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 Introduction 

 Recent studies on the effects of the fat-soluble steroid 
hormone vitamins D and E suggest that dietary supple-
mentation with these vitamins may be helpful for the 
 prevention or in the treatment of inflammatory and 
 immune-mediated diseases, including atopic asthma  [1–
7] . The antioxidant and nonantioxidant effects of the 
α-tocopherol isoform of vitamin E (AT) have been stud-
ied extensively  [8] ; however, γ-tocopherol (GT) has re-
ceived much less scrutiny until recently. Studies on the 
differential regulatory effects of α and γ isoforms are con-
flicting, whereas some studies indicate opposing regula-
tory function for these two isoforms, with AT having an-
ti-inflammatory properties and GT exerting proinflam-
matory effects  [9, 10] , possibly due to differential effects 
on vascular endothelial cells  [11] . In contrast, other inves-
tigators have clearly demonstrated potent anti-inflamma-
tory effects of GT  [7, 12–17] .

  Aside from its antioxidant and anti-inflammatory ef-
fects, the effects of vitamin E on innate immune function, 
particularly phagocytosis, have received little attention in 
either healthy or diseased individuals. Interestingly, al-
tered monocyte and macrophage function in the airways 
is increasingly being appreciated as a key component in 
the pathophysiology of respiratory diseases  [18–20] . For 
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 Abstract 

 Elevated inflammation and altered immune responses are 
features found in atopic asthmatic airways. Recent studies 
indicate γ-tocopherol (GT) supplementation can suppress 
airway inflammation in allergic asthma. We studied the ef-
fects of in vitro GT supplementation on receptor-mediated 
phagocytosis and expression of cell surface molecules asso-
ciated with innate and adaptive immunity on sputum-de-
rived macrophages. Cells from nonsmoking healthy (n = 6) 
and mild house dust mite-sensitive allergic asthmatics (n = 
6) were treated ex vivo with GT (300 μ M ) or saline (control). 
Phagocytosis of opsonized zymosan A bioparticles  (Saccha-
romyces cerevisiae)  and expression of surface molecules as-
sociated with innate and adaptive immunity were assessed 
using flow cytometry. GT caused significantly decreased 
(p < 0.05) internalization of attached zymosan bioparticles 
and decreased (p < 0.05) macrophage expression of CD206, 
CD36 and CD86 in allergic asthmatics but not in controls. 
Overall, GT caused downregulation of both innate and adap-
tive immune response elements, and atopic status appears 
to be an important factor.  Copyright © 2013 S. Karger AG, Basel 
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example, expression of cell surface receptors (CD64, CD14 
and HLA-DR), phagocytosis and uptake of inhaled par-
ticles are modified in patients with asthma and cystic fi-
brosis compared to healthy controls. Numerous studies 
have shown diminished neutrophil phagocytic function in 
animals deficient in AT as well as the recovery or enhance-
ment of innate immune function (phagocytosis and respi-
ratory burst) of human and animal neutrophils following 
in vivo or in vitro supplementation with AT  [21–25] . In 
contrast to studies on neutrophils, only a few conflicting 
studies have reported specifically on the effects of vitamin 
E on innate immune function in mononuclear phagocytes 
(monocytes and macrophages). Bergman et al.  [22]  found 
no effect of AT on phagocytosis by macrophages, while 
others  [26, 27]  demonstrated enhanced phagocytosis and 
at least one study  [28]  showed a dose-dependent decrease 
in phagocytic activity. Since all these studies focused on 
the effects of AT, information on the effects of GT on in-
nate immune function of macrophages is lacking.

  We have previously shown that in vivo GT supple-
mentation decreases systemic oxidative stress and cyto-
kine responses of human monocytes in atopic asthmatic 
subjects  [7] , suggesting that GT may provide beneficial 
host defense responses in allergic asthma. It is unclear, 
however, whether GT supplementation has a beneficial 
effect on macrophage phagocytic function and whether 
there is differential benefit in allergic asthmatics versus 
healthy nonasthmatic volunteers. As an extension of the 
previous study, we used induced sputum-derived airway 
macrophages from healthy and mild allergic asthmatics 
to investigate potential differential effects of in vitro GT 
supplementation on specific macrophage functions in-
cluding IgG-mediated phagocytosis and expression of 
surface molecules involved in phagocytosis and antigen 
presentation.

  Subjects and Methods 

 Subjects 
 Subjects were recruited via an ongoing protocol for obtaining 

induced sputum samples specifically for in vitro studies, which was 
approved by the Committee on the Protection of the Rights of Hu-
man Subjects, School of Medicine, University of North Carolina at 
Chapel Hill Institutional Review Board. Written informed consent 
was obtained from all subjects before donation of sputum samples. 
A total of 14 volunteer subjects were recruited for this study. Two 
subjects were subsequently excluded for the following reasons: 1 
healthy subject because of elevated eosinophil cell counts (6%) and 
1 asthmatic subject because of low sputum cell viability (42%). The 
remaining 12 subjects comprised 6 healthy nonsmoking volun-
teers (skin test negative, 3 men and 3 women, 23.8 ± 3.3 years of 

age) and 6 nonsmoking volunteers with mild asthma and allergy 
to house dust mites (positive skin reaction test, 4 men and 2 wom-
en, 28.2 ± 3.7 years of age). All subjects underwent a thorough 
physical examination and had no history of recent respiratory tract 
infection. Asthmatic volunteers had a positive methacholine test 
and mild symptoms of asthma, as defined under the section 3 of 
the 2007 NHLBI guidelines for the diagnosis and management of 
asthma. Asthmatics used albuterol as needed, but none were taking 
steroids or anti-inflammatory medications to control symptoms. 
All subjects had a forced expiratory volume in 1 s (FEV 1 ) of at least 
80% of predicted for a normal population of similar height, weight, 
sex, race and age. All study participants were able to produce an 
adequate sputum sample ( ≥ 1 × 10 6  total cells,  ≥ 50% cell viability, 
 ≤ 20% squamous epithelial cells).

  Study Design 
 The study was performed in vitro, using cells obtained from 

induced sputum. Sputum cells with a minimum viability of 50% 
were treated ex vivo with either GT or saline (control). Thereafter, 
GT-treated and untreated sputum macrophages were tested for 
their capacity to phagocytose opsonized zymosan A bioparticles 
 (Saccharomyces cerevisiae)  using flow cytometry (FCM) analysis. 
Concomitant analysis of surface molecules associated with innate 
and adaptive immunity was performed by FCM.

  Sputum Induction and Cell Processing 
 Sputum was obtained by standard procedures  [29, 30] . Briefly, 

subjects successively inhaled increasing concentrations of saline 
(3, 4 and 5% saline) using a Devilbiss UltraNeb 99 ultrasonic neb-
ulizer (Sunrise Medical, Somerset, Pa., USA) and donated sputum 
after each inhalation session of 7 min. The three sputum samples 
were pooled. To obtain a cell-enriched ‘select’ sample, sputum cell 
aggregates (cellular mucus plugs) were manually selected from 
their surrounding fluid. Mucus was digested using 0.1% dithio-
threitol (Sputolysin; Calbiochem, San Diego, Calif., USA) to free 
sputum cells, which were then washed and resuspended in Hanks’ 
balanced salt solution and kept on ice until further treatment. To-
tal cell counts and cell viability were determined using a Neubauer 
hemocytometer and trypan blue (Sigma, St. Louis, Mo., USA) ex-
clusion staining. We expected a minimal yield of 1 × 10 6  cells 
(mainly macrophages and polymorphic neutrophils) and a cell vi-
ability of at least 50%. Differential cell counts were determined on 
cytocentrifuged preparations stained the with Hema-Stain-3 kit 
(Fisher Diagnostics, Middletown, Va., USA).

  GT Treatment 
 Cells were centrifuged and the pellet resuspended in RPMI 

1640 cell culture medium (supplemented with 10% FCS) at a con-
centration of 1 × 10 6  cells/ml. Cells were then split into two sam-
ples, the GT-treated and the untreated control. Thereafter, cells 
were incubated with GT (0.125 mg/ml = 300 μ M ; Sigma) or Dul-
becco’s phosphate-buffered saline (DPBS, control sample), respec-
tively, for 1 h at 37   °   C. This concentration was chosen because it 
had been used previously for in vitro studies in our laboratory [un-
publ. observations]. The cells were centrifuged, resuspended in 
medium and their viability was assessed as described above. Cells 
were then diluted in medium to a concentration of 2 × 10 6  cells/
ml. The GT-treated and the control cells were each split into three 
samples of equal cell numbers.
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  There was no evidence for any cytotoxicity of GT as used in our 
experiments: average cell viability (n = 6) remained unaffected; it 
was 81.5 ± 4.0% before and 81.3 ± 4.0 and 85.8 ± 2.0% after GT or 
saline treatment, respectively. In addition, there was no evidence 
for cell necrosis (e.g. karyolysis, cell swelling or vacuoles) or apop-
tosis (shrinkage, pyknosis, karyorrhexis or blebbing) upon light-
microscopic evaluation of cytospin preparations before and after 
GT or saline treatment. Furthermore, there was also no evidence 
for the induction of substantial cell death (necrosis/apoptosis) 
from surface marker analyses, as there was no general and system-
atic decrease in surface markers in all GT-treated samples.

  Separate experiments determined that the solvent vehicle, di-
methyl sulfoxide, which contained the dissolved GT, had no effects 
on cell viability, uptake of zymosan A bioparticles or expression of 
surface molecules at the final concentration used in this study.

  Particle Uptake 
 We tested the effect of GT on in vitro particle uptake (phago-

cytosis) using fluorescein isothiocyanate (FITC)-labeled, IgG-op-
sonized  S. cerevisiae  zymosan A BioParticles (Molecular Probes, 
Eugene, Oreg., USA), as previously described  [29, 31] . Briefly, 100 
μl of sputum cells in culture media (2 × 10 6  cells/ml) were incu-
bated (1 h at 37   °   C) with 100 μl of opsonized FITC-labeled zymosan 
A bioparticles and 20 μl of human serum (type AB; Cambrex Bio-
science, Walkersville, Md., USA). After incubation, phagocytosis 
was stopped by diluting the reaction mixture with 200 μl DPBS and 
immediately placing the samples on ice. The samples were ana-
lyzed immediately by FCM, as previously described  [20, 32] , using 
a FACSort flow cytometer (Becton-Dickinson, Franklin Lakes, 
N.J., USA). Briefly, the association of FITC-zymosan A with cells 
was assessed by measuring changes (histogram analysis) in mean 
fluorescence intensity (MFI) of zymosan-FITC-exposed sputum 
macrophages compared with unlabeled autofluorescent controls. 
Internalization of particles was assessed by adding 50 μl of trypan 
blue to the cell suspension and measuring changes in comparison 
to zymosan-FITC-exposed sputum macrophages as above.

  Cell Surface Phenotypes 
 We tested the effect of GT on the expression of surface mole-

cules and phagocytic function using FCM as described in detail in 
previous publications  [29, 30, 33] . In brief, 100 μl of cells (1 × 10 6 /
ml, GT-treated and untreated control cells) were incubated with 
10 μl of fluorochrome-labeled monoclonal antibodies for 45 min 
at 4   °   C, washed in DPBS and fixed in 500 μl of 0.5% paraformalde-
hyde. Samples were analyzed immediately using a BD LSR-II flow 
cytometer and FACSDiva 6.0 Software (BD Biosciences, San Jose, 
Calif., USA). Sputum leukocytes were differentiated from contam-
inating epithelial cells and debris based on a combination of light-
scatter properties and differential expression of the pan-leukocyte 
marker CD45. Leukocyte subpopulations were further discrimi-
nated using specific gating strategies based on light scatter and dif-
ferential expression of CD45 and lineage-specific surface markers 
( fig. 1 ), including CD14, CD64, HLA-DR (monocytes and macro-
phages) and CD16 (neutrophils), as previously described  [33] . 
Background and nonspecific fluorescence was determined using 
control cells incubated with appropriately labeled isotypic control 
antibodies. Reported MFIs for specific markers are corrected for 
background and nonspecific fluorescence.

  We examined the expression of cell surface molecules associ-
ated with phagocytosis and innate immune function, including Fc 
receptors (CD64/FcγRI, CD32/FcγRII and CD16/FcγRIII), the 
complement receptor (CD11b/CR3), the macrophage mannose 
receptor (CD206), the lipopolysaccharide receptor (mCD14) and 
tumor necrosis factor receptor-5 (CD40), which also functions as 
the B-cell costimulatory molecule. In addition, cell surface expres-
sion of CD36, a receptor for oxidized low-density lipoproteins 
(LDL), which has been shown to be downregulated by AT  [34] , was 
examined. We also assessed the expression of surface proteins as-
sociated with adaptive immune responses (antigen presentation 
and T-cell activation) including HLA-DR/MHC class II, CD86/
B7.2 costimulatory molecule and the B-cell costimulatory mole-
cule CD40. Sources for monoclonal antibodies are listed in  table 1 . 
Appropriate isotype control antibodies were also obtained from 
these sources.
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  Fig. 1.  Strategy for the identification and gating of sputum leuko-
cytes. Subpopulations of CD45+ leukocytes ( a ) were identified
using the differential expression of CD45, lineage markers and 
light scatter properties.  b  The general location of the various 
CD45+ subpopulations. Mononuclear phagocytes were differenti-

ated from granulocytes based on differential expression of either 
HLA-DR ( c ), CD64 and CD16 ( e ) or CD14 (isotype control tube, 
not shown).  d  Macrophages and monocytes were gated based on 
CD45 expression and light scatter. 
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  Statistical Analysis 
 In this study, sputum cells from the same subject were treated 

with either GT or saline. Thus GT or no treatment became a with-
in-subject (repeated-measure) factor, while the allergy status was a 
between-subject factor. To explore the potential interaction effect 
between GT and allergy status, we conducted a formal statistical 
investigation of the potential interaction by using multivariate 
analysis techniques. In particular, a two-way repeated-measure 
model was fitted for each outcome variable. To look for the GT ef-
fect in the healthy or the allergic group, we fitted a one-way repeat-

ed-measure ANOVA model on individual groups. A p value less 
than the overall 0.05 significance level was considered statistically 
significant. Throughout the paper, the p values reported were based 
on the aforementioned analyses unless otherwise stated. Descrip-
tive statistics such as number of observations, mean, SEM and 
range (minimum, maximum) are used to summarize the continu-
ous outcome variables. Group comparisons were carried out using 
the SAS/STAT user’s guide (version 9.1; SAS Institute, Cary, N.C., 
USA). Spearman’s correlation was performed using GraphPad 
Prism v5.04 software (GraphPad Software, San Diego, Calif., USA).

Table 1. Specification of monoclonal antibodies used for FCM analysis of surface markers

Antibody Clone Fluorochrome Source Cellular expression Function

CD11b/CR3 ICRF44 PE-CY5 BD Gran, Mac, Mono Receptor for C3bi, phagocytosis, cell adhesion
CD14 RMO52 APC Coulter Mono, Mac, Gran Lipopolysaccharide receptor
CD16/FcγRIII 3G8 PE Coulter PMN, Mac, NK Phagocytosis, endocytosis
CD32/FcγRII 3D3 FITC BD PMN, Mono, Mac Phagocytosis, endocytosis
CD64/FcγRI 22 FITC Coulter Mac, Mono Phagocytosis, antigen capture, 

antibody-dependent cellular cytotoxicity
CD36 FA6.152 FITC Coulter Mono, Mac Type-B1 scavenger receptor (SR-B),

oxidized LDL/HDL receptor
CD40 MAB89 PE Coulter B cells, Mono, Mac, DC B cell costimulatory molecule, antigen presenta-

tion, B cell maturation and survival, TNFR-5
CD45 2D1 APC-Cy7 BD Pan leukocyte marker Leukocyte common antigen, B and T cell 

 activation and survival
CD86/B7.2 HA5.2B7 PE Coulter Mac, Mono, DC, B cells Costimulatory molecule for antigen 

 presentation, T cell activation
CD206 19.2 APC BD Mac Macrophage mannose receptor (MMR),

C-type lectin scavenger receptor (SR-C1), 
phagocytosis, antigen capture

HLA-DR L243(G46-6) PerCP BD Mono, Mac, DC, B cells MHC II, antigen presentation

Coulter = Beckman Coulter, Brea, Calif., USA; BD = BD Biosciences; Mac = macrophages; Mono = monocytes; Gran = granulocytes; 
PMN = polymorphonuclear leukocytes (neutrophils); DC = dendritic cells; NK = natural killer cells; LDL = low-density lipoprotein; 
HDL = high-density lipoprotein.

Table 2.  Sputum and cell recovery, viability, total and differential cell counts and cells per milligram of nonsquamous cells in select spu-
tum determined using a Neubauer hemocytometer and stained cytocentrifuged sputum cell preparations

Subjects 
(n = 12)

Selected
sputum weight
mg

Ratio select/
total sputum 
weight

Total cells
×106

Cells/mg
n

Viable
%

PMN
%

Macro-
phages
%

Eosino-
phils
%

Lympho-
cytes
%

Normal (n = 6) 2,599 (501) 0.34 (0.06) 9.78 (2.68) 4,682 (1,243) 83.60 (3.50) 54.48 (12.24) 42.97 (12.06) 0.34 (0.21) 2.22 (1.02)
Range 1,116–4,470 0.13–0.56 2.68–20.95 1,770–7,900 70.21–94.27 21.21–93.47 4.52–76.22 0.00–1.01 0.00–7.07

Allergic (n = 6) 3,010 (606) 0.34 (0.07) 5.95 (1.33) 2,136 (370) 85.00 (2.51) 48.86 (8.06) 45.87 (7.89) 2.30 (1.59) 2.98 (0.56)
Range 1,621–5,468 0.10–0.56 3.52–11.90 1,372–3,471 77.83–92.24 28.50–77.66 32.14–67.01 0.00–10.20 1.02–4.57

All (n = 12) 2,804 (380) 0.34 (0.04) 7.86 (1.54) 3,409 (728) 84.30 (2.07) 51.67 (7.04) 44.42 (6.89) 1.32 (0.82) 2.60 (0.57)
Range 1,116–5,468 0.10–0.56 2.68–20.95 1,372–7,900 70.21–94.27 21.21–93.47 4.52–76.22 0.00–10.20 0.00–7.07

 Data are presented as the mean (SEM) unless otherwise specified. No significant differences were detected between the two groups (normal vs. allergic) 
for any of the variables. PMN = Polymorphonuclear leukocytes (neutrophils). Macrophages include monocytes and all macrophage populations. There were 
no basophils recorded in any of the subjects.
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  Results 

 Cell Yield, Viability and Differential Counts of 
Sputum-Derived Cells 
 Total and differential cell counts and other sputum pa-

rameters for normal subjects (n = 6) and those with aller-
gic asthma (n = 6) are presented in  table 2 . Average cell 
viability in all subjects was 84.30 ± 2.07% (range 70.21–
94.27%), hence well above the minimally required 50% 
viability. Compared to healthy controls, asthmatic sub-
jects produced slightly higher total and select sputum 
weights, fewer total cells per milligram and had an expect-
edly greater percentage of eosinophils in the select sample 
compared to healthy subjects. No other significant differ-
ences were detected between the two groups for any of the 
variables (as listed in  table 2 ).

  Macrophage Function in Response to GT Treatment 
 Zymosan phagocytosis data from 1 ‘normal’ subject 

with a very high sputum neutrophil count was unusable 
due to difficulties in gating an adequate number of mac-
rophages for analysis by FCM. Data from this subject 
were excluded from analysis: thus, there were only 5 sub-
jects in the normal group for this assay. A statistics sum-
mary of the p values for each outcome variable is provid-
ed in  table 3 .

   Uptake of Zymosan A Bioparticles 
  Baseline values (i.e. no exposure to GT) for all the 

phagocytic parameters were higher (not statistically sig-
nificant) for macrophages from allergic asthmatics com-
pared to healthy controls ( fig. 2 ). Multivariate analysis of 
the combined (healthy and asthmatic) groups showed 
that, although treatment with GT did not result in a sig-
nificant change in the overall percentage of macrophages 
which had engulfed or attached to particles, there was a 
significant interaction (p = 0.02) between GT treatment 
and allergic status, with the change approaching signifi-
cance within the asthmatic group (p = 0.057). However, 
in the combined groups, multivariate analysis showed 
that GT treatment caused an overall significant decrease 
(p = 0.04) in the ratio of cell-associated particles which 
were actually internalized, as opposed to particles re-
maining attached to the external cell surface. When con-
sidered individually, this effect was significant only in the 
asthmatic group (p = 0.02) and not in the healthy con-
trols. Thereby, the two groups responded differently to 
GT treatment, and the effect was more pronounced in al-
lergic asthmatics than healthy controls.

  Cell Surface Immunophenotype in Response to GT 
Treatment 
Changes in the expression of leukocyte cell surface 

proteins were measured by FCM as changes in the MFI of 

Table 3.  Statistics summary of p values for each outcome variable

Parameter Population  2-way ANOVA (all subjects) 1-way ANOVA

alle rgic GT allergic × GT healthy
GT

allergic
GT

baseline healthy 
vs. allergic

Zymosan Phagocytic, % 0.11 0.53 0.02* 0.16 0.057 0.07
Int part/cell 0.06 0.99 0.73 0.69 0.83 0.08
Int, % 0.52 0.10 0.22 0.79 0.03* 0.40
Ratio Int/Ext 0.56 0.04* 0.42 0.44 0.02* 0.51

CD206 Mac 0.08 0.02* 0.53 0.19 0.04* 0.14
CD64 Mac 0.37 0.87 0.95 0.95 0.85 0.05*
CD16 Mac 0.93 0.03* 0.62 0.18 0.13 0.84
CD32 Mac 0.17 0.34 0.16 0.21 0.66 0.21
CD14 Mac 0.30 0.21 0.42 0.57 0.29 0.27
CD11b Mac 0.56 0.73 0.73 1.00 0.13 0.52
CD36 Mac 0.82 0.03* 0.15 0.57 0.02* 0.96
CD86 Mac 0.81 0.004* 0.66 0.07 0.03* 0.76
HLA-DR Mac 0.12 0.08 0.11 0.81 0.11 0.07
CD40 Mac 0.79 0.03* 0.64 0.08 0.23 0.71

 Mac = Macrophages; Int = internal; Ext = external. * p < 0.05.
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the gated population. In general, treatment of cells with 
GT had a downregulating effect on the expression of se-
lected cell surface proteins on sputum cells ( fig. 3 ), in-
cluding those with primary importance to both innate 
(CD206, CD16/FcγRIII and CD36;  fig. 4 ) and adaptive 
immune responses (HLA-DR, CD86 and CD40;  fig. 5 ). 
We found no significant GT-induced changes in the 
 expression of other surface proteins, including CD64/
FcγRI, CD11b/CR3 or CD14/lipopolysaccharide recep-
tor for macrophages. For some markers, we again found 
a significant effect of GT in allergic asthmatic subjects but 
could not detect a significant effect in the combined 
group, which might most likely be explained by the small 
number of subjects in each group. In addition, as can be 
seen in the graphs, mean baseline values for many of the 
surface markers were higher in allergic asthmatics than in 
healthy subjects. A statistical summary of the p values for 
each outcome variable is provided in  table 3 .

 Innate Immune Response Markers 
The macrophage mannose receptor (CD206) is a type 

C scavenger receptor (SR-C1, SRCL-1) similar to type A 
scavenger receptors but also having a C-type lectin/car-

bohydrate recognition domain. It is important for phago-
cytosis of carbohydrates, glycoprotein and other mole-
cules, and also functions in the presentation of mannose-
bearing antigens to T cells by macrophages and a subset 
of dendritic cells. Multivariate analysis showed that GT 
treatment had a significant (p = 0.02) downregulating ef-
fect on CD206 expression on sputum macrophages in the 
combined healthy and allergic groups ( fig.  4 a). When 
looking at the individual groups alone, we found a sig-
nificant GT treatment effect in the allergic group (p = 
0.04) but not in the healthy group.

 Fcγ receptors including CD64/FcγRI, CD32/FcγRII 
and CD16/FcγRIII are important for phagocytosis of 
 opsonized materials (e.g. bacteria and other microbes, 
antigen-antibody complexes and particles) by phagocytic 
cells. Relative to controls, the mean baseline CD64 ex-
pression was significantly lower on the macrophages of 
the asthmatic group (19,332 ± 1,237 vs. 15,742 ± 998, p = 
0.05). Multivariate analysis of the combined groups 
showed no significant effect of GT treatment on CD64 
expression by sputum macrophages. The mean baseline 
cell surface expression of CD16 on macrophages was 
slightly, but not significantly higher in asthmatic subjects. 
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  Fig. 2.  Phagocytic uptake of zymosan A bioparticles by sputum 
macrophages, shown as percent phagocytic cells ( a ) and ratio of 
internalized/external particles ( b ). The baseline value (i.e. no expo-
sure to GT) for particle internalization was higher, though not sig-
nificant, for allergic asthmatics compared to healthy controls. GT 
treatment did not result in a significant change in the percentage of 

phagocytic cells. However, there was a significant interaction (p = 
0.02) between GT treatment and allergic status, with the change ap-
proaching significance within the asthmatic group (p = 0.057). GT 
treatment caused a significant (* p = 0.04) decrease in the ratio of 
internal/external particles in the combined healthy and allergic 
groups (all subjects), as well as in the allergic subgroup (** p = 0.02). 
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Multivariate analysis of the combined groups showed a 
significant effect of GT treatment on the expression of 
CD16 on macrophages (p = 0.03;  fig. 4 b).

  We found no differences in the mean baseline expres-
sion of CD32, CD14 and CD11b/CR3 between groups, 
and multivariate analysis of the combined groups showed 
no significant effect of GT treatment on CD32, CD14 and 
CD11b/CR3 expression on macrophages.

 CD36 is a type B scavenger receptor present on macro-
phages which functions as a receptor for endocytosis of 
lipoproteins, including oxidized LDL and high-density li-
poproteins, fatty acids and a variety of other molecules. It 
has been shown to be downregulated by AT  [34] . Baseline 
expression of CD36 was not different between groups. 
Multivariate analysis showed that expression of CD36 was 
significantly decreased on sputum macrophages following 
GT treatment (9,975 ± 1,425 vs. 8,695 ± 1,383, p = 0.03) in 
the combined groups, whereby both groups responded 
similarly ( fig. 4 c). Despite this, subgroup analyses showed 
a significant downregulating effect of GT in the allergic 
group (p = 0.02) but not in the healthy subjects.

 Adaptive Immune Response Markers
 The mean baseline cell surface expression of CD86/

B7.2 was not significantly different between groups. Mul-
tivariate analysis of the combined groups showed that GT 
exposure caused significantly decreased expression of 
CD86/B7.2 on macrophages (p = 0.004;  fig. 5 a). Subgroup 
analyses indicated that the response to GT was greater in 
the allergic subjects, with significantly decreased CD86 
expression on macrophages (p = 0.03).

 The mean baseline cell surface expression of HLA-DR 
was not significantly different between groups. In con-
trast to changes in CD86, there was no significant effect 
of GT treatment on the expression of HLA-DR by mac-
rophages in either combined, healthy or allergic groups.

  Expression of CD40/TNFR-5 (also a costimulatory 
molecule for B cells) was significantly decreased on mac-
rophages (p = 0.03) following GT exposure for the com-
bined groups, but no significant decrease was noted when 
groups were considered individually ( fig. 5 b). We found 
no significant differences in the mean baseline CD40 ex-
pression.
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  Fig. 3.  Representative histograms depicting the differential expres-
sion of various surface proteins on sputum macrophages incubat-
ed with or without GT. Asthmatic subjects (top row) are compared 
with normal healthy subjects (bottom row). Dotted lines (no fill) 
represent isotype controls. Histograms for GT-treated macro-
phages (solid blue line, tinted fill) overlie the untreated macro-

phages (solid red fill). Baseline (untreated) expression of surface 
proteins generally tended to be slightly higher on cells from asth-
matics compared to healthy subjects. Similarly, expression tended 
to be decreased (i.e. histogram shifted to the left) on GT-treated 
macrophages from asthmatic subjects compared to healthy con-
trols.         
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  Discussion 

 A major function of lung macrophages is the phago-
cytic uptake of inhaled and deposited particles for their 
clearance from the epithelial surfaces  [35] . In order to 
study the effects of GT on airway macrophage function, 
we examined the effects of ex vivo GT treatment on spu-

tum cell phagocytic activity and expression of cell sur-
face proteins associated with both innate and adaptive 
immune function. Our results show that ex vivo GT 
treatment of sputum-derived airway macrophages 
caused decreases in certain phagocytic indices, down-
regulated expression of specific cell surface proteins and 
that atopic status appears to be an important factor. 
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  Fig. 4.  Surface markers related to phagocytosis (innate immunity) 
with significant changes on sputum macrophages upon GT treat-
ment. Expression of CD206 ( a ) was significantly downregulated 
in the combined healthy and allergic groups (   *  p = 0.02) as well as 
in the allergic subgroup ( *  *  p = 0.04). CD16 ( b ) was significantly 
downregulated in the combined groups ( *  p = 0.03). CD36 ( c ) was 
significantly decreased in the combined groups ( *  p = 0.03) as well 
as in the allergic subgroup ( *  *  p = 0.02). 
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particles) was decreased following GT treatment (com-
bined groups) suggesting that, though it did not affect at-
tachment of particles, GT treatment impaired the ability 
of cells to internalize attached particles. These effects 
were consistently observed in the allergic asthmatic 
group, indicating a differential effect of GT in atopic ver-
sus nonatopic individuals. The exact molecular mecha-
nisms for these differential effects are unclear and war-
rant further investigation.

  The mechanism for the GT-induced inhibition of 
phagocytosis and particle internalization is unclear, but 
may be related to the modulation of surface receptors or 
perhaps by effects on cytoskeletal elements. While we did 
not examine the cytoskeleton, there is evidence that vita-
min E (AT) inhibits monocyte adhesion and migration 
by interfering with actin polymerization  [38] . Although 
uptake of IgG-opsonized zymosan A bioparticles is like-
ly mediated primarily through Fc-receptor-mediated 
phagocytosis, complement receptors and scavenger recep-
tors may also contribute to their uptake by macrophages. 
It is plausible and likely that receptors such as CD206 and 
other scavengers (CD163, CD204 and  MARCO) or patho-
gen-associated molecular pattern receptors also partici-

These findings suggest that GT modulates macrophage 
activation and is consistent with findings in earlier stud-
ies  [28, 34, 36, 37] .

  Our findings point to enhanced activity of airway sur-
face macrophages in mild allergic asthma, as the baseline 
percentage of phagocytic cells is marginally higher (not 
statistically significant) in the asthmatics relative to the 
healthy subjects ( fig.  2 ). This correlates with previous 
studies, where we have shown significantly increased in 
vivo uptake of inhaled particles and ex vivo phagocytosis 
by airway macrophages in subjects with mild allergic 
asthma compared to healthy controls  [20] . Despite the 
higher baseline phagocytic activity in macrophages from 
allergic asthmatics, we were unable to detect a significant 
effect of GT treatment on the overall percentage of cells 
which phagocytized or attached to zymosan bioparticles 
in either healthy or allergic asthmatic cohorts. There was, 
however, a significant interaction between allergy status 
and GT treatment on the overall percentage of phago-
cytic macrophages, with a trend towards a significant ef-
fect of GT (p = 0.057) in the asthmatic group. In addition, 
the proportion of attached zymosan bioparticles which 
were actually internalized (ratio of internal to external 
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  Fig. 5.  Surface markers mainly related to adaptive immunity with significant changes on sputum macrophages 
upon GT treatment. Expression of CD86 ( a ) was significantly decreased in the combined healthy and allergic 
groups (   *  p = 0.004) as well as in the allergic subgroup (** p = 0.03). CD40 (     b ) was significantly downregulated 
for the combined groups (* p = 0.03).           
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pate in the capture and endocytosis of zymosan particles. 
If so, differential downregulation of such receptors (e.g. 
CD206) could at least partially explain some of our find-
ings on phagocytosis of zymosan bioparticles, especially in 
the asthmatic subjects where there was a significant effect 
of GT on CD206 expression. Our study suggests that an-
tigens of a particulate nature may be less susceptible to 
endocytosis and subsequent antigen processing.

  There is little available information on the effects of 
GT on the expression of cell surface molecules associ-
ated with antigen presentation. Consistent with our 
findings, Betjes et al.  [36]  reported decreased expression 
of MHC I and the costimulatory molecules CD86 and 
CD40 on blood monocytes associated with the use of 
vitamin E-coated dialysis membranes in hemodialysis 
patients. We did not study the effects of GT on T-cell 
function or of antigen processing and presentation by 
sputum antigen-presenting cells. However, we can spec-
ulate that the GT-induced downregulation of CD86 on 
macrophages in allergic asthmatics may impair antigen 
presentation.

 Decreased CD36 (SR-B) expression is consistent with 
the literature on AT  [37] , including ex vivo studies using 
monocyte-derived human macrophages  [34] . CD36 is 
also a receptor for oxidized LDL and is highly expressed 
on lipid-laden macrophages in atherosclerotic vascular 
lesions  [39] . In the circulating blood, tocopherols are 
transported in lipoprotein carriers  [40] , and a major 
route of cellular uptake is via receptor-mediated endocy-
tosis through type B scavenger receptors, SR-B1 and 
CD36. There is also evidence that GT may be preferen-
tially metabolized to water-soluble forms to a greater ex-
tent than AT  [41]  and may gain entry into cells by an 
alternate mechanism. GT-induced downregulation of 
CD206 (SR-C1, macrophage mannose receptor) is con-
sistent with the effects of AT on other scavenger recep-
tors [e.g. CD36, as well as CD163 and CD204 (both MSR-
A1-type receptors)]. There is evidence that GT may be 
less efficient than AT at downregulating SR activity  [42] ; 
however, we have no data on the comparative effects of 
GT and AT on the expression of either CD36 (SR-B) or 
CD206 (SR-C1).

 Limitations of the Study
 We recognize it is unlikely that the high concentration 

of GT in our ex vivo study could be achieved in either 
plasma or airway surface secretions via oral dietary sup-
plementation. The molar concentration used in our study 
(300 μ M ) is 3- to 30-fold higher than concentrations of AT 
 [34]  or GT  [13]  used in previous in vitro studies and 40- 

to 200-fold higher than plasma GT concentrations in hu-
mans  [7, 43] . Reported AT concentrations in induced 
sputum are much lower, ranging from 100 n M  to 5.5 μ M  
 [43, 44] , and sputum GT concentration has been mea-
sured at approximately 100 n M   [43] . Additional studies 
using lower concentrations of GT are warranted to deter-
mine if our findings remain valid at more physiologic 
concentrations.

 We are aware that, due to the relatively small number 
of subjects, some of our comparisons are underpowered, 
which likely affected our ability to detect significant ef-
fects of GT treatment or allergy status for some parame-
ters. Nevertheless, we were able to detect robust statisti-
cally significant changes in certain phagocytic indices and 
the expression of some surface proteins associated with 
innate and adaptive immune responses. Moreover, the 
data coherently show that GT has an effect generally con-
sistent with downregulation of innate and adaptive im-
mune function and that there is a differential effect in 
healthy versus allergic asthmatic individuals.

  In conclusion, we showed in this novel study on spu-
tum macrophages a downregulating effect of GT on sur-
face proteins related to innate and adaptive immunity, 
whereby the asthmatic status was an important factor. In 
addition, GT had an attenuating effect on the more acti-
vated macrophages in asthmatic subjects, as it decreased 
certain phagocytic indices and surface proteins associated 
with antigen presentation by these cells. This study con-
firms that GT exerts differential effects on airway macro-
phage function in mild allergic asthmatics versus healthy 
individuals and supports findings of previous studies in 
animals which indicate GT supplementation may be ben-
eficial in the treatment or prevention of allergic airway 
inflammation. These findings further our understanding 
of the role of airway surface macrophages in host defense, 
and provide a basis for further investigation into the ef-
fects of GT treatment on macrophage function, particu-
larly in allergic asthmatic populations.
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