To facilitate rigorous analysis of molecular motions in proteins, DNA, and RNA, we present a
new version of ROTDIF, a program for determining the overall rotational diffusion tensor from
single-or multiple-field Nuclear Magnetic Resonance (NMR) relaxation data. We introduce four
major features that expand the program’s versatility and usability. The first feature is the ability to
analyze, separately or together, 13C and/or 15N relaxation data collected at a single or multiple
fields. A significant improvement in the accuracy compared to direct analysis of R2/R1 ratios,
especially critical for analysis of 13C relaxation data, is achieved by subtracting high-frequency
contributions to relaxation rates. The second new feature is an improved method for computing the
rotational diffusion tensor in the presence of biased errors, such as large conformational exchange
contributions, that significantly enhances the accuracy of the computation. The third new feature is
the integration of the domain alignment and docking module for relaxation-based structure
determination of multi-domain systems. Finally, to improve accessibility to all the program
features, we introduced a graphical user interface (GUI) that simplifies and speeds up the analysis
of the data. Written in Java, the new ROTDIF can run on virtually any computer platform. In
addition, the new ROTDIF achieves an order of magnitude speedup over the previous version by
implementing a more efficient deterministic minimization algorithm. We not only demonstrate the
improvement in accuracy and speed of the new algorithm for synthetic and experimental 13C
and 15N relaxation data for several proteins and nucleic acids, but also show that careful analysis
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required especially for characterizing RNA dynamics allowed us to uncover subtle conformational
changes in RNA as a function of temperature that were opaque to previous analysis.
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1 Introduction
Proteins and nucleic acids are two biopolymers at the center of numerous cellular functions
that can adopt intricate three-dimensional architectures, and for the most part remodel those
pliant structures to accommodate ligands and other signaling cues (Mittermaier and Kay,
2006; Peng, 2012; Dayie, 2013; Dethoff et al, 2012). They can remodel their three-
dimensional architectures either by induced fit or conformational capture or both (Pozzi et
al, 2012). In the former case the nature of the binding event drives the free state to the bound
structure, whereas in the latter case the ligand binding selects or captures the competent
conformation out of a population of pre-existing conformations (Leulliot and Varani, 2001).
Given the primal roles that structure and dynamics play, analysis of the molecular motions
of these biopolymers is critical for advancing our understanding of the interplay of structure,
dynamics, and function. At the heart of those types of analyses is the ability to accurately
quantify the overall rotational diffusion tensor from NMR relaxation data. (Fushman et al,
1994; Bruschweiler et al, 1995; Mandel et al, 1995; Tjandra et al, 1995; Peng and Wagner,
1995; Tjandra et al, 1997; Fushman et al, 1997; Akke et al, 1997; Fushman and Cowburn,
1998b; Fushman et al, 1999b; Hall and Fushman, 2003; Fushman, 2012). Recently progress
has been made on a number of fronts: (i) the improved ability to refine the structures of
complexes and quantify molecular motion; (ii) the use of the diffusion tensor as a long-range
orientational restraint for the structural characterization of multidomain systems (Fushman
et al, 1999b; Ghose et al, 2001; Fushman and Cowburn, 2002; Fushman et al, 2004; Ryabov
and Fushman, 2006, 2007a) and for analysis of dynamics of mostly the backbone of proteins
(Hall and Fushman, 2003; Fushman et al, 2004; Hall and Fushman, 2006), and rarely for
nucleic acid bases and ribose moieties (Akke et al, 1997; Legault et al, 1998; Hoogstraten et
al, 2000; Dayie et al, 2002; Boisbouvier et al, 2003; Duchardt and Schwalbe, 2005; Eldho
and Dayie, 2007) and (iii) introduction of rotational diffusion tensor as a translational
restraint in rigid-body docking of multi-domain proteins and protein-protein complexes
(Ryabov and Fushman, 2007b; Ryabov et al, 2010; Berlin et al, 2011).

All these approaches depend on fast and accurate determination of the overall rotational
diffusion tensor. To directly obtain the fully anisotropic rotational diffusion tensor from
spin-relaxation rates using the model-free approach(Lipari and Szabo, 1982) data at multiple
fields need to be collected(Fushman and Cowburn, 2001) and subsequently a nonlinear, non-
convex least-squares analysis performed (d’Auvergne and Gooley, 2008). The difficulty of
obtaining experimental relaxation data at several fields, the algorithmic complexity of the
computation, as well as uncertainties in obtaining very accurate measures of both the
magnitudes and orientation of the chemical shift anisotropy (CSA) tensors have all limited
the adaptation of the fully anisotropic diffusion tensor for structure analysis.

To obtain accurate estimate of the fully anisotropic rotational diffusion tensor from spin-
relaxation measurements, the analysis is usually limited to those regions of the
macromolecules that are structured. There the local motions are characterized by relatively
high order parameters (S2 ≈1) and fast internal correlation times (τloc ≤100 ps). In this case
it is possible to extract the rotational diffusion tensor from ratios of relaxation rates (e.g., R2/
R1) instead of the relaxation data directly (Tjandra et al, 1995; Fushman et al, 1999b),
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because the relaxation-rates ratio cancels out the unknown factors such as the dipolar and
CSA terms and order parameters (Fushman et al, 1999b; Fushman and Cowburn, 2002;
Fushman et al, 2004), thus allowing a direct determination of the rotational diffusion tensor
without the need for any additional site-specific characteristics except for the orientation of
the relaxation-relevant internuclear vectors (see e.g., (Fushman et al, 1999b)). Several
publicly available packages have been developed to derive the anisotropic rotational
diffusion tensor from 15N relaxation rate ratios, including TENSOR (Dosset et al, 2000),
DIFFTENS (Ghose et al, 2001), ROTDIF (Walker et al, 2004), and a 13C adaptation of the
latter program, ROTDIF_RNA (Eldho and Dayie, 2007).

Here we introduce a new, redesigned version of the ROTDIF software with numerous
features that significantly improve and expand the functionality and performance of the
program. The new version, ROTDIF 3, allows analysis of 15N and 13C relaxation data
(separately or together) at a single or at multiple magnetic fields, and significantly improves
the computational performance of the previous version by introducing a new multi-start
convex optimization algorithm. ROTDIF 3 is an order of magnitude faster than the previous
version, and includes an option for robust regression that increases the accuracy of
computation in the presence of outliers, such as those arising from conformational exchange
contributions, highly flexible residues, and other contributions not captured by the models
used in the existing software.

As part of the current package, we integrate the new ROTDIF module with the ab initio
diffusion tensor predictor ELM (Ryabov et al, 2006) and the alignment and translational
docking modules developed in ELMDOCK (Berlin et al, 2011). The updated domain-
alignment method extends the previous eigenvector-based domain-alignment approach by
now computing the globally optimal orientational alignment(Fushman et al, 1999b, 2004;
Berlin et al, 2011). The extended alignment approach yields improved solutions when the
principal values of the anisotropic rotational diffusion tensors measured for the two domains
are not identical. These new modules are designed for quantitative analysis and
interpretation of relaxation data in terms of structural change.

All the modules are tightly integrated into a Graphical User Interface (GUI), which replaces
the previously developed (MATLAB) command-line interface with a more intuitive visual
interface. Users can now rapidly compute, analyze, and refine their diffusion tensor results,
as well as instantly compute an aligned and docked structure of a two-domain system.
Importantly, the new ROTDIF package (and the associated ELM and ELMDOCK modules)
is written in Java, runs on any system with a Java 6+ virtual machine, and requires no
installation or any adjustable parameters.

Finally, we apply the new package to synthetic data as well as published relaxation data for
two proteins (GB3 and ubiquitin) and several nucleic acids (a Dikerson DNA dodecamer, a
fragment of RNA enzyme (D5), and UUCG tetraloop capped RNA element). We show that
careful analysis of relaxation data, especially for nucleic acids, is key for making meaningful
conclusions about macromolecular structure and function.

2 Method
The rotational diffusion tensor D is a symmetric positive definite 3 × 3 matrix that
characterizes the (generally) anisotropic overall random reorientation (tumbling) of a
molecule in a solvent (Woessner, 1962; Bruschweiler et al, 1995). Anisotropy applies when
the tumbling rates around various directions in a molecule are different. We label the sorted
eigenvalues (principal components) of D as Dx ≤ Dy ≤ Dz, and define the orientation of the

Berlin et al. Page 3

J Biomol NMR. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



tensor through the associated rotation matrix of a sorted eigendecomposition. We also define
the overall rotational correlation time as τc = 1/[2 × tr(D)], where tr(D) is the trace of D.

The overall molecular tumbling causes spin relaxation of a nucleus P by modulating various
interactions, including the interaction with the external magnetic field and dipolar couplings
with other nuclei. For an isolated pair of spin-1/2 nuclei P and Q (where, e.g., P is 15N
or 13C and Q is 1H), the rates of longitudinal (R1) and transverse (R2) spin-relaxation and the
steady-state nuclear Overhauser enhancement (NOE) of nucleus P are related to the
rotational diffusion tensor of the molecule via the following equations (e.g. (Dayie et al,
1996; Fushman and Cowburn, 2001)).

(1)

where J(ω) = J(ω, v, D) is the spectral density of reorientational motion for the PQ bond, v
is the bond’s orientation, ω is the Larmor precession frequency, Rex is the conformational
exchange contribution to R2, d = −μ0γP γQh/(16π2r3) and c = −ωP CSA/3 are constants
representing the magnitude of the dipolar and chemical shift anisotropy (CSA) interactions,
r is the length of the PQ bond, h is the Planck’s constant, and μ0 is the vacuum permeability.
Here we refer to the steady state NOE as R3 throughout the manuscript, and define it as R3 =
Isat/Ieq where Isat and Ieq are signal intensities of nucleus P measured when the nucleus Q is
in the saturated and in the equilibrium states, respectively. The equations for R1 and R2
assume that the chemical shift tensor of nucleus P is axially symmetric and approximately
oriented along the PQ bond (see (Fushman and Cowburn, 1999) for corrections when this
assumption is not valid). We assume the model-free or extended model-free forms of the
spectral density functions J(ω) (Lipari and Szabo, 1982; Clore et al, 1990). Expressions for
J(ω) for the isotropic, axially-symmetric, and the fully anisotropic diffusion models are
given in Supporting Information. Since J(ω)’s dependence on the diffusion tensor is
nonlinear, solving Eq. (1) becomes a nonlinear optimization problem.

Given R1, R2, and R3 at several fields, Eq. (1) can potentially be solved for the overall
rotational diffusion tensor (together with the microdynamic parameters, e.g. S2 and τloc, and
the dipolar and CSA terms) without making any assumptions other than the Lipari-Szabo
model for J(ω) (Lipari and Szabo, 1982; Fushman and Cowburn, 2001). However, when R1,
R2, and R3 are only available at a single field the general solution of Eq. (1) for D is ill-
posed (i.e. there are multiple solutions, as the number of unknowns exceeds the number of
available experimental parameters), and hence impossible to solve without making a priori
assumptions about some of the variables (see e.g. (Fushman and Cowburn, 2001)).

In our approach we introduce an a priori restraint by limiting our input to only those bonds
that are in the structurally well-defined (“rigid”) parts of the molecule and were Rex ≪R2. It
is possible to justify these assumptions, for example, by selecting bonds from secondary
structure elements and assessing Rex contributions from comparison of the transverse auto-
and cross-correlation rates or from analysis of relaxation data at multiple fields (Fushman
and Cowburn, 1998a; Fushman et al, 1999a; Kroenke et al, 1998; Fushman and Cowburn,
2001).

Our analysis focuses on the ratio ρ of spectral density components at ω = 0 and ω = ωP.
Based on Eq. (1) and assuming that Rex = 0, ρ is directly related to the modified ratio of
spin-relaxation rates
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(2)

in which we subtracted the contributions from high-frequency components of the spectral
density, HF1 and HF2, defined as

(3)

As shown earlier (Fushman et al, 1999b; Fushman and Cowburn, 2001, 2002), for “rigid”
PQ bonds the reformulation of the relaxation rates via a single ρ value allows one to
quantify spin-relaxation parameters for each individual PQ pair via a single value that
depends only on ω, v, and D and is independent of the CSA, dipolar term, and order
parameter values. This approach, therefore, reduces significantly the number of model
assumptions needed for forward prediction of the relaxation rates. Note that the definition of
ρ in our new version is the inverse of the definition in the previous ROTDIF.

Based on the above definitions, we can approximate the high-frequency contributions as

(4)

where

(5)

and the coefficients w1 and w2 are estimated(Fushman and Cowburn, 1998a; Fushman et al,
1999a; Eldho and Dayie, 2007) using reduced spectral density approach (Ishima and
Nagayama, 1995; Farrow et al, 1995; Peng and Wagner, 1995), and are usually assumed to
be constant. For the typical values of the overall rotational correlation time τc of
macromolecules (τc > 4 ns) the values of ωQ, ωQ ± ωP are at the high-frequency tail of J(ω)
(τcω ≫ 1); therefore the coefficients wi are nearly independent of τc, if S2 ≈ 1. However, in
our algorithm, instead of using pre-defined constant w1, w2 values, as has been previously
done(Fushman and Cowburn, 1998a; Fushman et al, 1999a; Eldho and Dayie, 2007), we
compute w1 and w2 numerically for each bond (see next section).

Given the above definitions, the experimental ratio can be estimated from the measured
relaxation rates as

(6)

and the predicted ratio can be simply computed as

(7)
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The problem of finding the rotational diffusion tensor can now be expressed as a least-
squares optimization problem:

(8)

where

(9)

N is the number of PQ bonds in the molecule,  is the unit vector in the

direction of the i-th PQ bond,  is the ratio, given by Eq. (6), of experimentally measured
transverse and longitudinal spin-relaxation rates (with high-frequency correction) for

nucleus P in the PQ bond i,  is given by Eq. (7), and σi is the experimental error

in . By selecting only relatively rigid bonds for the analysis we assured that ρpred

depends only on D and known values of v and ω (Fushman et al, 1999b; Fushman and
Cowburn, 2002), thus making the new formulation well-posed.

2.1 Initial Estimate of Parameters
Before performing global minimization of χ2 to determine the overall rotational diffusion
tensor, we directly fit the relaxation data, separately for each bond, in order to estimate
bond-specific τc, CSA, S2, and Rex. Here τc has the meaning of an effective (isotropic)
overall rotational correlation time. These values are not directly used in the computation, but
are instead used to provide warnings for users when the estimated S2 values are too low, or
Rex is too high. If R3 is not provided, Rex is assumed to be 0, S2 is set to 0.9, and only τc is
estimated. When R3 is provided, both τc and CSA values are estimated. If relaxation data at
only one field are available, we set Rex = 0 and S2 = 0.9. For relaxation data at multiple
fields all four variables are computed. Initial estimates for CSA values are taken from
(Stueber and Grant, 2002; Bryce et al, 2005; Ying et al, 2006; Hansen and Al-Hashimi,
2006; Fushman and Cowburn, 2001) (see Table S1), the CSA values are allowed to vary by
40 ppm, if they are fitted. The bond lengths are assumed to be 1.02 Å and 1.09 Å,
respectively, for NH and CH bonds (Case, 1999; Ferner et al, 2008).

2.2 Subtracting High-Frequency Contributions from Relaxation Rates
Accurate subtraction of the high-frequency contributions from the experimental rates in Eq.
(2) is fundamental to our χ2 minimization method. The accuracy of the subtraction depends
on finding the proper w1 and w2 values. We provide two methods for computing w1 and w2
depending on whether the R3 data are available or not.

For the first method, when R3 data are available, the w1 and w2 are approximated from Eq.
(3), Eq. (4), and Eq. (5), by solving for w1 and w2 the following equations

(10)

based on the theoretical definition of J(ω) (see Supporting Information) and using our initial
estimate for τc. The values of w1 and w2 vary only slightly for different τc values (as S2
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cancels out in the equations), providing a highly stable estimate for the constants, even when
our τc estimate significantly deviates from the true value.

For the second method, when R3 data are not available, we approximate the R3 value from
Eq. (1) using the experimental R1 value and computing the spectral densities using our
estimate for τc. Since the initial τc value estimated from just one bond can be unreliable, we
refine the w1, w2, and ρexp by solving Eq. (8) for Dexp using the initial ρ estimates, and then
updating each ρexp based on the more stable estimate of τc. These refined ρexp values are
then used to solve Eq. (8) for the final value of Dexp.

Fig. 1 shows that we are able to accurately compute ρ from synthetically generated 15N
or 13C relaxation data by subtracting high-frequency contributions using Eq. (6) and Eq.
(10). The accuracy is measured by the relative error of the recovered τc that we extract from
the computed relaxation ratio ρ. The synthetic relaxation data were created from randomly
sampled inputs of τc = [5, 20] ns, S2 = [0.8, 1], τloc = [0.001, 0.1] ns, and a range of CSA
and r values of [120, 220] ppm and [0.98, 1.05] Å for N-H, [5, 60] ppm and [1.07, 1.10] Å
for C1′-H1′, and [150, 230] ppm and [1.07, 1.10] Å for C6-H6, assuming isotropic overall
rotational diffusion. The spectrometer frequency was set to 600 MHz, 3% Gaussian error
was added to the R1 and R2 data and 5% error was added to R3. In addition, we also
evaluated the accuracy of the high-frequency contribution subtraction approach in the case
when R3 is unknown, and of the direct R2/R1 ratio approach, computed using the assumption
of S2 = 1. Note that by including C1′-H1′ and C6-H6 in our results, we tested our method for
both low and high 13C CSA values.

The results in Fig. 1 show that for majority of the input 13C data the errors in τc are smaller
than 6% (< 2% for 15N). Furthermore, high-frequency-contribution subtraction provides a
significant improvement in accuracy in the 13C case, compared to the direct R2/R1 method,
while removing the dependence on CSA, dipolar coupling, S2, and providing a significant
reduction in the computational complexity. The values of w1 and w2 fluctuate by about
0.01% for 15N and 0.1% for 13C, for the synthetic data ranges used here (see above).

2.3 Algorithms for Computing the Rotational Diffusion Tensor
Having derived ρexp, we now present algorithms for solving Eq. (8). As mentioned above,
there are three rotational diffusion tensor models that are commonly used to model J(ω). The
most general is the fully anisotropic model, where all three eigenvalues of the rotational
diffusion tensor are unique. In the case when two eigenvalues of the tensor are equal, the
fully anisotropic model can be simplified to an axially-symmetric model. Finally, when all
three eigenvalues are equal, a simple isotropic model is used. The axially-symmetric and
isotropic models can be directly derived from the fully anisotropic model. See Supporting
Information for the definition of J(ω) for the three diffusion tensor models and their
derivations.

First, we note that for the isotropic diffusion tensor model, Eq. (8) can be analytically solved
for D (see Supporting Information),

(11)

where Diso = 1/(6τc) is the eigenvalue of D. This solution will serve as an initial estimate for
the eigen-values of the axially-symmetric and the fully anisotropic models. The isotropic-
model algorithm is given in Supporting Information.
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We then use the isotropic solution as an initial guess for the axially-symmetric Dexp. This
eliminates the need for a user-defined range of eigenvalues, required in the previous
ROTDIF version (Walker et al, 2004), and at the same time speeds up convergence of the
iterative minimization. V, the orthonormal matrix of the eigenvectors of the diffusion tensor,
can be expressed using three Euler angles α, β, and γ. Since two of the eigenvalues are equal
in the case of the axially-symmetric model, the orientation of the diffusion tensor can be
described by the orientation of the unique eigenvalue, D||. Therefore, we can express this
orientation using only α and β angles and set γ = 0.

Due to the periodicity of the diffusion tensor in spherical coordinate space (see e.g. (Ghose
et al, 2001)), Eq. (9) is π periodic in the two Euler angles (Walker et al, 2004). We take a
similar approach to minimizing our χ2 as before (Walker et al, 2004), but instead of
randomly sampling a large number of angles for initial guesses to the nonlinear least-squares
solver, we only make four initial guesses for α and β: [0, 0], [0, π/2], [π/2, 0], and [π/2, π/2].
Additionally, we alternate between the last and the first two eigenvalues being equal to
handle the prolate (Dx ≈ Dy < Dz) and the oblate (Dx < Dy ≈ Dz) cases. The alternating is
needed when using an axially-symmetric diffusion tensor model to analyze relaxation data
for a molecule with full rotational anisotropy, since both a prolate and an oblate tensor
solution exist in this case.(Blackledge et al, 1998) We therefore perform nonlinear least-
squares minimization for eight initial guesses only. The complete algorithm is shown in
Supporting Information. By applying the algorithm to real and randomly generated synthetic
data, we empirically confirmed that our method was able to find the true minimizer every
time.

Finally, we solve for the fully anisotropic diffusion tensor Dexp. Again, we use the solution
from the isotropic model as an initial guess. We make an observation, similar to that for the
axially-symmetric case, that ρpred is π periodic for α, β, and γ. We therefore take eight initial
guesses for the Euler angles: [0, 0, 0], [0, 0, π/2], [0, π/2, 0], [0, π/2, π/2], [π/2, π/2, 0], and
[π/2, π/2, π/2]. The complete algorithm is provided in Supporting Information. Again, by
applying the algorithm to real and randomly generated synthetic data, we empirically
confirmed that our method was able to find the true minimizer every time.

2.4 Robust Least-Squares
In Eq. (8) we defined the experimental diffusion tensor as the minimizer of χ2. In expressing
our problem as the minimization of the sum of squares of weighted residuals we made an

implicit assumption that the weighted prediction model (values of ) is an unbiased
estimator. However, when equating ρexp to ρpred in Eq. (2) we assumed that Rex is
negligible. For some sites in a molecule Rex can be a significant contributor to the R2
relaxation rate. Since Rex is always positive, our ρpred values are biased estimators of ρexp,
violating the basic assumption of χ2-minimization. We therefore introduce a robust
regression method for estimating the experimental diffusion tensor that should partially
compensate for this bias. The method is deterministic and makes an assumption that it is
possible to detect major outliers based on the initial solution, given by equation Eq. (8).

We redefine our target function χ2 by replacing it with the outlier-damping version, , such
that

(12)
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where Δ= 3.0. Setting Δ= 3.0 significantly dampens the contribution of residuals that are
greater than 3σi (above 99.7 percentile). The initial guess into the least-squares method is
now given by Eq. (8).

3 Molecular Alignment, Docking, and Dynamics
The major goal of ROTDIF is to allow users to accurately and efficiently process relaxation
data and understand the results in an intuitive way. Though the diffusion tensor provides
important information about the overall shape of the molecular system under observation, it
is difficult to relate the quantitative values of the diffusion tensor to actual structural models.

In case of bimolecular systems, we have previously demonstrated that rigid-body alignment
and docking of the molecules based on relaxation data alone can provide fairly accurate
models for inter-molecular interactions (Ryabov and Fushman, 2007b; Berlin et al, 2011). In
ROTIDF 3 we provide a built-in interface, described in the next section, that allows the user
to seamlessly switch from simple derivation of the diffusion tensor to immediate
quantification of the results (using ELMDOCK(Berlin et al, 2011)) in terms of
intermolecular orientation and positioning, without requiring any additional input data or
program parameters. These new functionalities, described below, have an advantage of
providing immediate quantitative/structural information and its visualization.

First, the computationally improved version of the ab initio prediction of the rotational
diffusion tensor (ELM) developed earlier (Ryabov et al, 2006) can be directly accessed via a
button on the main screen. ELM is based on an ellipsoid representation of the molecular
shape. This component has been completely rewritten to provide significant improvement in
speed and stability, and can be accessed as a standalone component or through the provided
Application Programming Interface (API). Instead of fully computing the solvent-accessible
surface, as implemented in the original version, the surface is approximated by placing
multiple uniformly distributed spheres (representing water molecules) around each atom.
Each sphere is checked for collision against all atoms of the molecule in O(log N) time by
use of an octree, and the colliding spheres are removed from the computation. The contact
points between the remaining spheres and the atoms are used to compute the best-fit
ellipsoid, and the associated diffusion tensor of the ellipsoid is computed, as previously
described (Ryabov et al, 2006). The ab initio predicted diffusion tensor is computed in under
a second, and can be immediately compared to the tensor derived directly from the
experimental data.

Second, our diffusion-tensor-guided docking program ELMDOCK (Berlin et al, 2011) is
also directly integrated into ROTDIF 3. The docked model based on the relaxation data
(currently limited to two molecules/domains) is computed within a few seconds, and the
resulting structure can be saved directly to a PDB-format coordinate file. The integrated
version of ELMDOCK includes a new global alignment algorithm that improves upon the
eigendecomposition-based alignment method used previously(Berlin et al, 2011). The
eigendecomposition method is now used as an initial guess for a convex non-linear least-
squares optimizer that further refines the Euler angles, so either Eq. (9) or Eq. (12) is now
minimized.

The new alignment algorithm and the ab initio diffusion tensor predictor ELM are combined
to create a rigid-body alignment and docking algorithm. The algorithm uses the BOBYQA
derivative-free minimizer (Powell, 2009), and follows the basic algorithm described
previously (Berlin et al, 2011), but now the overall χ2 (Eq. (9)) is directly minimized. All the
docking components can be accessed separately through the provided API or directly from
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the main ROTDIF 3 interface. All docking parameters are automatically selected by the
program, and no problem-specific adjustment is ever required.

Finally, model-free analysis of local bond dynamics, based on the DYNAMICS(Fushman et
al, 1997; Hall and Fushman, 2003; Fushman, 2012) program, has been integrated into
ROTDIF 3. The model selection is now performed using Akaike information criterion
(AIC), instead of the F-test, as suggested elsewhere(d’Auvergne and Gooley, 2003).

4 User Interface
The most visible change in the new version of ROTDIF is the introduction of a Graphical
User Interface (GUI). The interface ties together all the features of ROTDIF in a simple
main window, instead of the previous command-line interface. The concept behind the
interface is to allow the user to leverage the fast computation time of our algorithm in order
to quickly and intuitively understand and refine the experimental data. The status of parsing
an input file is immediately displayed once the file has been selected, and the progress of
computation is shown via a progress bar. Once the diffusion tensor is computed, its principal
axes can be overlaid on top of the molecule and visualized in PYMOL (DeLano, 2002) via
an automatically generated python script. The sample screenshots of the interface are given
in Fig. 2.

The interface also provides error-dialog screens to allow the user to clearly understand
where the error is (e.g., wrong variable format, wrong variable names, mismatched
information, etc), and how it should be corrected. All of the plots available in the previous
ROTDIF version (Walker et al, 2004) can now be accessed through individual buttons on
the main screen. The plots also provide interactive access to additional information:
individual data points in the plots can now be identified and detailed information displayed
when mousing over them.

5 Results
To quantify the speed and accuracy of our algorithms, we tested ROTDIF 3 on various
synthetic and real experimental data. The computation and timing were performed on a
Macbook Pro laptop with a 2.66 GHz Intel Core i7 processor. Apache Math Commons 3.2
library was used for non-linear minimizations.

5.1 Analysis of Synthetic Data
To demonstrate the speedup of ROTDIF 3 we compared the computation time of our new
algorithm against the direct analysis of R2/R1 ratios, also using our newly developed
deterministic minimization algorithm, and the previous version of ROTDIF. The timing
results for variously sized synthetic input data (Fig. 3) demonstrate orders of magnitude
improvement in computational performance relative to the previous version. This
improvement is due to the new deterministic sampling of starting points during
minimization, efficient caching techniques for quick recomputation of J(ω), and the superior
performance of Java 6 compiler and virtual machine relative to MATLAB’s virtual machine
(previous ROTDIF). The results also show that using the ρ values (Eq. (6)) instead of the R2/
R1 ratios, gives about a two-fold speedup in computation.

We further demonstrate the accuracy of diffusion tensor recovery from randomly generated
data for the input parameters range used for Fig. 1, where we used relaxation data for a
single bond-vector, but now we test for accuracy using an aggregate of 100 randomly
orientated bond-vectors which share the same rotational diffusion tensor. For the isotropic
case the diffusion tensor was chosen to have uniformly distributed random τc values in the
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range between 5 ns and 20 ns. For the anisotropic tensor the principal values of the diffusion
tensor were set to 1.0, 2.0, and 3.0 × 10−7 s−1. The average errors in the recovered diffusion
tensor characteristics are shown in Fig. 4 in comparison with the direct analysis of R2/R1 .

As in our single-bond simulations (see Fig. 1), by subtracting high-frequency contributions
from relaxation rates we are able to accurately recover the full rotational diffusion tensor in
the presence of noise, in the absence of conformational exchange (see Fig. 4A–C and the 0%
values in the plots in Fig. 4D–I). While our approach provides only a minor improvement in
the accuracy over the R2/R1 method for 15N relaxation and Rex = 0, the accuracy is
significantly improved in the 13C case, while not making any assumptions about the CSA
values.

As mentioned above, R2 relaxation rates could contain an additional positive contribution
from Rex, which introduces a bias in our model. This bias breaks the basic assumption of χ2

minimization, and can introduce significant errors in the solution. Therefore, we analyzed
the accuracy of our method under increasing amounts of error introduced by adding large
Rex values to some percentage of residues. Rex values were chosen from a uniform
distribution, with 5< Rex < 10 s−1 for 15N, and 25< Rex < 50 s−1 for 13C. The results of the
simulation, shown in Fig. 4D–I, clearly demonstrate that the robust regression method can
significantly reduce errors in the derived rotational diffusion tensor in those cases where
conformational exchange contributions are present. Even in case of significant overall Rex
contributions, or potentially other outliers that do not fit the model-free assumption, the
robust regression method is able to provide an accurate estimate of the anisotropic tensor.
This ability to accurately estimate the diffusion tensor tensor can be used to quickly identify
outliers, orient multi-domain molecules during molecular docking, or when computing
diffusion tensors for large uncurated datasets in high-throughput applications.

5.2 Application to Experimental Relaxation Data
We now analyze experimental data for various systems to demonstrate that our method
successfully reproduces previously published diffusion tensors, while all of our results were
computed without any input-specific adjustment, selection of initial values (e.g. the upper
and lower bounds on the D eigenvalues), any manual curation of local minima, or any other
non-default option. The comparison is done using previously published results for the B3
domain of protein G (GB3)(Hall and Fushman, 2003), ubiquitin (Sheppard et al, 2009,
2010), as well as for several RNA and DNA constructs for which relaxation data are
available (Boisbouvier et al, 2003; Eldho and Dayie, 2007; Duchardt and Schwalbe, 2005;
Akke et al, 1997; Ferner et al, 2008). We use the first model from the PDB coordinates of
each system for all analyses, and the PDB-data coordinate frame for our reported results. We
define the anisotropy of the diffusion tensor as (Fushman et al, 2004)

(13)

and the rhombicity as

(14)

For GB3 we analyzed an extensive set of 15N relaxation data (see Fig. 5) measured at five
different magnetic fields (corresponding to 1H frequency of 400, 500, 600, 700, and 800
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MHz) at 24°C (Hall and Fushman, 2003, 2006). Residues 2, 11, 12, 39, 40, 41, 47, 48, 49,
50, and 56 were excluded from the analysis because of their signal overlap, location in the
flexible loops or tail, mutations that deviated from the original sequence/structure, and
residues that were identified to undergo conformational exchange(Hall and Fushman, 2003).
Additionally, for the 800 MHz and 500 MHz data, residues 10 and 38 were extreme outliers
and therefore were excluded as well.

The results in Table 1 demonstrate that the old and the new versions of ROTDIF yield
almost identical results for the GB3 dataset (in fact, the two versions give essentially
identical results for any 15N dataset that includes R1, R2, R3). Moreover, when performing a
“blind” computation on all the residues, not just the core, our new robust regression
algorithm provided much better result than the standard optimization algorithm, and was
able to converge to the expected solution, as given by the “core” residues. In all cases, the
angles between the computed diffusion tensor, the inertia tensor, and ELM-predicted
diffusion tensor largest principal axes are around 5°, a good match to the theoretically
expected results. Since robust regression provides a close solution to that for manually
curated data, we conclude that it can be used to effectively identify significant outliers, as
well as be used directly in blind high-throughput analyses of relaxation data.

We now focus on three new features of ROTDIF 3: deriving rotational diffusion tensor
from 13C data, from combined 15N and 13C relaxation data, and validation of the results
based on ab initio prediction of the rotational diffusion tensor using our built-in ELM
module. Combined analysis of 15N and 13C relaxation data for a protein, using the axially-
symmetric model, has been demonstrated before (Lee et al, 1997). However, accurate
analysis of 13C or both 15N and 13C relaxation data using fully anisotropic diffusion tensor
model, while particularly important for DNA and RNA, has been lacking; yet their function
rely heavily on dynamics, and thus accurate characterization of the overall rotational
diffusion tensor is essential (Dethoff et al, 2012; Shajani and Varani, 2007; Rinnenthal et al,
2011).

We start with the combined analysis of published 15N and 13C relaxation data (Sheppard et
al, 2009, 2010) for a well-characterized protein ubiquitin (PDB ID: 1D3Z). In our approach
we combine the carbon and nitrogen ρ ratios, and fit them directly. The data were collected
at 26°C on a spectrometer with 1H frequency of 600 MHz. The 13C relaxation data were
obtained using a ubiquitin sample selectively 13C labeled at Cα positions; this
removed 13C-13C contributions to the measured relaxation rates. Based on the secondary
structure and previous studies of ubiquitin, we defined residues 1–6, 12–14, 16, 17, 22, 25,
27–29, 31, 34, 39–45, 57–59, 64, 66–69 as the “core” rigid residues in this protein. The
results of our analyses are shown in Table 2 together with the previously published data.

For the combined data, based on both the Akaike Information Criterion (AIC) (d’Auvergne
and Gooley, 2003) (AIC= 97 for axially-symmetric vs. 57 for fully anisotropic) and the
statistical F-test (F = 27), the fully anisotropic diffusion model provides the best fit to the
experimental data. However, due to the higher level of experimental noise in the
reported 13C data, from the 13C data alone it was only possible to reliably determine the
isotropic diffusion tensor. The axially-symmetric solution is also shown in this case, for
completeness.

The ROTDIF 3 results in Table 2 closely match the published results for this dataset
(Sheppard et al, 2009) and the results of previous studies of 15N relaxation in ubiquitin
(Tjandra et al, 1995). Note that the previously reported analysis(Sheppard et al, 2009) of the
more problematic 13C data used independently-derived residue-specific 13C CSA values
(Tjandra and Bax, 1997), while our ROTDIF 3 computation was performed with no prior

Berlin et al. Page 12

J Biomol NMR. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



information and using only default settings (see Supporting Information). The results
demonstrate that our method for subtracting high-frequency contributions from 13C
relaxation data is effective and consistent with the more established approach to 15N data
analysis (Fushman et al, 1999b,a; Fushman and Cowburn, 2002; Walker et al, 2004;
Fushman et al, 2004). Note that, like for GB3, the robust-regression analysis, which blindly
selects all the residues, yielded a solution similar to that for “core” residues.

We now focus of analysis of relaxation data for nucleic acids. The first nucleic acid
relaxation data set analyzed is for the Dickerson DNA dodecamer, d(CGCGAATTCGCG)2
(Boisbouvier et al, 2003). This molecule was the first complete turn of B-DNA to be
successfully crystallized and has been used as a model system since. Due to the palindromic
nature of this DNA, the measured data correspond to both strands, which improves the
orientational sampling of bond vectors. Indeed, we noticed a decrease in the orientational
sampling parameter (Ξ) (Fushman et al, 2000) from 0.138, for just one-strand vectors, to
0.108 for the double-strand vectors. The improved sampling of bond orientations can also be
easily visualized using the new ROTDIF 3 GUI. The importance of orientational sampling
for accurate determination of the diffusion tensor was discussed earlier (Fushman et al,
2000; Boisbouvier et al, 2003). The experimental 13C R1 and R2 data taken from published
data (Boisbouvier et al, 2003) were obtained at 35°C and a 1H frequency of 600 MHz. To
avoid large CSA contributions to the relaxation rates, data were only measured for the ribose
carbons, (C1′, C3′, and C4′), where the carbon CSA is small (Boisbouvier et al, 2003). No
R3 values were available with these data, so we estimated R3 as described above.
Nucleotides C1 and G12, corresponding to the flexible tail of the DNA fragment, were
excluded from the definition of “core” residues due to their rapid internal motions. The bond
vector orientations were obtained from the highly-refined NMR structure (PDB ID 1NAJ)
(Wu et al, 2003). The results are shown in Table 3.

When the nineteen ρexp values were assigned to only one strand of the DNA palindrome, a
τc of 3.22 ± 0.01 ns was determined for the axially-symmetric model, shown in Table 3. The
fully anisotropic solution also closely matches in magnitude and orientation the axially-
symmetric solution, though the improvement in the fit is not statistically significant.

Assigning the nineteen ρexp values to both strands of the palindromic DNA improved the
sampling of bond orientations and yielded a τc of 3.29 ± 0.01 ns (Table 3). This matches the
published value of 3.35 ± 0.03 ns, as well as the theoretical value predicted by ELM. Note
that ROTDIF 3 automatically selected the prolate solution in the axially-symmetric case,
since our algorithm was able to detect also the local minimum corresponding to the oblate
solution (see e.g. (Blackledge et al, 1998)), without the need for any manual curation of the
two cases. The orientation of the axially-symmetric diffusion tensor deviates only by 3°
from the theoretical ELM solution (shown in Fig. 7), and by 5° from the inertia tensor. The
quality of axially-symmetric tensor fit is shown in Fig. 8, and demonstrates that all the
residuals fall within 2σ of the predicted values. Robust regression was not run because of
high σ error estimates, such that all residuals for the regular regression were already below
3σ.

The next set of relaxation data analyzed here is for the D5 RNA fragment from the group 2
intron ribozyme (Eldho and Dayie, 2007) (Table 4), to illustrate the difficulty of correctly
analyzing relaxation data from a very flexible RNA. The data were taken at 25° C at a 1H
frequency of 499.95 MHz. The solution structure (PDB ID 2F88) of D5 was used for
orientation of the CH bond vectors (Seetharaman et al, 2006). The original
publication(Eldho and Dayie, 2007) used a previous version of modified ROTDIF to obtain
a diffusion tensor using carbon relaxation data, which yielded a τc of 6.0 ± 0.3 ns. One of
the great challenges of relaxation data analysis for RNAs with flexible components is which
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“flexible” nucleotides to exclude from the diffusion tensor determination. In the original
publication, 16 out of the 25 bond vectors were excluded (Eldho and Dayie, 2007). These
vectors corresponded to the highly flexible stem loop (nucleotides 15, 16, 17, and 18),
internal bulge (nucleotides 24, 25, 26, and 28), and catalytic triad (nucleotides 2, 3, and 4).
Disregarding this large number of data points prompted us to re-investigate how the results
for D5 depend on which nucleotides are excluded. Table 4 shows diffusion tensor results for
various combinations of the flexible regions removed. One can see that, as more nucleotides
are added back to the data pool the τc value gradually increases but remains within the error
bounds of the original publication. However, the estimate of the diffusion tensor orientation
is what is most affected. This illustrates the need to be extremely cautious in excluding
flexible nucleotides from analysis. Introducing robust analysis is one significant
improvement over the previous iteration of the ROTDIF software for RNA analysis.

In this regard, it is also important to note that exclusion of nucleotides/vectors can greatly
reduce the orientational sampling of the data. When all nucleotides are included, the
orientational sampling parameter is Ξ = 0.195. Upon removal of the stem loop, internal
bulge, and catalytic triad the Ξ value raises to 0.280 and triggers a warning message. This
case illustrates an important caveat when analyzing data sets with a limited number of
vectors. It is not always immediately apparent which flexible vectors to exclude while
retaining a sufficient orientational sampling in such cases. However the GUI and fast
computational speed of ROTDIF 3 allow the user to quickly perform extensive analysis of
various possible combinations of included vectors. While this does not answer the question
which of the possible combinations most closely resembles the physical reality, it does
provide the necessary metrics to arrive at reasonable conclusions.

To illustrate the utility of simultaneously analyzing both 15N and 13C relaxation data, not
just for proteins but also for DNA and RNA, we now demonstrate ROTDIF 3 analysis on the
well-studied cUUCGg tetraloop motif. For this cUUCGg tetraloop motif there is a wealth of
relaxation data available, including both 15N and 13C. In particular, we analyzed 15N
relaxation data taken at 0° C (“Akke et al.”)(Akke et al, 1997), 15N and 13C data taken at 25°
C (“Duchardt et al.”)(Duchardt and Schwalbe, 2005), and just 13C data taken at 44° C
(“Ferner et al.”)(Ferner et al, 2008). All these data were collected at 600 MHz 1H frequency.
All the data were fit using a recently obtained high-resolution structure of the tetraloop
(PDB ID 2KOC) (Nozinovic et al, 2010). The characteristics of the diffusion tensor for the
three datasets are presented in Table 5. Overall, our analysis reproduced the previously
reported diffusion tensor parameters. However, we also discovered previously unreported
temperature-driven structural transitions in the tetraloop.

The Akke et al. dataset, collected at 0° C, contains imino nitrogen R1, R2, and R3
measurements. Out of the seven NH bond vectors available, G1 was excluded due to large
internal motions. This left only six “core” bond vectors, which prevented us from using the
fully anisotropic diffusion tensor model. Nevertheless, the axially-symmetric model fits
experimental data well (see Fig. 9), and gives a τc of 5.35 ± 0.24 ns, in agreement with the
previously reported value of 5.4 ± 0.10 ns (Akke et al, 1997). However, these results need to
be interpreted conservatively since the resulting uncertainties are large due to the small
amount of available data, for example, yielding an estimated 54° uncertainty in the
orientation of the unique principal axis of the diffusion tensor.

The Duchardt et al. dataset includes both 15N and 13C R1, R2, and R3 data measured at 25°
C. In the original paper, the carbon and nitrogen needed to be analyzed separately, and the
fully anisotropic diffusion model was not analyzed due to software limitation of ModelFree
(Mandel et al, 1995). We analyzed all data simultaneously, with only nucleotides G1, U7,
and G12 excluded. ROTDIF 3 allows selection of the appropriate rotational diffusion model
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based on two criteria: the F-test and the AIC. Historically the F-test has been predominantly
used for model selection; however, recently the AIC has been suggested as a potentially
more accurate alternative (d’Auvergne and Gooley, 2003). According to AIC, the fully
anisotropic model (AIC=357) provides the best fit to the Duchardt et al. dataset compared to
the isotropic (AIC=1232) and axially-symmetric models (AIC=377), while the F-test
suggests the axially-symmetric model (F = 0.72). The results for the two models are similar,
with the angle between the unique axis of the axially-symmetric tensor and the Dz axis of the
fully anisotropic tensor of only 1°, and only a small difference in the tensors eigenvalues.
The τc of 2.33 ± 0.01 ns for both models is in line with the ELM prediction, and the angle
between the principal axes of the derived and ab initio predicted anisotropic tensors is 8°.
The anisotropic tensor’s τc is also comparable to the previously published value of 2.31 ±
0.13 ns. The residuals of fit are shown in Fig. 10, and demonstrate a consistent simultaneous
fit for both carbon and nitrogen data. The robust fit provides slightly different principal
values, but the τc and the overall orientation of the tensor remained the same.

The Ferner et al. data set, collected at 44° C, contains significant outliers. The most common
way for dealing with the outliers would be curation of the data set, i.e. removal of
problematic data points/nucleotides that have elevated R2 (possibly due to conformational
exchange) and/or low R3 (increased local dynamics) values. When we employed this
approach, we ended up excluding G2, A4, U7, G12, and C14 (we define the remaining
nucleotides as the “core”). As an alternative approach, we used robust regression, a built-in
feature of ROTDIF 3, which yielded an almost identical result without any manual curation
of the input data. The results for both methods are shown in Table 5, and the quality of fit of
the axially-symmetric diffusion model for the core nucleotide dataset is shown in Fig. 11.

Interestingly, when analyzing the cUUCGg tetraloop data at 44° C, our axially-symmetric
solution deviated from the expected prolate-tensor solution. Our results are consistent for
both regular and robust fit, as well as with those for fully anisotropic tensor model (which
only deviates by 2° from axially-symmetric tensor orientation), shown in Table 5). Further
analysis indicated that an oblate tensor with an anisotropy of 0.59 ± 0.10 fits significantly
better than a prolate tensor. The best prolate-tensor solution has a χ2 of 98, which is
significantly higher than χ2 of 33 for the best oblate solution.

To visually demonstrate the difference in the orientation of the diffusion tensor at 25° and
44° C, in Fig. 12 we show the orientations of the principal Dz axes of the anisotropic
diffusion tensors for Duchardt et al. and Ferner et al. datasets, as well as of the theoretically
predicted diffusion tensor. As previously discussed, the Akke et al. dataset contains a large
uncertainty in the orientation of its diffusion tensor, therefore it is not shown. The
orientation of the rotational diffusion tensor measured at 25° C is consistent with the
theoretical prediction based on the shape of the RNA molecule (about 9° difference).
However, at higher temperature, the Dz axis changes its orientation significantly, while the
overall rotational diffusion tensor changes from prolate to oblate. A subtle conformational
switch can change the inertia tensor, and by association the diffusion tensor, from being
along axis A to that of C. Most analysis of relaxation data assume that the structures at the
different temperatures are identical and therefore readily applicable. Our current analysis
suggests an important caution: Either the structure at 44° C is different from that at 25° C, or
the structures remain the same and the molecule undergoes a temperature dependent
conformational switch, or both. We cannot decide in favor of any of the three scenarios.
What is clear however is that the data at the three temperatures are not identical.

Assuming the three-dimensional structures are identical at low and high temperatures, the
above analysis suggests that at higher temperatures the tetraloop may tumble differently than
at the lower temperatures. During our analysis, as noted above, we do in fact find both the
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prolate and oblate solution. This is not unexpected, since relaxation data analysis using
axially-symmetric tensor model is known to potentially find two minima (Blackledge et al,
1998), one for the prolate solution and one for the oblate solution. It is physically reasonable
that a short RNA can undergo thermally induced fluctuations and fraying at higher
temperatures, and may in fact tumble as an oblate ellipsoid. The consistently lower χ2 for the
oblate solution for the axially-symmetric model, combined with the fact that the fully
anisotropic model provides similar results, suggests that at a certain temperature a
conformational change in the cUUCGg tetraloop could mediate the prolate to oblate
transition. However in the absence of an actual three-dimensional structure at 44° C, this
observation remains purely speculative but a testable hypothesis.

Another interesting observation is that the overall tumbling of cUUCGg measured at
different temperatures generally follows the Stokes-Einstein-Debye relationship (τc ∝
viscosity/T ). If we rescale all the τc values obtained using ROTDIF 3 to 25° C, we get τc
values of 2.88, 2.35, 2.44 ns for Akke et al., Duchardt et al., and Ferner et al., respectively.
Thus, even though the RNA potentially undergoes a conformational change or adopts a
different three-dimensional structure or both, this would not be detected by a simple
isotropic tumbling model. Detecting such a conformational change might require a more
complex analysis using non-isotropic rotational diffusion models, which, as demonstrated
above, is quite straightforward even for RNA, with the new ROTDIF 3 program.

6 Conclusions
We have introduced a major revision to the ROTDIF program that includes a combination of
several important and unique features that are not found in any other published software
package and should be of broad use to the NMR community. The features are implemented
using new state-of-the-art algorithms, object-oriented design, and caching schemes, that
provide orders of magnitude increase in computational speed compared to previous
methods, contains complete Monte Carlo error analysis, and allows API access to the
underlying computational engine. The API can be directly accessed in Java, MATLAB, and
several other languages.

This is the first publicly available program that combines anisotropic rotational diffusion
tensor analysis of relaxation data for 15N with 13C at multiple fields. This combination
allows relaxation analysis of protein and/or RNA or DNA complexes using a unified
program, for example to orient and position individual components of such complexes based
on the overall rotational diffusion tensor. The experimental rotational diffusion tensor can be
derived in seconds even for very large datasets, and a robust regression method can be used
to compensate for unexpected contributions from conformational exchange and other
factors.

The module is integrated with an updated version of the ab initio diffusion tensor predictor
ELM to allow fast global alignment and rigid-body docking of molecules based solely on
the relaxation data. We demonstrate that the ELM predictions match closely the
experimentally obtained tensors for the tested DNA and RNA datasets. The ELM predictor
is easily accessible through GUI and provides an independent validation method for the
derived experimental results. To our knowledge this is the first and only package that
integrates both the experimental and ab initio methods for relaxation data analysis, and
allows rigid-body docking using relaxation data.

These features are easily accessed through our new multi-threaded GUI that works on
virtually all modern computer platforms. The GUI includes interactive help, robust error
checking and messages, and button access to interactive plots of the results. This tight visual
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integration of features and robust feedback significantly lowers the technical barrier and
reduces the time needed to perform relaxation analysis. Finally, the new version of ROTDIF
is integrated into the new ARMOR package that includes a similar toolbox for data analysis
and docking based on residual dipolar couplings (RDCs) (Berlin et al, 2009, 2010).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
The percent of simulations, from 1000 independent runs, in which the relative error in the
recovered τc was below the listed thresholds. The τc values were derived from the generated
synthetic relaxation data using the following methods: direct analysis of the R2/R1 ratios (red
bars, left) or analysis of the ρ values (Eq. (6)) with high-frequency contributions subtracted
using known R3 values (green bars, right) or using predicted R3 values, assuming that the
measured R3 values are not available (blue bars, middle). (A) The results for 15N in N-H
bonds in a protein. (B) The results for 13C in C1′-H1′ bonds in RNA. (C) The results for 13C
in C6-H6 bonds in RNA.
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Fig. 2.
Demo screenshot of ROTDIF’s Graphical User Interface and an overlay of the rotational
diffusion tensor axes onto a protein structure in PYMOL (DeLano, 2002) via a ROTDIF-
generated script.
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Fig. 3.
Timing results for computation of the anisotropic rotational diffusion tensor for randomly
generated data of various sizes. The black line (squares) corresponds to direct analysis of R2/
R1, achieved using our new deterministic initial sampling approach. The blue line (triangles)
shows timing for the new deterministic high-frequency subtraction algorithm. The red line
(circles) represents the previous version of ROTDIF, which uses a stochastic initial sampling
algorithm. Note that both R2/R1 and ROTDIF 3 are implemented in Java, while the old
ROTDIF runs in Matlab.
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Fig. 4.
Simulation results for a set of 100 uniformly oriented PQ vectors, based on relaxation data
for 15N in N-H bonds in a protein (left column), 13C in C1′-H1′ bonds in RNA (middle
column), and 13C in C6-H6 bonds in RNA (right column). All simulations were performed
for 1000 independent runs. (A–C) The percent of simulations in which the relative error in
the recovered τc was below the listed thresholds, for isotropic diffusion tensor model. The τc
values were computed using the following methods: direct analysis of the R2/R1 ratios (red
bars) or analysis of the ρ values with high-frequency contributions subtracted using known
R3 values (green bars) or using predicted R3 values, assuming that the measured R3 values
are not available (blue bars). (D–I) Errors in the computed diffusion tensor (Dpred) relative
to the input tensor (Dexp) for the anisotropic diffusion tensor model (Dx = 1 × 10−7 s−1, Dy =
2 × 10−7 s−1, Dz = 3 × 10−7 s−1). The x-axis shows the percentage of residues with Rex > 0.
Shown are errors in the magnitude (D–F) and orientation (G–I) of the tensor.
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Fig. 5.
The agreement between the experimental and back-calculated 15N relaxation data for GB3 at
five magnetic fields for the fully anisotropic diffusion tensor model. (A) The correlation plot
of the experimental vs. back-calculated ρ values. (B) Fit residuals for individual residues,
scaled by their associated standard deviations.
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Fig. 6.
Combined fit of the 15N and 13C (inset) relaxation data for the core residues in ubiquitin to
the fully anisotropic diffusion tensor model. (A) The agreement between the experimental
and back-calculated ρ values. (B) The residuals of fit for individual residues, scaled by their
associated standard deviations.
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Fig. 7.
The principal axes (z) corresponding to the Dz component of the determined (axially-
symmetric) and ELM-predicted rotational diffusion tensors, overlaid on top of the cartoon
representation of the Dickerson DNA dodecamer, d(CGCGAATTCGCG)2. There is a 1°
difference in the orientation of the two axes. The PyMOL script for drawing the axes was
automatically generated by ROTDIF.
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Fig. 8.
The fit of the 13C relaxation data for the Dickerson DNA dodecamer using the axially-
symmetric diffusion tensor model. (A) The agreement between the experimental and back-
calculated ρ values. (B) The residuals of fit, scaled by their associated standard deviations.
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Fig. 9.
The fit of the 15N relaxation data from the Akke et al. dataset (Akke et al, 1997) for the core
nucleotides in cUUCGg tetraloop to the axially-symmetric diffusion tensor model. (A) The
agreement between the experimental and back-calculated ρ values. (B) The residuals of fit,
scaled by their associated standard deviations.
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Fig. 10.
Simultaneous fit of the 15N and 13C relaxation data from the Duchardt et al. dataset
(Duchardt and Schwalbe, 2005) for the core nucleotides in cUUCGg tetraloop to the fully
anisotropic diffusion tensor model. (A) The agreement between the experimental and back-
calculated ρ values. (B) The residuals of fit scaled by their associated standard deviations.
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Fig. 11.
The fit of the 13C relaxation data from the Ferner et al. dataset (Ferner et al, 2008) for the
core nucleotides in cUUCGg tetraloop to the axially-symmetric diffusion tensor model. (A)
The agreement between the experimental and back-calculated ρ values. (B) The residuals of
fit scaled by their associated standard deviations.
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Fig. 12.
The principal Dz axes of the anisotropic tensors from ELM prediction (A, red) and derived
from Duchardt et al. (B, blue), and Ferner et al. (C, green) datasets, overlaid on top of the
cartoon of cUUCGg. The PyMOL script for drawing the axes was automatically generated
by ROTDIF 3.
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