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Abstract
The timing and localization of events during mitosis is controlled by the regulated phosphorylation
of proteins by the mitotic kinases, which include Aurora A, Aurora B, Nek2, Plk1, and the cyclin-
dependent kinase complex Cdk1/cyclin B. Although mitotic kinases can have overlapping
subcellular localizations, each kinase appears to phosphorylate its substrates on distinct sites. To
gain insight into the relative importance of local sequence context in kinase selectivity, identify
previously unknown substrates of these five mitotic kinases, and explore potential mechanisms for
substrate discrimination, we determined the optimal substrate motifs of these major mitotic
kinases by Positional Scanning Oriented Peptide Library Screening (PS-OPLS). We verified
individual motifs with in vitro peptide kinetic studies and used structural modeling to rationalize
the kinase-specific selection of key motif-determining residues at the molecular level. Cross
comparisons among the phosphorylation site selectivity motifs of these kinases revealed an
evolutionarily conserved mutual exclusion mechanism in which the positively and negatively
selected portions of the phosphorylation motifs of mitotic kinases, together with their subcellular
localizations, result in proper substrate targeting in a coordinated manner during mitosis.
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Introduction
Reversible protein phosphorylation is a major mechanism for regulating signal transduction
events in mammalian cells (1, 2). For many kinases, substrate selection depends not only on
the amino acid sequence motif surrounding the phosphorylation site, but also on additional
contextual information provided by kinase-substrate subcellular colocalization or formation
of multicomponent complexes through binding proteins, adaptor molecules, or additional
protein-domain-mediated interactions, or combinations thereof. Contextual information is
critical for correctly identifying substrates of specific DNA damage-activated protein
kinases, protein kinase C family members, and growth factor receptor tyrosine kinases (3).
During mitosis, however, when the genomic content of the nucleus is being equally
partitioned into two daughter cells through cell division, much of this contextual information
may be lost because many subcellular boundaries are dissolved or disrupted.

The mitotic process includes centrosome separation and maturation, chromatin
condensation, nuclear envelope breakdown, Golgi disassembly, spindle formation,
attachment of chromosomes to the mitotic spindle, and chromosome segregation (4-7). The
timing and mechanics of each of these events are carefully regulated, because uncorrected
errors committed during these processes often result in aneuploidy and genetic instability,
and can lead to cancer (8, 9). Regulation of these dynamic processes involves the precise
phosphorylation of mitotic effector proteins at specific sites through the actions of mitotic
kinases, as well as other posttranslational events, such as ubiquitin-mediated proteolysis (6,
10). Major mitotic kinases include the complex of cyclin-dependent kinase 1 and cyclin B
(Cdk1/cyclin B), the kinases Aurora A and Aurora B, Nek2 (never in mitosis kinase 2), and
Plk1 (Polo-like kinase 1), all of which play key roles during various mitotic substages (6).
Cdk1/cyclin B is a master regulator of mitosis with roles in chromatin condensation, nuclear
envelope breakdown, and spindle formation (11-16), and its activation marks entry into
mitosis. Aurora A is involved in centrosome separation and maturation; Aurora B is
involved in chromosome condensation and assuring chromosome attachment to the spindle
(amphitelic chromosome attachment) prior to the metaphase to anaphase transition (17-23).
Nek2 is required for centrosome separation and plays a role in centrosome maturation (24,
25). Plk1 facilitates Cdk1/cyclin B activation, centrosome maturation, spindle formation,
amphitelic chromosome attachment, and cytokinesis, and thus is involved in each of the
different substages of mitosis (26-34).

Because these kinases cooperate to regulate processes within mitosis, they have variously
overlapping localizations (Fig. 1). At and just prior to the G2/M transition, Aurora A and
Plk1 are localized to the pericentriolar material, while Nek2 localizes to the proximal
centriole at the core of the centrosome and Aurora B localizes to the centromeres of the
decondensed, but duplicated, chromosomes (24, 35-37). Cdk1/Cyclin B activity is low at
this time, but increases rapidly as cells progress into prophase and prometaphase (28, 38).
By metaphase, Cdk1/cyclin B is maximally active and diffusely localized throughout the
cell. Intense activity of Cdk1/cyclin B, which first appeared on centrosomes during
prophase, remains at the centrosomes, and also extends to spindle microtubules and
kinetochores (11, 28, 38-40). Aurora A and Plk1 colocalize with Cdk1/Cyclin B to the
pericentriolar material and the spindle microtubules early in mitosis (37, 41), whereas Plk1
later colocalizes with Aurora B and Cdk1/Cyclin B at the kinetochores during and after
prometaphase (11, 35, 37).

Various substrates for these kinases are known, but more remain to be identified because the
known substrates are not sufficient to explain all of the phenotypic events regulated by these
kinases. In addition, despite overlapping subcellular localizations, and therefore access to
overlapping sets of potential phosphorylation sites on substrates, each of these mitotic
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kinases appears to have distinct and apparently mutually exclusive substrate phosphoryation
sites in vivo. How the activities of these kinases, along with their substrate targeting, are
coordinated so that each kinase maintains a distinct set of phosphorylation sites is unclear.
With Positional Scanning Oriented Peptide Library Screening (PS-OPLS) (42), we identified
optimal motifs for Cdk1/cyclin B, Aurora A and B, Nek2, and Plk1 in order to shed light on
the issue of substrate selection, as well as to identify previously unknown substrates of these
kinases. Our analysis revealed both positively selected motifs and “anti-motifs”, which
represented specific residues that were strictly selected against. Integration of the motif data
with localization data suggested that these mitotic kinases exist in two functionally
orthogonal spaces, a localization space and a motif space, such that the major mitotic
kinases with overlapping localizations do not have overlapping motifs and major mitotic
kinases with overlapping motifs do not have overlapping localizations.

Results
Comparison of the optimal consensus phosphorylation motifs of Cdk1/cyclin B and Plk1
identified with PS-OPLS

To investigate the role of sequence specificity in substrate selection by mitotic kinases, and
to facilitate further substrate identification, we determined and compared the optimal
consensus phosphorylation motifs of Cdk1/cyclin B and Plk1 (Fig. 2) using PS-OPLS (42),
in which the kinase of interest is incubated individually in solution with each of 180
different peptide libraries. Each library contains a C-terminal biotin tag, a central Ser or Thr
that acts as the phosphoacceptor, and a second fixed amino acid located at any of the
residues from five before the phosphoacceptor site (Ser/Thr-5) to the residue four after the
phosphoacceptor site (Ser/Thr+4) (fig. S1). At all other positions within this 10 amino acid
window, a degenerate mixture containing all 20 naturally occurring amino acids except Cys,
Ser, or Thr is present. The position and identity of the second fixed residue acts as the
primary determinant for substrate phosphorylation.

We performed experiments with Cdk1/cyclin B as a control, because the optimal
phosphorylation motif for this kinase is generally accepted as Ser/Thr-Pro-X-Arg/Lys,
where X is any amino acid, and the slashes represent “or” (43-47), and a large number of in
vivo substrates are known (12, 48-54). Peptide library phosphorylation by Cdk1/cyclin B
showed a near absolute requirement for Pro in the +1 position, as well as strong selection for
Arg or Lys in the +3 position, as expected (Fig. 2A). We also found a strong positive
selection for Lys in the +4 position and modest selection for Pro or Cys in the −2 position,
along with weaker selection for other amino acids in this and other positions. On the basis of
these results, we expanded the optimal Cdk1/cyclin B peptide phosphorylation motif to [P/
C/X]-X-[S/T]-P-X-[R/K]-K, where bold indicates the most strongly selected residues.

To examine whether the amino acid preferences revealed by this peptide library screen are
physiologically relevant, we compared our results with the reported collection of Cdk1/
cyclin B substrates and phosphorylation sites determined by with an analog-sensitive human
Cdk1 combined with thiophosphate tagging and covalent capture (49). Approximately 25%
of Cdk1 substrates contained a Lys in the Ser/Thr+4 position, either alone (pS/pT-P-X-X-K
motif) or together with an Arg/Lys in the Ser/Thr+3 position (pS/pT-P-X-R/K-K motif)
(Fig. 2B). Many of the substrates also contained a Pro in the Ser/Thr-2 position, consistent
our peptide library results. Thus, the PS-OPLS approach can reveal new motif information
even for well-studied kinases like Cdk1.

The results of PS-OPLS for Plk1 (using the active phosphomimicking T210D form of the
kinase) revealed a strong positive selection for Asp, Asn, or Glu in the Ser/Thr-2 position
along with modest selection for aromatic residues, particularly Tyr (Fig. 2C). There was less
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amino acid selectivity in the Ser/Thr-1 position, although peptides containing either Gly or
Pro in this position were poorly phosphorylated. In addition, Plk1 showed strong positive
selection for hydrophobic amino acids in the Ser/Thr+1 position, particularly Phe, Tyr, Ile,
and Met, as well as some additional hydrophobic selection in the Ser/Thr+2 position. The
presence of a Pro residue in the Ser/Thr+1 position was very strongly discriminated against,
as revealed by an almost complete absence of phosphorylation of this sub-library of peptides
(Fig. 2C, arrowhead). These data suggest an optimal substrate phosphorylation motif for
Plk1 of [D/N/E/Y]-X-[S/T]-[F/Φ; no P]-[Φ/X], where Φ is any hydrophobic amino acid.

To validate the PS-OPLS results, we measured kinetic parameters for Plk1-dependent
phosphorylation of an optimal peptide substrate based on the PS-OPLS consensus motif
(GHDTSFYWAAYKKKK) and for several peptide variants containing single amino acid
substitutions (Fig. 3A, B). In general, the Vmax/Km ratios of the optimal and variant peptides
followed the same trends as those displayed in the PS-OPLS data. The optimal peptide had
neither the lowest Km nor the highest Vmax, but had the highest Vmax/Km ratio, which is
consistent with the peptide library screening approach identifying optimal kinase motif
sequences on the basis of the maximal substrate turnover rate rather than on Km or Vmax
alone (55). All variations from the optimal peptide displayed decreased Vmax/Km ratios
indicating that the peptide chosen as the optimal substrate by individually selecting the best
amino acid in each position was correct, and verifying that optimal phosphorylation motifs
can be determined from PS-OPLS data by choosing the most highly selected amino acid in
each position independently. Changing the Asp to an Ala in the Ser/Thr −2 position resulted
in a greater than 20-fold drop in the Vmax/Km ratio (due to a 6.3-fold rise in Km, and a 3.3-
fold drop in Vmax relative to those of the optimal peptide), and the ability of Plk1 to
phosphorylate the peptide with a Pro in the Ser/Thr+1 was so minimal that it was not
possible to fit the data to a Michaelis-Menten curve, recapitulating the lack of activity
observed in the PS-OPLS screen for the sublibrary of peptides that all contained Pro in the
Ser/Thr+1 position (Fig. 2C, arrowhead).

The motif that we determined is consistent with previously mapped Plk1 phosphorylation
sites on known substrates (Fig. 3C) (34, 56-65). Most of these Plk1 phosphorylation sites
contain an Asp or Glu in the Ser/Thr-2 position and a hydrophobic amino acid in the Ser/Thr
+1 position, in agreement with the consensus motif revealed by the PS-OPLS method.
Hydrophobic amino acids in the Ser/Thr+2 position were also occasionally observed, but did
not appear to be a strong discriminator for known in vivo Plk1 sites. The PS-OPLS-derived
motif is similar to a previously published motif for Plk1, D/E-X-S/T-Φ-X-D/E, which was
determined by mutagenic analysis of a single peptide sequence surrounding Ser198 in
Cdc25C, which is phosphorylated by Plk1 (59). The PS-OPLS-derived motif differs from
the other motif by having a strong selection for Asn in the Ser/Thr-2 position and no general
selectivity for Asp or Glu in the Ser/Thr+3 position.

This Plk1 phosphorylation motif revealed by PS-OPLS screening suggested the possible
existence of previously unrecognized Plk1 substrates with phosphorylation sites containing
Asn in the Ser/Thr-2 position. Although no such Plk1 substrates matching this motif have
been identified in higher eukaryotes, an in vivo study of yeast mitotic cohesins revealed
eleven Cdc5 (the yeast Plk1 ortholog) sites on Rec8, of which 5 contained Asn in the Ser/
Thr-2 position (66). To directly explore whether a subset of mitotic Plk1 substrates in
mammalian cells contained a similar N-X-S/T motif, we performed a mass-spectrometry
based screen in nocodazole-arrested HeLa cells for phosphorylated mitotic proteins
containing Asn in the pSer/pThr-2 position that were not present in the nocodazole-treated
cells if they were pre-incubated with the Plk1 inhibitor BI 4834 (fig. S2).
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We identified three Plk1-dependent phosphorylation sites containing an Asn in the Ser/Thr-2
position (Fig. 3D, E). Only the nonphosphorylated forms of these same peptides, but not the
phosphorylated forms, were observed following Plk1 inhibition. Two of the proteins
containing these Plk1 sites, Bub1 and p31comet, are involved in spindle assembly checkpoint
and the third, Scc1 (also known as Rad21), is involved in sister chromatid cohesion in
mitosis (23, 67, 68), processes that are controlled by Plk1 (69, 70).

Determination of the optimal consensus motif of Aurora A and Aurora B
We used the PS-OPLS method to determine the optimal sequence motifs phosphorylated by
Aurora A and Aurora B, and compared the results with those obtained for Cdk1/cyclin B
and Plk1. Both Aurora A and Aurora B showed similar motifs, with extremely strong
selection for Arg in the Ser/Thr-2 position and strong discrimination against all other amino
acids at this position (Fig. 4A). Even Lys in the Ser/Thr-2 position was a poor substitute for
Arg. There is a smaller selectivity for Arg in the Ser/Thr-3 position. In the Ser/Thr+1
position, although both Aurora A and B selected hydrophobic amino acids, the specific set
of preferred amino acids differed slightly between them. Aurora B showed some preference
for Ile and Met in this position, whereas residues preferred by Aurora A also included Phe
and Leu. Like Plk1, both Aurora A and Aurora B showed very strong discrimination against
libraries containing Pro in the Ser/Thr+1 position (Fig. 4A, arrowheads). Moderate selection
for certain aromatic or hydrophobic amino acids, along with Gly and Pro, was noted in the
Ser/Thr+2 position for both kinases, with little selectivity for particular amino acids beyond
the Ser/Thr-2 to Ser/Thr+2 positions for either kinase.

The position of maximal substrate selectivity for both of the Aurora kinases revealed by PS-
OPLS screening -- a strongly basic amino acid in the Ser/Thr-2 position -- is the opposite of
the requirement for an acidic (or Asn) residue in the Ser/Thr-2 position that we observed for
Plk1. We verified the PS-OPLS-predicted kinase selectivity by measuring the kinetics of
Aurora B-dependent phosphorylation of an optimal PS-OPLS-determined peptide
(ARRHSMGWAYKKK), along with two peptide variants in which the Arg in the Ser/Thr-2
position was changed to an Asp (rendering it a more Plk1-like substrate), or the Met in the
Ser/Thr+1 position was changed to a Pro (rendering it a more Cdk1-like substrate) (Fig. 4B).
Substitution of Asp for Arg in the Ser/Thr-2 position both increased the Km and decreased
the Vmax, resulting in a 13-fold drop in the Vmax/Km ratio relative to the Aurora B optimal
peptide. As with Plk1, the ability of Aurora B to phosphorylate an otherwise consensus
peptide that contained Pro in the Ser/Thr+1 position was so low that it was not possible to fit
the data to a Michaelis-Menten equation. From these data, the minimal optimal consensus
phosphorylation sequence shared by both Aurora A and Aurora B is R-X-S/T-Φ, where X is
any amino acid and Φ is any hydrophobic amino acid except Pro. These motifs are
consistent with mapped Aurora A and Aurora B phosphorylation sites (Fig. 4C), nearly all
of which contain an Arg in the Ser/Thr −2 position. Many of these previously mapped sites
also contain a hydrophobic amino acid in the Ser/Thr+1 position, particularly those that are
subtrates of Aurora A (18, 19, 71-87).

Determination of the optimal consensus motif of Nek2
In contrast to Plk1 and Aurora A and B, which discriminated against both Cdk1 sites by
selection against Pro in the Ser/Thr+1 position, and against each other by selection for or
against acidic or basic residues in the Ser/Thr-2 position, the Nek2 motif [determined for the
active stabilized T175A form (88)] exhibited strong amino acid selectivity in the Ser/Thr-3
and Ser/Thr+2 positions (Fig. 5A). In the Ser/Thr-3 position, Nek2 selected for specific
hydrophobic amino acids, particularly Phe, Met, and Leu, and strongly discriminated against
hydrophilic amino acids. Both basic (Arg or Lys) and acidic (Asp or Glu) residues were
disfavored in the Ser/Thr-3 position. Unlike Plk1 and Aurora A and B kinases, Nek2 did not
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show a strong and narrow preference for specific amino acids in the Ser/Thr-2 position,
although Arg, Lys, Phe, Tyr, and Trp were somewhat favored. Pro was strongly disfavored
in both the Ser/Thr-2 and Ser/Thr-1 positions. In the Ser/Thr+1 position, Nek2 also showed
moderately strong selection for hydrophobic amino acids, along with strong discrimination
against Pro, similar to the strong Pro deselection observed for Plk1 and Aurora A and B.
Nek2 also showed strong discrimination against Asp and Glu in the Ser/Thr+1 position, as
well as against Glu in the Ser/Thr+2 position, where instead we found pronounced selection
for Arg, along with modest selection for His.

To verify the PS-OPLS data, we measured the kinetic parameters for the Nek2-dependent
phosphorylation of its optimal PS-OPLS-determined peptide (WFRMSIRGGYKKK) along
with those of three peptide variants containing single amino acid substitutions (Fig. 5B).
Replacement of the strongly selected Phe in the Ser/Thr-3 position with Val, a similarly
hydrophobic residue but one that was somewhat disfavored in the PS-OPLS screen, resulted
in an approximately 8-fold decrease in the Vmax/Km ratio due primarily to an increase in Km
relative to that of the optimal peptide. In contrast, complete charge reversal in the Ser/Thr-2
position of the Nek2 optimal peptide by substitution of Asp for Arg resulted in only a 5-fold
decrease in the Vmax/Km ratio due to compensating effects on Km and Vmax. As with Plk1
and Aurora B, the kinase activity of Nek2 against an otherwise optimal peptide containing a
Pro substitution in the Ser/Thr+1 position was minimal, precluding any determination of
kinetic parameters.

These data reveal an optimal consensus phosphorylation motif for Nek2 as [F/L/M]-X′-X′′-
S/T-Φ-[R/H/X], where both X′ and X′′ denote any amino acid except Pro, and X′ also
includes some positive selection for basic and hydrophobic residues, Φ denotes any
hydrophobic amino with Pro, Asp, and Glu excluded from this position, and X denotes any
amino acid including Pro. The motif that we determined for Nek2 agrees reasonably well
with the known phosphorylation sites that are present in the few well-verified Nek2
substrates, including Nek2 itself and the centrosomal and centromeric protein Hec1 (88, 89)
(Fig. 5C).

An evolutionarily conserved structural basis for mitotic kinase motif exclusivity
The mitotic kinase phosphorylation motifs identified with PS-OPLS suggested a mechanism
for dictating mitotic protein kinase specificity. If the identity of the Ser/Thr+1 residue of the
substrate site is a Pro residue, then the substrate is recognized by Cdk1/cyclin B, and not by
Plk1, Aurora A, Aurora B, or Nek2. The presence of amino acids other than Pro, particularly
hydrophobic ones, in the Ser/Thr +1 position determines whether phosphorylation is
performed by Plk1, Aurora A or B, or Nek2. This critical Ser/Thr+1 specificity determinant
prevents Cdk1 from phosphorylating putative Plk1, Aurora A, Aurora B, or Nek2 sites and
likewise prevents Plk1, Aurora A, Aurora B and Nek2 from phosphorylating Cdk1 sites.
However, additional criteria, must dictate whether the non-Cdk1 sites are preferentially
phosphorylated by Plk1, one of the Aurora kinases, or Nek2. A comparison of the PS-OPLS
blots and motif logos for Plk1, Aurora A, Aurora B, and Nek2 suggested that additional
substrate-kinase specificity for mitotic kinases appears to arise from mutual exclusivity of
the different mitotic kinase motifs themselves (Fig. 6A, B). This mutual exclusivity means
that the strongest specificity-determining residues for one mitotic kinase were strongly
deselected by the others, particularly in the case of Plk1 and Aurora A or Aurora B.

We compared the ability of Aurora B, Nek2, and Plk1 to phosphorylate a common set of
peptides, each of which had been optimized for a particular family member (Fig. 7A). Each
kinase phosphorylated its optimal peptide the best. Neither Aurora B nor Nek2 displayed
much activity against the optimal Plk1 peptide, producing <1% and ~8%, respectively, of
the phosphorylation displayed by Plk1 in this assay. Similarly, neither Plk1 nor Nek2 had
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much activity against the optimal Aurora B peptide, resulting in ~1% or less of the
phosphorylation displayed by Aurora B. In contrast, although Plk1 had essentially no
activity for the optimal Nek2 peptide (<1%), Aurora B did phosphorylate the Nek2-
optimized peptide (~23% of the amount observed for Nek2 kinase itself).

To examine the molecular basis for this motif exclusivity, we performed molecular
modeling studies of kinase-substrate complexes (Fig. 7B) based on published X-ray crystal
structures (see Materials and Methods for details). Despite the near absolute requirement for
a Ser/Thr-Pro motif for substrate phosphorylation by Cdk1, we did not find any structural
evidence in the Cdk1/cyclin B model for a direct interaction between the cyclin or Cdk
subunits and the Ser/Thr+1 Pro residue in the substrate peptide (Fig. 7B), which is consistent
with the reported Cdk2/cyclin A:peptide crystal structure (90). Instead, the strong selection
for Pro observed in this position likely results from a combination of relatively weak effects.
The backbone conformation of Val164 in the activation loop prevents hydrogen bonding
between its carbonyl oxygen and the NH group of any amino acid (but would allow Pro to
interact because it lacks an NH) in the Ser/Thr+1 position as described for the Cdk2/cyclin
A structure (90). This conformation of Val164, combined with the need to correctly position
the phosphoacceptor Ser/Thr residue near the end of the peptide-binding cleft, while
simultaneously avoiding a steric clash of the remaining C-terminal residues of the peptide
substrate with the cyclin subunit, means that the kink in the substrate main chain backbone
resulting from the Ser/Thr+1 Pro would facilitate favorable interactions of basic side chains
in the Ser/Thr+3 and Ser/Thr+4 positions with the cyclin and Cdk subunits. The peptide Ser/
Thr+3 Lys in the Cdk2/cyclin A:peptide structure made a salt bridge to the regulatory
phosphothreonine (pThr160) in the activation loop of the kinase domain, as well as a
hydrogen bond to the main chain carbonyl of Ile270 on cyclin A; we expect that equivalent
residues in the Cdk1/cyclin model (pThr161 in Cdk1 and the main chain carbonyl of Met261

in cyclin B1) are likely responsible for the observed Ser/Thr +3 Arg or Lys selectivity. The
selection that we observed for Lys in the Ser/Thr+4 position of the substrate peptides
appears to arise from interactions with acidic side chains of residues Glu265 and Asp268 in
cyclin B, rather than from any direct contact with residues in the substrate-binding cleft of
the kinase itself.

For Plk1, selection for Asp, Asn, and Glu in the Ser/Thr-2 position of the optimal substrate
motif likely results from electrostatic or hydrogen-bonding interactions with the side chains
of Lys178 and Asn216, or a combination of these kinds of interactions (Fig. 7B). This
interaction model is supported by the observation that mutation of the Ser/Thr-2 residue to
one incapable of forming either type of interaction (for example, Ala) increased the Km by
6-fold, whereas replacement with a positively charged residue (for example, Arg) increased
the Km nearly 10-fold relative to the optimal Plk1 peptide. Hydrogen-bonding interactions
may dominate over electrostatic interactions for favorable substrate selection, because
substitution of Asn for Asp at position Ser/Thr-2 lowered the peptide Km by half, but
decreased the Vmax by greater than a factor of 5 relative to the optimal Plk1 peptide,
suggesting that the high degree of negative charge on the Asp-containing peptide following
phosphorylation contributes to its dissociation from the catalytic cleft. Both Lys178 and
Asn216 are conserved in the Plk1 homologs of vertebrates, worms, flies, and yeast, implying
evolutionary conservation of motif selection for Asp, Asn, and Glu, and strong deselection
for Arg or Lys, in the Ser/Thr-2 position of potential substrates (fig. S3). Phe, along with
other aromatic or bulky hydrophobic amino acids that were selected in the Ser/Thr+1
position in the PS-OPLS screening can be accommodated in a hydrophobic pocket formed
by Leu211, Pro215, Ile218, and Val222 in the activation loop. Substitution of small or
negatively charged amino acids in this position increased the Km by a factor of 20 or greater
relative to the optimal Plk1 peptide. The residues that comprise this hydrophobic pocket are
similarly conserved in the Plk1 homologs of other species, although the Saccharomyces
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cerevesiae and Saccharomyces pombe homologs have an Ile replacement for Leu211, and in
fission yeast and Drosophila melanogaster there is an Ile in place of Val222. Furthermore,
strong deselection for Pro in the Ser/Thr+1 position of the motif would direct the substrate
peptide chain outside of the kinase’s substrate-binding cleft and preclude favorable
interactions with any additional C-terminal residues, because unlike kinases of the Cdk
family, which function with a cyclin partner, Plk1 does not function in complex with a
binding partner that could restore these contacts.

In the case of Aurora B, the weak selection for Arg that is observed in the Ser/Thr-3 position
probably arises from an electrostatic interaction with Glu177, whereas very strong selection
for Arg in the Ser/Thr-2 is likely due to an electrostatic interaction with Glu220 and Glu281.
All three of these Glu residues form an extended acidic patch in the kinase active site, and
all are conserved in Aurora kinase sequences from yeast to man (fig. S4), implying that
selection for basic residues and exclusion of acidic residue in the Ser/Thr-3 and Ser/Thr-2
positions of the substrate motif is an evolutionarily important feature. Consistent with this
model, replacement of the Ser/Thr-2 Arg by an Asp resulted in a 5-fold increase in Km and
over a two-fold drop in Vmax relative to the optimal Aurora B peptide. Met and other
hydrophobic amino acids selected in the Ser/Thr+1 position appear to fit into a hydrophobic
pocket formed by Trp237 and Met249 on the activation loop and Leu256 of the active site
cleft. These residues are conserved in vertebrate, worm, fly, and yeast Aurora kinases,
although Met249 is replaced by Leu in D. melanogaster and S. pombe and by Val in S.
cerevesiae. Thus, despite similar selection for hydrophobic residues in the Ser/Thr+1
position, evolutionary conservation of the acidic and basic Ser/Thr-2 selection pockets may
ensure substrate exclusivity between Plk1 and the Aurora kinases.

For Nek2, the selection for Phe and other hydrophobic amino acids in the Ser/Thr-3 position
likely arises from the presence of a spatially flat hydrophobic surface formed by two
alanines, Ala95 and Ala145. Small residues at this location are found in all Nek2 homologs,
but are rarely found in this part of the substrate-binding cleft in the other mitotic kinases (see
Plk1 and Aurora B in Fig. 7B) or in PKA, where these positions are occupied by Phe and
Glu. Selection for Arg in the Ser/Thr-2 position of the motif likely arises from an
electrostatic interaction with Glu208, and the selected Ile and other hydrophobic amino acids
in the Ser/Thr+1 position of the peptide likely fit into a hydrophobic pocket formed by
Phe176 in the activation loop and Pro180 and Met183 of the active site. The Arg and His
selection that we observed in the Ser/Thr+2 position of the substrate motif may arise from
electrostatic interactions with Glu48. The identity of these specificity-determining residues is
also conserved among mammals, zebrafish, frog, and yeast Nek2 family members (fig. S5).

Substrate enrichment, colocalization, and motif exclusion--A unified model for mitotic
kinase selectivity

The modeling results suggested that the structural elements responsible for selection or
exclusion of specific amino acids within mitotic kinase phosphorylation motifs reflect
evolutionarily conserved features that may be critically important in substrate selection
during cell division, when multiprotein mitotic complexes undergo phosphorylation at
exclusive sites by the cooperative action of multiple distinct kinases. Figure 8A, for
example, shows three representative mitotic protein complexes that were experimentally
identified in a systematic mass-spectrometry screen (91), with proteins in each complex
annotated for previously mapped mitotic phosphorylation sites (17, 92-100). These
complexes comprise the γ-tubulin ring complex (γ-TuRC) important for spindle assembly,
the anaphase-promoting complex (APC/C) important for chromosome segregation, and the
outer kinetochore complex MIS12/NDC80 important for binding kinetochores to spindle
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microtubules (101). In each case, multiple proteins within each mitotic complex are targeted
by one or more different mitotic kinases.

During cell division, the localization of Cdk1, Plk1 and the Aurora A and B kinases overlap
at specific mitotic substructures, particularly along the outer portions of the centrosomes, at
the kinetochores, and along the mitotic spindle. This contrasts with Nek2, which localizes to
the proximal centriole within the core of the centrosome (24) (Fig. 1). To examine whether
substrates for these kinases might be enriched at the subcellular structures where these
kinases reside, we performed a bioinformatic analysis for enrichment of potential
phosphorylation sites for Cdk1, Plk1, Nek2, and Aurora kinases on the subproteome found
at the centrosome (102) and the spindle apparatus (103), relative to the entire human
proteome (International Protein Index-version 3.23) (see Materials and Methods for details).
All three variations of the Cdk1/cyclin B motif revealed by PS-OPLS were statistically over-
represented in proteins found on the mitotic spindle and none of the Cdk1 motifs were over-
represented on the centrosome subproteome (Fig. 8B). The Plk1 motif defined by PS-OPLS
was significantly enriched on proteins at both the centrosome and spindle apparatus,
whereas the Nek2 motif was enriched on proteins at the centrosome, but not on the spindle
subproteome, as might be expected for a centrosomal kinase. The Aurora motif was not
significantly enriched at the centrosome or the spindle, which may not be surprising because
there are many basophilic kinases with similar motifs, for example, PKA and protein kinase
G (PKG), that control processes other than mitosis. The enrichment of potential substrates at
subcellular structures where Cdk1, Plk1 and Nek2 localize during mitosis supports the
intuitive idea that substrates are likely to undergo extensive phosphorylation in regions of
the cell where the local concentration of the kinase is highest.

Whereas motifs for individual kinases appeared to be significantly enriched in the
subcellular proteomes appropriate to those kinases, we wondered about the prevalence of co-
occurence of motifs for multiple kinases in the same protein. We found that in both the
entire proteome and the nuclear subproteome, the co-occurrence of motifs for all pairs of
mitotic kinases was significantly enriched (see Materials and Methods, table S2), indicating
perhaps that different sites on the same protein are commonly phosphorylated by distinct
kinases in the normal course of mitosis. Because the sites phosphorylated by Cdk1, Plk1,
and the different Aurora kinases are mutually exclusive, this observation is consistent with
the co-localization of multiple mitotic kinases at centrosomes, kinetochores, or along the
mitotic spindle, or various combinations thereof. For Nek2, motif co-occurrence suggests
that some substrates may move from the inner centrosome to other mitotic structures in
order to be phosphorylated by the appropriate kinase at the appropriate time.

Discussion
Mitosis is an intricate and highly regulated process in which the temporal order of events is
controlled by the action of specific protein kinases, including the master regulator Cdk1 and
the other major mitotic kinases, Aurora A, Aurora B, Nek2, and Plk1. Proper progression
through mitosis requires that these kinases phosphorylate specific sites on specific proteins
in an organized and presumably non-overlapping manner. We used PS-OPLS, which in
contrast to studies using amino acid substitutions within a single peptide corresponding to a
known substrate phosphorylation site, allows every amino acid within each position in a
sequence motif to be tested independently of the rest of the sequence. The method therefore
identifies not only amino acids that are positively selected in each position, but also those
that are disfavored or deselected in each position. Subsequent kinetic studies with individual
peptides verified the PS-OPLS motifs, and provided insights into the relative role of
flanking residues in peptide binding or turnover, or both, at the kinase active site.
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The Cdk1/cyclin B motif revealed by PS-OPLS expands upon the generally accepted S/T-P-
X-R/K consensus motif to now include a Lys in the Ser/Thr+4 position. This expanded
motif explains ~25% of the reported Cdk1 substrates detected with a chemical genetics
screen for Cdk1/cyclin B in HeLa cell extracts (57). A mass spectrometry-based screen for
mitotic phosphoproteins that used a weighted bioinformatics analysis to determine abundant
mitotic phosphorylation motifs showed many phosphorylation sites containing the sequence
S/T-P-X-X-K, leading the authors to propose that this constituted a substrate motif for a new
mitotic kinase that had not yet been identified (104). Our PS-OPLS results suggest that this
motif matches that of human Cdk1/cyclin B.

Our structural modeling results for Cdk1/cyclin B suggested that selection for Lys in the
Ser/Thr+4 position in the motif arises from a pair of acidic residues within cyclin B both of
which are conserved in mammals, worms, and frogs, and one of which is conserved in flies.
No such acidic residues, however, are found in the corresponding positions of Clb2, the
budding yeast mitotic cyclin, suggesting that selection for basic residues in this position of
the phosphorylation motif is unique to metazoans. A mass spectrometry screen of in vivo
Cdk1/Clb2 substrates did not reveal enrichment for Lys in the Ser/Thr+4 position of the
mapped phosphorylation sites in substrates from S. cerevesiae (105), which contrasts with
what was observed for Cdk1/cyclin B substrates in human cells (49).

The Plk1 motif identified by PS-OPLS revealed strong selectivity for Asn, in addition to
Asp and Glu, in the Ser/Thr-2 position. We identified phosphopeptides containing Asn in the
Ser/Thr-2 position from three proteins, Scc1, Bub1, and p31comet, for which phosphorylation
in nocodozole-treated cells was abrogated by Plk1 inhibition. Scc1 is a subunit of the
cohesin complex that prevents chromosome segregation until it is cleaved by separase at the
metaphase-anaphase transition (106). Although Scc1 is phosphorylated at multiple sites by
Plk1, which enhances the cleavage of Scc1 by separase, all the phosphorylation sites had not
been mapped (106). The location of the phosphorylation site at Ser138 that we found is near
one of the separase cleavage sites and may increase Scc1 cleavage. Phosphorylation of Bub1
by Cdk1 recruits Plk1 to kinetochores in vivo and enhances Plk1 phosphorylation of Bub1 in
vitro, although the Plk1 phosphorylation sites on Bub1 were not known (97). We identified
Ser399 as a Plk1-dependent Bub1 phosphorylation site in vivo that matches the Asn-
containing Plk1 motif, although we do not know if this site (or those on Scc1 and p31comet)
is a direct or indirect Plk1 target. Maintenance of the spindle checkpoint until attachment of
all of the chromosome kinetochores involves an interaction between Mad2 and Cdc20 (107).
p31comet binds Mad2 causing Mad2 to release Cdc20 (108). Although Plk1 is required for
the recruitment of Mad2 to the kinetochore for the spindle assembly checkpoint, the Plk1-
dependent phosphorylation of p31comet suggests Plk1 may have other roles as well (26). A
mass-spectrometry screen for Plk1 substrates on the early mitotic spindle identified many
spindle-associated proteins with Plk1-dependent phosphorylation sites containing Asn in the
Ser/Thr-2 position, providing independent validation of our PS-OPLS results (98).

The strong similarity in optimal phosphorylation motifs that we observed between Aurora A
and B is not surprising because these kinases are similar in their primary sequences, and the
functions of both kinases are performed by a single kinase in yeast (109). PS-OPLS motif
determination for Aurora A and B suggested that Arg in the Ser/Thr-2 position is likely to be
an important determinant for substrate selection, and that Lys is a poor substitute for Arg
despite their similarity in charge. Although this finding agrees well with most mapped
Aurora A and B substrates (Fig. 4C, D), some mapped sites contain a Lys in the Ser/Thr-2
position, including the regulatory Thr210 site on the activation loop of Plk1 that is
phosphorylated by Aurora A during mitotic entry (78, 110). Phosphorylation of Thr210 by
Aurora A during release from a DNA damage checkpoint requires the formation of a
complex between Aurora A and the G2/M regulatory protein hBora (78, 110), suggesting

Alexander et al. Page 10

Sci Signal. Author manuscript; available in PMC 2014 March 03.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



that a targeting subunit (hBora), rather than intrinsic kinase selectivity, may be important for
phosphorylation of this particular site.

The Aurora A motif that we determined is consistent with previous reports (74, 111). Both
of those studies revealed the importance of an Arg residue in the Ser/Thr-2 position, and the
Ser/Thr+1 hydrophobic residue within single peptide substrates, as well as the strong
negative selectivity for a Pro residue in the Ser/Thr+1 position. The optimal phosphorylation
motif revealed by PS-OPLS screening of Aurora B has some differences from the consensus
motif [R/K]-X-[S/T]-[I/L/V] derived from ten phosphorylation sites on kinetochore proteins
that are phosphorylated by the yeast Aurora ortholog Ipl1 (109) and from a K-R-S-[S/T]-S
motif mapped in the evolutionarily conserved Aurora B substrate INCENP (72, 76), likely
because these prior motifs were based on a small number of phosphorylated peptides rather
than an global assessment of site preferences provided by PS-OPLS.

The motif that we identified for Nek2 is the first reported and revealed strong negative
selection against Pro in the Ser/Thr+1 position, similar to what we observed for Plk1 and the
Aurora kinases, indicating that Nek2 will not phosphorylate sites targeted by Cdk1 and vice
versa. Direct comparison of the Plk1, Aurora A, Aurora B, and Nek2 motifs (Fig. 6A, B)
revealed strong mutual exclusivity of Aurora A and Plk1 substrates on the basis of amino
acid residues in the Ser/Thr-2 position. In contrast, the strongest positive selection within the
Nek2 motif was in the Ser/Thr-3 and Ser/Thr+2 positions. The optimal peptide for Nek2
contained an Arg in the Ser/Thr-2 position, which was also present in the Aurora kinase
motif, and optimal Nek2 peptides were phosphorylated by Aurora B (Fig. 7A). Nek2 may
also phosphorylate some of the same sequences as Plk1, if such sequences had hydrophobic
amino acids in the Ser/Thr-3 position to satisfy the Nek2 motif. However, the optimal Plk1
peptide, which contained a His in this position, was a poor Nek2 substrate in vitro.

The positions in the Nek2 motif showing the strongest negative selection, aside from Ser/
Thr+1 Pro, were acidic residues and phosphoThr residues in the Ser/Thr-3, +1, and +2
positions, suggesting that Nek2 phosphorylation sites should be mutually exclusive with
sites phosphorylated by casein kinase 1 (CK1), which shows a strong selection for acidic or
phosphoSer/Thr residues in the Ser/Thr-3 position of its substrates (112). The association of
CK1δ with centrioles at the centrosomal core is mediated by the scaffolding protein
AKAP450 (113, 114) and we predict that motif exclusivity between Nek2 and CK1δ may
establish distinct phoshorylation sites for these kinases on centriolar substrates.

For the mitotic kinases that we studied, the motif data and structural modeling results
suggest an evolutionarily conserved mode of mitotic kinase substrate targeting in which the
presence or absence of a Pro in the Ser/Thr+1 position functions as a binary switch allowing
phosphorylation of a site by either Plk1, Aurora A, Aurora B, or Nek2 if a residue other than
proline is present in this position, or by Cdk1 if a Pro is present. This proline specificity has
been suggested as a mode of regulation between Cdk1 and Aurora A and between the
CMGC proline-directed kinase group, of which Cdk1 is a member, and the basophilic
CAMK and AGC kinase groups, to which Aurora A and Aurora B are closely related but are
not members (74, 115, 116).

Integrating the motif and colocalization data suggests that specificity of phosphorylation by
these kinases is enforced by a combination of non-overlapping localizations and both
positively and negatively selected sequence motifs. Each kinase possesses a positively
selected motif, and also displays an ‘anti-motif’ whereby the motifs of other kinases are
specifically disfavored. Plk1 and the Aurora kinases do not phosphorylate the same sites
despite overlapping localizations because their motifs are mutually exclusive. Despite
partially overlapping motifs, Nek2 and Plk1 and Nek2 and the Aurora kinases would not
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phosphorylate the same sites because of non-overlapping localizations, because Nek2
localizes to the proximal centrioles within the core of the centrosome, whereas Aurora A and
Plk1 are localized at the periphery of the pericentriolar material (36), Thus, our data suggest
that kinases exist in two functionally orthogonal spaces: ‘localization space’ and ‘motif
space’ (Fig. 8C). ‘Localization space’ reflects all of the subcellular locales where the kinase
can reside. ‘Motif space’ contains the optimal sequence motifs of all S/T kinases. In this
context, each major mitotic kinase overlaps with every other kinase in, at most, one of space,
either localization or motif space. For example, Cdk1 overlaps all of the other kinases in
‘localization space’, but not in ‘motif space’ and Nek2 overlaps Plk1 and Aurora Kinases in
‘motif space’, but not in localization spaces’. Thus, the combination of positive and negative
amino acid motif selection and spatial exclusivity that we observe appears to underlie the
cooperative nature of mitotic kinase signaling. This potentially provides both a systems-
level mechanism for regulating substrate phosphorylation, and a coordinated evolutionary
pressure to maintain discriminatory substrate motifs and localizations for major mitotic
kinases and their substrates.

Materials and Methods
Kinase Protein Production and Purification

Recombinant full-length human wild-type C-terminally His6-tagged Aurora A, Xenopus
laevis wild-type Aurora B (residues 60-361):INCENP (residues 790-847) complex, and full-
length human T175A Nek2A proteins were purified from Escherichia coli as described
previously (88, 117, 118). Nucleotide sequence encoding the kinase domain of human Plk1
(amino acids 38-346) was cloned as an N-terminally His6-tagged fusion construct into a
modified version of the pET28a (Novagen) bacterial expression vector. The resulting fusion
protein contains an N-terminal His6-tag followed by maltose binding protein (MBP) and a
Tev protease cleavage site between MBP and the kinase domain. A Thr210 mutation to Asp
was introduced with the QuikChange Site-Directed Mutagenesis Kit (Stratagene) to increase
specific activity. The protein was expressed in E. coli Rosetta 2 (Novagen) cells and purified
by Ni-NTA affinity chromatography The kinase domain was further purified by affinity
chromatography on amylose beads, cleaved with Tev protease, re-applied to Ni-NTA to
remove the cleaved His6-MBP tag, and finally purified by gel filtration on a Superose 12
column. The Cdk1/Cyclin B kinase complex, which consisted of active human recombinant
full-length C-terminally His6-tagged Cdk1 and glutathione-S-transferase (GST)-tagged
human full-length cyclin B, was purchased from Millipore.

Phosphorylation Motif Determination by Peptide Library Array Screening
PS-OPLS was performed following Hutti et al. (42). Briefly, solution-phase kinase reactions
were performed in parallel on 198 separate biotinylated, partially degenerate oriented
peptide libraries (Anaspec, Inc) arrayed in a 384 well microtiter plate in a 20 row X 9
column format (fig. S1). Each peptide library contains a C-terminal biotin tag, a equal
mixture of serine and threonine at the orienting phospho-acceptor residue, a single second
fixed amino acid located between the Ser/Thr-5 and Ser/Thr+4 positions, and a mixture of
amino acids at all other positions. Individual libraries contain any of the 18 non-Ser/Thr
natural amino acids, as well as phosphothreonine or phosphotyrosine, in the second fixed
position, corresponding to the 20 rows. Scanning down each column of the array moves the
position of the fixed amino acid from Ser/Thr-5 to Ser/Thr+4 relative to the fixed phospho-
acceptor residue. As an example, the peptide library with Lys fixed in the Ser/Thr-4 position
has the following sequence: Y-A-X-K-X-X-X-S/T-X-X-X-X-A-G-K-K-biotin, where amino
acids are represented in 1-letter code, and X is an equal mixture of all 17 natural amino acids
excluding Cys, Ser, and Thr to prevent oxidation effects and eliminate secondary
phosphorylation events. S/T denotes a 1:1 mixture of Ser and Thr. Kinase reactions were
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performed at 30°C in a total volume of 16 μL containing 31.25 μM peptide library, 100 μM
ATP, and 200 μCi of [32P]-γ-ATP, in 150 mM NaCl (500 mM NaCl for Nek2 kinase
reactions), 10 mM MgCl2, 1 mM DTT, 0.1% Tween 20, and 50 mM Tris, pH 7.5. For
Aurora A and Aurora B, reactions were performed for 6 hours with 0.25 and 0.792 μg of
protein per reaction, respectively. For Nek2, reactions were performed for 8 hours with 2.4
μg of protein per reaction. For Plk1, reactions were performed for 3 hours with 0.5 μg of
protein per reaction. For Cdk1/Cyclin B, reactions were performed for 4 hours with 0.08 μg
of protein complex per reaction. Following incubation, 2 μL of each reaction were
simultaneously transferred to a Streptavidin-coated membrane (Promega SAM2 biotin
capture membrane) using a 384-slot pin replicator (VP Scientific). The membrane was
washed three times with 140 mM NaCl, 0.1% SDS, 10 mM Tris, pH 7.4, three times with 2
M NaCl, twice with 2 M NaCl containing 1% H3PO4, and once with water. The extent of
peptide library phosphorylation was determined by imaging the membrane with a
phosphorimager (Molecular Dynamics).

In Vitro Kinase Assays
Kinase assays for kinetic parameter determination were performed at 30°C in 90 μL of
kinase reaction buffer (50 mM Tris, pH 7.5, 150 mM NaCl [500 mM NaCl for Nek2 assays],
10 mM MgCl2, 100 μM ATP, 9 μCi [32P]-γ-ATP, and 1 mM DTT). Each reaction contained
0.003 μg of Aurora B:INCENP complex, 3.6 μg of T175A Nek2 protein, or 0.054 μg of
T210D Plk1 kinase domain. The sequences of the optimal substrate peptides for Aurora B,
Nek2, and Plk1 were ARRHSMGWAYKKKK, WFRMSIRGGYKKKK,
GHDTSFYWAAYKKKK, respectively. These optimal peptides were determined by taking
the most highly selected amino acid from each position, Ser/Thr-4 to Ser/Thr+3, of the PS-
OPLS blot and using Ser as the phospho-acceptor residue, at position 0. A C-terminal
tyrosine was added to each peptide to allow determination of concentration of peptide
solutions by UV spectrophotometry, and four C-terminal lysines were appended to increase
solubility and electrostatic interaction with phosphocellulose paper. Additional peptides with
single amino acid changes from the optimal peptides were as indicated in Figs. 3B, 4B, and
5B. Concentrations of peptides were as indicated. 5 μL of each reaction were spotted on
phosphocellulose at 0, 3, 6, 9, 12, and 15 minutes in duplicate. The phosphocellulose paper
was washed 4 times with 0.5% phosphoric acid, transferred to vials containing scintillation
cocktail and counted. From these kinase assays, Km, Vmax, and Vmax/Km values were
determined by curve fitting assuming Michaelis-Menten kinetics. For each concentration of
peptide, care was taken to ensure that less than 5% of the total substrate was phosphorylated
and that the reaction rate was linear with respect to time.

Kinase assays for comparison of activity of each kinase against the optimal peptides of each
kinase were performed at 30°C in 25 μL of kinase reaction buffer. Each reaction contained
0.008 μg of Aurora B:INCENP complex, 1 μg of T175A Nek2 protein, or 0.046 μg of
T210D Plk1 kinase domain. Amounts of each kinase were chosen so that reactions of each
kinase with its optimal peptide would yield approximately equivalent amounts of 32P-
radiolabel incorporation. Concentrations of optimal peptide were set to the Km of the kinase
in the reaction. Reactions were performed in triplicate and 5 μL of each reaction was spotted
on phosphocellulose at 0 minutes and 1 hour. The phosphocellulose paper was washed 4
times with 0.5% phosphoric acid, and analyzed by scintillation counting.

Mass Spectrometry Identification of Plk1-Dependent Mitotic Phosphorylation Sites
containing Asn in the Ser/Thr-2 Position

HeLa cells were cultured in DMEM supplemented with 10% Fetal Bovine Serum (Gibco /
Invitrogen), plus 0.2 mM L-glutamine, 100 U/ml penicillin, and 100 μg/ml streptomycin (all
from Sigma-Aldrich). In some cases, cells were transfected with LAP-tagged murine bait
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proteins (Mad2l1 or Bub1) and selected with 500 μg/ml G418 (Gibco). Cells were arrested
in mitosis by addition of 100 μg/ml nocodazole for 18 hr prior to harvesting. For mitotic
cells in which the activity of endogenous Plk1 was inhibited, nocodazole-arrested cells were
further incubated with 250 nM of BI4834 (a gift from Boehringer Ingelheim, Vienna,
Austria) for an additional 2 hrs. Cell pellets were harvested, snap-frozen in liquid nitrogen
and stored at −80°C. Thawed pellets were resuspended in one pellet-volume of extract
buffer (20 mM Tris-HCl, pH 7.5; 150 mM NaCl, 5 mM EDTA, 20 mM β-glycerophosphate,
10 mM NaF, 10% glycerol, and 0.1% NP-40) containing 1 μM okadaic acid, 0.2 mM
NaVO4, 1 mM DTT, 0.1 mM PMSF and 10 μg/ml each of leupeptin, pepstatin and
chymostatin, dounce homogenized, and clarified by centrifugation at 14,000 rpm for 15 min.
Mitotic cohesin and kinetochore protein complexes were immunoprecipitated with
antibodies against the endogenous cohesin regulator PDS5A or tandem affinity purified for
LAP-tagged Mad2l1 and Bub1, respectively as described (91, 119). Following extensive
washing, bound proteins were eluted using 0.2 M glycine pH 2.0, neutralized, digested in
solution using trypsin or subtilisin, and analyzed by MS.

Digests were analysed using a UltiMate 3000 Nano-LC system (Dionex Benelux,
Amsterdam, The Netherlands) equipped with a trap column for sample desalting and
concentration. Samples were loaded onto an analytical C18 column (PepMap C18, 75 μm ID
× 150 mm length, 3 μm particle size, 100 Å pore size, Dionex) for separation. Mobile phase
A contained 5% acetonitrile and 0.1% formic acid, while mobile phase B contained 80%
acetonitrile and 0.08% formic acid. Following a 10 min wash in 0.1% TFA, peptides were
eluted using a linear gradient from 20% to 50% mobile phase B in 180 min at a flow rate of
300 nl/min. Mass spectrometric analyses were conducted on a hybrid linear ion trap/Fourier
transform ion cyclotron resonance (FT-ICR) mass spectrometer (LTQ-FT Ultra, Thermo
Fisher Scientific) with a 7-Tesla superconducting magnet, equipped with a nano-
electrospray ionization (ESI) source. Full-scan measurements (m/z range 400-1800) were
conducted in the ICR cell, yielding a survey scan with resolution of 100,000 and a typical
mass accuracy of <2 ppm. Collision-induced dissociation (CAD) fragmentation and
spectrum acquisition were performed in the linear ion trap using the multi-stage activation
(MSA) method of Schroeder et al. (120). MS RAW files were analysed by database
searching using Mascot (121) for phosphopeptides containing Asn in the Ser/Thr-2 position.
The following parameters were used for the database search: carboxymethylation (+58.0055
u) of cysteine was set as fixed and oxidation (+15.9949 u) of methionine and
phosphorylation (+79.966331 u) as variable modifications. Mass tolerances of the parent ion
and the fragments were set to 10 ppm and 0.80 Da, respectively. Each mass spectrum of an
Asn-containing phosphopeptide identified by MASCOT was then manually inspected and
annotated.

Structural Modeling
The X-ray crystal structures of Cdk2/cyclin B (PDB identifier 2JGZ), and the kinase
domains of Aurora B in complex with an INCENP fragment (PDB identifier 2BFX), Nek2
(PDB identifier 2JAV), and human Plk1 (PDB identifier 2OU7) were used as base models.
For the Plk1 model, the activation loop segment was modeled based on the corresponding
region from the zebrafish crystal structure (PDB identifier 3D5W). For the Plk1 and Aurora
B models, peptides were manually docked into the substrate binding cleft based on the
structure of the substrate GSK3-beta peptide in the active site cleft of Akt (PDB identifier
106L). For the Cdk1 model, the structure of CyclinA/Cdk2 containing a substrate peptide in
the active site cleft (PDB identifier 2CCI) was used for manually docking the peptide,
whereas for Nek2, the peptide structure from the PKA catalytic subunit:AMP-
AlF4

−:substrate peptide co-complex was used for docking. Molecular surface
representations of the Aurora B, Cdk1, Nek2, and Plk1 active sites were created using
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PyMOL and shaded by electrostatic potential using surface projections of charge calculated
with DelPhi software (122).

Centrosome and Spindle Enrichment Bioinformatic Analysis
We obtained a list of proteins associated with the centrosome from Andersen et al. (102) and
a list of spindle proteins from Sauer et al. (103). Sequences for these proteins were
downloaded directly from NCBI Entrez Protein using NCBI Entrez Utilities (http://
www.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html). The human proteome was
downloaded as version 3.23 of the file ipi.HUMAN.fasta from the International Protein
Index (http://www.ebi.ac.uk/IPI/). We generated a list of the amino acid sequences
surrounding each Ser or Thr residue within the sequences of each protein in each of these
three data sources. The human proteome yielded 1,850,231 unique sites from 66,619
proteins. The centrosome data and spindle data yielded 35,425 unique sites from 524
proteins and 34,909 unique sites from 277 proteins, respectively. For each motif of interest
(Fig. 8B), statistical significance of enrichment of that motif in the centrosomal or spindle
proteomes relative to the full proteome was calculated using the hypergeometric
distribution:

where N is the number of Ser/Thr sites in the human proteome, n is the number of Ser/Thr
sites in the centrosomal or spindle proteome, m is the number of motif sites in the human
proteome, and k is the number of motif sites in the centrosomal or spindle proteome. This
corresponds to the probability of seeing as many instances or more of the motif by chance as
are seen in the centrosomal or spindle proteome if a dataset of the same size as the
centrosomal or spindle proteome is drawn at random from the human proteome.

Kinase Phosphorylation Motif Logos
Phosphorylation content of individual peptide libraries in the PS-OPLS blots was quantified
by phosphorimage analysis using ImageQuant 5.2 software (Molecular Dynamics).
Background correction was performed by subtracting an adjacent region of the blot of the
same size that did not overlap with any of the phosphorylated library spot positions.
Sequence logos were generated from the log2 values of the intensities of background
corrected, normalized peptide library spots using POSTSCRIPT files generated by Visual
Basic code adapted from Stephen Shaw’s original PSSM logo code (123), which contains
POSTSCRIPT code adapted from Tom Schneider’s MAKELOGO (version 8.69, http://
www.bio.cam.ac.uk cgi-bin seqlogo logo.cgi) (124).

Enrichment of Multiple Kinase Motifs in the Same Protein
Predicted high-stringency sites on proteins for CyclinB/Cdk1, Plk1, Aurora A and B, and
Nek2 were generated from PS-OPLS results using Scansite (http://scansite.mit.edu) (125).
Sites for Aurora Kinase A and B were combined into a single list, as were sites for each of
the two Cdk1/cyclinB motifs (one for Ser/Thr+3 R/K and one for Ser/Thr+4 K). Predicted
sites were identified by scanning all human proteins from SWISS-PROT (version 42.7), or
limited to those containing “nucleus” or “nuclear” in the description or keywords fields. For
each pair of kinases, the statistical significance of co-occurance was calculated according to
a hypergeometric distribution.
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Fig. 1. Major mitotic kinases have both discrete and overlapping subcellular localizations in
mitotic cells
Schematic representation showing the localizations of Cdk1/Cyclin B, Aurora A, Aurora B,
Plk1, and Nek2 are indicated at the G2/M transition or early prophase (top) and in
metaphase (bottom). In the top panel, a magnified representation of the centrosome with
nucleated microtubules is shown, illustrating Nek2 localization near the proximal centrioles
in the centrosomal core. The nucleus is shaded grey, containing duplicated but uncondensed
chromosomes (black). In the bottom panel, condensed chromosomes are shown aligned on
the metaphase plate, with their kinetochores indicated by central co-axial circles, attached to
spindle microtubules.
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Fig. 2. Phosphorylation motifs for Cdk1/cyclin B and Plk1
(A) The substrate motif for Cdk1/cyclin B reveals near exclusive selection for Pro in the Ser/
Thr+1 position, strong selectivity for Arg and Lys in the Ser/Thr+3 position, and Lys in the
Ser/Thr+4 position. (B) Comparison of the expanded Cdk1/cyclin B motif with mapped
substrate sites (49). Bold represents residues that distinguish the submotifs. (C) The
substrate motif for Plk1 reveals selection for Asp, Asn, or Glu in the Ser/Thr-2 position and
hydrophobic amino acids (Φ) in the Ser/Thr+1 position, and discrimination against Pro in
the Ser/Thr+1 position.
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Fig. 3. Kinetics of Plk1 phosphorylation and identification of an expanded consensus motif
(A) Kinetics of peptide phosphorylation by the Plk1 T210D kinase domain using an optimal
substrate peptide and peptides with single amino acid substitutions at the indicated positions.
Peptide sequences are shown in panel B. (B) Kinetic parameters (Km, Vmax, and Vmax/Km
ratio) for the phosphorylation of the indicated peptides by Plk1 were determined by fitting
the data to the Michaelis-Menten equation. Bold residues in the sequences represent the ones
substituted. (C) The substrate specificity motif of Plk1 matches previously mapped Plk1
phosphorylation sites, which contain Asp or Glu in the Ser/Thr-2 and hydrophobic amino
acids in the Ser/Thr+1 position. Bold represents motif-distinguishing residues. (D)
Annotated MS/MS spectra for the phosphopeptides containing three Plk1 inhibitor-sensitive
phosphosites containing Asn in the Ser/Thr-2 position. S# in the phosphopeptide sequence
represents phosphoserine. (E) Sequence motifs of the sites mapped from the data shown in
panel D.
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Fig. 4. Phosphorylation motif selectivity of Aurora A and B
(A) PS-OPLS blots of Aurora A (left) and Aurora B:INCENP complex (right) reveal
positively and negatively selected residues for motifs recognized by these kinases. The
arrowheads identify the complete selectivity against Pro at position Ser/Thr+1. (B) Peptide
phosphorylation and determination of kinetic parameters (Km, Vmax, and Vmax/Km ratio) for
reactions of Aurora B:INCENP with the optimal substrate peptide and peptides with single
amino acid substitutions. A graph of reaction data fitted to the Michaelis-Menten equation
for peptides is indicated on the left, and a table of kinetic parameters is shown on the right.
R-2D tide and M+1P tide sequences are indicated below the table with the substituted
positions shown in bold. (C) Previously published phosphorylation sites on mapped
substrates of Aurora A (left) and Aurora B (right) conform to the optimal phosphorylation
motif determined by PS-OPLS. Bold represents motif selected residues.

Alexander et al. Page 27

Sci Signal. Author manuscript; available in PMC 2014 March 03.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 5. Phosphorylation motif selectivity for Nek2
(A) PS-OPLS screening reveals that Nek2 strongly selects a subset of hydrophobic amino
acids in the Ser/Thr-3 and the Ser/Thr+1 positions and Arg in the Ser/Thr+2 position, but
strongly discriminates against Pro in the Ser/Thr+1 position. Additional selection against
acidic residues in the Ser/Thr-3, Ser/Thr+1 and +2 positions is also observed, as is positive
selection for certain residues in the Ser/Thr-2 position. Within the indicated motif, + denotes
basic residues, Φ denotes hydrophobic residues, and Ψ denotes aromatic residues. (B)
Peptide phosphorylation and determination of kinetic parameters (Km, Vmax, and Vmax/Km
ratio) for reactions of Nek2 with the optimal substrate peptide and peptides with single
amino acid substitutions. A graph of reaction data fitted to the Michaelis-Menten equation
for peptides is indicated on the top, and a table of kinetic parameters is shown on the bottom.
F-3V tide, R-2D tide, and I+1P tide, sequences are indicated in the table with the substituted
positions relative to the optimal peptide shown in bold. (C) Previously published mapped
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Nek2 phosphorylation sites are in reasonable agreement with the Nek2 PS-OPLS
phosphorylation motif. Bold represents motif selected residues.
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Fig. 6. Exclusivity of phosphorylation motifs for major mitotic kinases
(A) PS-OPLS blots for Plk1, Aurora A, Aurora B, and Nek2 are pseudocolored and
superimposed. Note the near identity of the Aurora A and B motifs in the merged view, and
the distinct lack of superposition of the Aurora A/B and Plk1 motifs, as revealed by the
largely distinct green and purple spots. The Nek2 motif shows substantial overlap with that
of Plk1 and Aurora at multiple positions. (B) Spot intensities from the PS-OPLS blots were
quantified and used to generate motif logos for each of the major mitotic kinases. Basic
residues are colored blue, acidic residues red, amide side chain-containing residues cyan,
Pro green, and the remaining residues in black. AurA, Aurora A; AurB, Aurora B.
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Fig. 7. Structural basis for kinase motif selectivity and exclusivity
(A) Optimal peptides for Plk1 (Plk1tide), Nek2 (Nek2tide), and Aurora B (AurBtide) were
used as substrates in phosphorylation reactions containing the indicated kinases. The amount
of radioactivity incorporated into each peptide after a one-hour incubation is indicated,
showing mean values and standard deviations from triplicate measurements. (B) Modeled
structures of kinases bound to optimal substrates (Cdk1/cyclin B:HHASPRK;
Plk1:HDTSFYWA; Aurora B:RRHSMGW; Nek2:FRASIR). The molecular surfaces
corresponding to the active site regions for each kinase are shown with red and blue regions
indicating negative and positive electrostatic potentials, respectively. Active site features
important for substrate selectivity are circled with yellow dotted lines and numbered relative
to the position of the phospho-acceptor. Peptide substrates are shown with cartoon rendering
for the backbone and stick rendering for relevant side chains. The phosphoacceptor Ser
residues are indicated with yellow asterisks. For Cdk1, the +1 region corresponds to Val164

of Cdk1, the +3 region corresponds to pThr160 of Cdk1, and the +4 region corresponds to
Glu265 and Asp268 of cyclin B. For Plk1, the −2 regions correspond to Lys178 and Asn216,
and the +1 region corresponds to Leu211, Pro215, Ile218 and Val222. For Aurora B, the −3
region corresponds to Glu177, the −2 regions correspond to Glu220 and Glu281, and the +1
region corresponds to Trp237, Met249 and Leu256. For Nek2, the −3 region corresponds to
Ala95 and Ala145, the −2 region corresponds to Glu208, and the +1 region corresponds to
Phe176, Pro180 and Met183.
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Fig. 8. Orthogonal mitotic kinase motif and localization ‘spaces’ provide substrate site specificity
(A) A selection of mitotic protein complexes identified by Hutchins et al. (122) are shown
within black circles and annotated based on the literature for the presence of mapped mitotic
phosphorylation sites by the indicated kinases. Note that multiple mitotic kinases
phosphorylate discrete sites within single complexes. Blue lines indicate direct intra-cluster
interactions. (B) Subproteomes associated with the spindle and centrosome were scored for
the occurrence of the Cdk1, Nek2 and Plk1 motifs and compared to the expected number of
sites at those locations based on the entire proteome. The enrichment significance score
indicates the statistical significance of overenrichment based on a hypergeometric
probability distribution. (C) Mitotic kinase functionality is represented by Venn diagrams of
‘localization space’ and ‘motif space’. In ‘localization space’, each circle represents the total
subcellular locales available to that kinase. In ‘motif space’, each circle represents the
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sequences that can be phosphorylated by the kinase. In this representation, a major mitotic
kinase can overlap with every other kinase in at most one of these two spaces.
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